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ABSTRACT
In several database applications, parameters like selectivities
and load are known only with some associated uncertainty,
which is specified, or modeled, as a distribution over val-
ues. The performance of query optimizers and monitoring
schemes can be improved by spending resources like time
or bandwidth in observing or resolving these parameters, so
that better query plans can be generated. In a resource-
constrained situation, deciding which parameters to observe
in order to best optimize the expected quality of the plan
generated (or in general, optimize the expected value of a
certain objective function) itself becomes an interesting op-
timization problem.

We present a framework for studying such problems, and
present several scenarios arising in anomaly detection in
complex systems, monitoring extreme values in sensor net-
works, load shedding in data stream systems, and estimat-
ing rates in wireless channels and minimum latency routes
in networks, which can be modeled in this framework with
the appropriate objective functions.

Even for several simple objective functions, we show the
problems are Np-Hard. We present greedy algorithms with
good performance bounds. The proof of the performance
bounds are via novel sub-modularity arguments.

1. INTRODUCTION
Optimization problems arising in databases, streaming,

cluster computing, and sensor network applications often
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involve parameters and inputs whose values are known only
with some uncertainty. In many of these situations, the
optimization can be significantly improved by resolving the
uncertainty in the input before performing the optimization.
For instance, a query optimizer often has the ability to ob-
serve characteristics in the actual data set, like selectivities,
either via random sampling or by performing inexpensive
filters [5, 3]. As another example, a system like Eddies [2]
finds the best among several competing plans which are run
simultaneously. Each plan’s running time is a distribution
which is observed by executing the plan for a short amount
of time. In all such examples, the process of resolving the un-
certainty also consumes resources, e.g., time, network band-
width, space, etc., which compete with finding the solution
of the original problem.

Therefore, judiciously choosing which variables to observe,
itself becomes an important problem in this context. Note
that this is not the same as minimizing residual entropy
(Krause and Guestrin [21]) which minimizes uncertainty of
the joint distribution – we are concerned with minimizing
the uncertainty of an optimization that depends on the joint
distribution (like the maximum value – even this simple
problem turns out to be NP–hard). Minimizing residual
entropy will most often involve probing a different set of
variables than those required for estimating best the spe-
cific function at hand (refer Example 1.3); therefore, the
problems are orthogonal.

In this paper, we study several natural optimization prob-
lems where the inputs are random variables corresponding
to parameters of the data model, in the setting that the val-
ues of one or more inputs can be observed and resolved by
paying some cost. We show that even for the simplest of
optimization problems, this choice becomes non-trivial and
intractable, motivating the development of algorithmic tech-
niques to address them. Abstractly, the class of problems
we propose to solve can be formulated as follows:

Problem 1. We are given the distributions of n non-
negative independent random variables X1, . . . , Xn. Further,
these random variables are observable: we can find the value
of Xi by spending cost ci. Given a budget C and an objec-
tive function f(X1, X2, . . . , Xn), can we choose a subset S
of random variables to observe whose total observation cost
is at most C, and optimize the expected value of the function
f ?

Often the only access we have to the data is to run a
simpler, smaller query or use sampled estimates. The main-
tenance of good samples or estimates of a parameter is a



challenge in itself. If we can judiciously choose which param-
eters need a finer or more accurate estimate, we can avoid
maintaining very accurate estimates of all parameters, and
only refine our estimates when needed. This motivates the
following question.

Problem 2. Can we achieve the above (Problem 1) with
only the access to samples of the distribution?

In this paper we answer both questions in the affirmative.
The notion of refining uncertainty has been considered in
an adversarial setting by several researchers [24, 12, 18, 7].
In the adversarial model, the only prior information about
an input is the lower and upper bounds on its value. The
goal is to minimize the observations needed to estimate some
function over these inputs exactly, and often negative results
arise. The use of lower and upper bounds do not exploit the
full power of models/samples/stochasticity of the data, i.e.,
the distributions of inputs. However to use the distributional
information we must optimize the expected value of the func-
tion, which is also referred to as stochastic optimization.

More recently, significant attention has been devoted to-
wards developing and using models and estimates of data
based on prior knowledge, e.g., [9, 8, 11, 4, 5, 3, 26] among
many others. Our work complements the body of research
on maintenance of samples and estimates, and we show that
judicious probing may yield exponentially better estimates.
To demonstrate the benefit of probing and using the stochas-
ticity, we consider a few examples.

1.1 Motivating Examples

Extreme Value Estimation: We first consider a sensor
network where the root server monitors the maximum value,
which is a specific case of Top-K monitoring considered
in [4, 26]. The probability distributions of the values at
various nodes are known to the server. However, probing
all nodes to find out their actual values is undesirable since
it costs battery life at all nodes. Consider the simplest set-
ting where the network connecting the nodes to the server
is a one-level tree, and probing a node consumes battery
power of that node. Given a bound on the total battery life
consumed, the goal of the root server is to maximize (in ex-
pectation) its estimate of the maximum value. The problem
maps to our formulation as follows:

1. Xi = Random variable denoting value at node i. This
distribution is known to the server.
2. ci = Battery life consumed at node i when probed by the
server.
3. C = Bound on total battery consumed by the probing.
4. f = maxi∈S Xi, where S is the set of probed nodes.

Of course, if the maximum value among the probed set is
less than the expected value of a variable that has not been
probed, we would prefer to use that variable (the ”backup”)
as opposed to one of the probed values. We will not take this
optimization into account while analyzing our algorithm.
The reason is presented in Section 4. We now show the
benefit of probing with an example.

Example 1.1. If only one probe is allowed, the root server’s
estimate is maxi E[Xi]. If the resource constraint is suffi-
cient to probe all nodes, this estimate improves to E[maxi Xi],

since the server can find the exact values at all nodes and
return the maximum value. Even if all Xi are Bernoulli
B(1, p) with p < 1/n, the former value is p and the latter
is 1− (1− p)n ≈ np. Therefore, probing nodes can improve
the expected value returned significantly. The gap is at least
n/K for sum of Top-K.

Route Selection in Networking: In the context of tra-
ditional and P2P networks, “multi-homing” schemes are
becoming a common method for choosing communication
routes and server assignments. These schemes [1, 14] probe
and observe the current state of multiple routes before de-
ciding the optimum (minimum latency) route to use for a
specific connection. The distribution of the latency of each
route is available a priori. The number of probes needs to be
bounded since flooding the network is undesirable. There-
fore the goal is to minimize the latency of the route found by
a bounded number of probes. The mapping to our frame-
work in this case is:

1. Xi are the distributions of route latencies.
2. The probing cost ci is a function of the delay and load
incurred in detecting latency of route i.
3. The budget C is the total load and processing time that
can be incurred by the route choosing algorithm.
4. f = mini∈S Xi, where S is the set of routes probed.

The goal is to choose that set of routes to probe which
minimizes the expected value of the smallest latency de-
tected. This is defined as the Minimum–Element . As
with maximum element, the solution can use both probed
and unprobed variables; we show in Section 4 that this ad-
ditional aspect can be ignored. We illustrate the benefit of
probing using the following example.

Example 1.2. If all variables are Bernoulli B(1, p) (with
any p), the estimate of the minimum is p if only one probe
is allowed, but is pn � p if all nodes are probed. Probing can
yield an estimate which is exponentially smaller, which
means that if there is a low utilization, we will very likely
find it.

Query Optimization: In the context of long-running queries
in a data stream processing engine, consider an overloaded
system where the scheduler has to shed load, i.e., decide
which queries to terminate, in order to maximize process-
ing rate [27]. Each query contributes a given amount to
the system load. A priori, the output rate of each query is
only known in distributional form (since the query is long
running). When the system suddenly becomes overloaded,
the query optimizer needs to terminate some queries based
on current output rates and loads of each query so that the
output rates of the retained queries is maximized. However
since load increases abruptly, the optimizer has to make this
decision quickly, meaning that it has limited time to observe
the current processing rates of each query. The load shed-
ding problem can be now modeled as a knapsack problem
in our framework as follows:

1. Each item i corresponds to a long running query.
2. Profit Xi corresponds to the rate of the query, and is a
random variable.
3. Size si corresponds to the contribution of the query to



the system load.
4. Probing cost ci corresponds to the time required to ex-
actly estimate the current rate of the query.
5. Budget C is the time available to the query processor to
determine what load to shed.
6. Knapsack capacity B corresponds to the total system
load permitted.

In this special case f = maxT⊆S,
P

i∈T si≤B

P
i∈T Xi. The

above is a Knapsack problem1 where the profit of item
i with size si and observation cost ci follows distribution
Xi, and the knapsack capacity is B. The goal is to choose
a subset S of items (or variables) whose total observation
cost is at most C, such that after observing them we choose
(possibly) a subset T which maximizes the expected profit.
Note that the (maximum) knapsack problem generalizes
the problem of estimating the maximum value and sum of
Top-K estimation. Naturally, we can (and do) define a
variant where the profit of an item (job) is fixed and the
size (modeling duration of time) is a random variable.

Anomaly Detection, Data Mining: In networks and
complex systems, event and performance logs are used to
track anomalies like unbalanced load [22]. In a real-time
environment, we are interested in finding the anomaly as
fast as possible since there may be secondary effects or cost
(e.g., virus spread) associated with delay. Low utilization of
resources is usually an indicator of such an anomaly. In long
running systems, which are typical in these environments,
distributions of various performance parameters are often
recorded. An anomaly detection algorithm, which wants to
detect problems as they are arising, would not have time
to process all the performance logs, and must judiciously
choose which to process. This can be naturally modeled as
a Minimum–Element problem.

1.2 Technical Hurdles
Consider the problem of estimating the maximum value in

a sensor network in the simple case when the probing costs
of all nodes are equal. Let m denote the constraint on the
number of nodes that can be probed. It would appear that
the optimal strategy would be to choose the m nodes with
the highest expected values. The example to compute the
Maximum below shows that this need not be the case.

Example 1.3. There are 3 distributions X1, X2 and X3

corresponding to the values at the three nodes. We let m = 2.
Distribution X1 is 2 with probability 1

2
and 1 with probabil-

ity 1
2
. Distribution X2 is 1 with probability 1

2
and 0 with

probability 1
2
. Distribution X3 is 2 with probability 1

5
and 0

with probability 4
5
. Clearly, E[X1] > E[X2] > E[X3]. How-

ever, probing X1, X2 yields an expected maximum value of
1.5, while probing X1, X3 yields an expected maximum value
of 1.6. Minimizing residual entropy [21] would also choose
the sub-optimal set {X1, X2}.

The simple strategy does not take into account the shape
of the distributions. In fact, this problem (and the Minimum–

1In general, we may use both unprobed and probed variables
in the solution. The objective function f becomes quite
involved in this case and we relegate further discussion to
Section 4. However to solve the general problem, it turns out
that we have to solve the subproblem where only a subset
T of the probed set S of jobs are retained.

Element problem) becomes NP–Hard for arbitrary distri-
butions even with uniform costs. However from the perspec-
tive of approximation guarantees, the two problems are very
different. For the Minimum–Element problem, we show a
stronger hardness result: it is NP–Hard to approximate the
minimum value up to polynomial factors without exceeding
the observation budget C. Hence the natural model to study
this problem is from the perspective of resource augmenta-
tion: can we guarantee that we achieve the same solution as
the optimum, while we pay a larger observation cost ?

1.3 Variants of the Model
There are several variants to the basic model which are

both of theoretical and practical interest. We focus on two
aspects of the proposed framework which we plan to address
in future work.

Adaptive Observations: Our problem formulation as-
sumes the probing is non-adaptive. This means we first
decide the entire set of variables to observe, and are then
told the values of the observed variables. The variables are
therefore observed in parallel. This is a reasonable assump-
tion in many situations where there is not enough time to
make adaptive decisions; for instance, load shedding in an
overloaded data stream system [27]. Also in scenarios where
the probe returns an answer after a delay (due to network or
latency) adaptive probing significantly increases the latency
of the answer. This is not desired in any query optimizer or
monitoring scenario. However, we note that in some situa-
tions the probing can be adaptive [11, 26].

Correlations: Our model assumes the random variables
are independent. In scenarios like sensor networks and pro-
cessing performance logs, the values are correlated from one
time step to another. Similarly, in query processing, the run-
ning times of the queries are correlated if they share predi-
cates. Modeling correlations tractably is itself an interesting
area of research [11], representing joint distributions of an
arbitrarily large subset is non-trivial. Under restrictions,
some of our results carry over to the correlated setting.

1.4 Results

1. We introduce the problem of model driven optimiza-
tion in the presence of observations. We present natu-
ral algorithms that are easy to implement and provide
strong evidence that these algorithms are likely to be
the best possible. We note that naive greedy algo-
rithms do not work and extra algorithmic techniques
are required to augment the greedy algorithm.

2. For the Minimum–Element problem, we show that it
is NP–Hard to approximate the objective up to any
polynomial factor without augmenting the cost bud-
get. Consequently, we design algorithms that approxi-
mate the cost while achieving nearly optimal objective
value.

We show that the function f(S) = E[mini∈S Xi] is log-
concave, i.e., log 1/f(S) is sub-modular (simply show-
ing f(S) is submodular, yields a approximation ratio
polynomial in m. Consequently a greedy algorithm

gives an approximation ratio O(log log
mini∈S∗ E[Xi]

E[mini∈S∗ Xi]
)

where S∗ is the optimal solution. We show signifi-
cantly improved results for special cases of distribu-



tions which are quite common in practice. This prob-
lem is discussed in Section 2.

3. We consider the Knapsack problem in Section 3. The
Knapsack problem subsumes the sum of Top–K and
Maximum–Element problems, and is NP–Hard by
reduction from the Minimum–Element problem. We
present constant factor approximations to the expected
profit to the knapsack problem in two variants: one
with profits as random variables and the other with
random sizes.

4. In terms of techniques, we combine an involved sub-
modularity argument along with the analysis of the
best fractional solutions. Although the analyses are
complicated, the algorithms are natural.

Related Work: Other than the literature discussed al-
ready, the work which appears closest to the results in this
paper are by Dean et. al., [10]. They consider knapsack
problem in the model that the job sizes are revealed only
after the job has irrevocably placed in the knapsack. In the
settings we described, this would imply that the decision to
refine our estimate, i.e., probing, is equivalent to selecting
the item in the final solution. This effectively disallows prob-
ing. In our model the choice of which variables to pack in
the knapsack is made after the observations. There also has
been ongoing research in Multi-stage stochastic optimiza-
tion [19, 13, 17, 15, 16, 25], however most of this literature
also involves making irrevocable commitments.

2. MINIMUM–ELEMENT
We are given n independent non-negative random vari-

ables X1, X2, . . . , Xn. Assume that Xi has observation cost
ci. There is a budget C on the total cost. The goal is to
choose a subset S of distributions with total cost at most
C which minimizes E[mini∈S Xi]. Without loss of general-
ity, we can assume the that ci ≤ C for all i. We further
assume the distributions are specified as discrete distribu-
tions2 over m values, 0 ≤ a1 ≤ a2 ≤ · · · ≤ am ≤ M . Let
pij = Pr[Xi ≥ aj ]. The input is specified as the pij and aj

values. Note that m is not very large since frequently the
distribution is learned from a histogram/quantile.

Some Notation: Let a0 = 0 and am+1 = M . For j =
0, 1, . . . , m, let lj = aj+1 − aj . We call Ij = [aj , aj+1] the
jth interval. This is illustrated in Figure 1. Recall that
pij = Pr[Xi ≥ aj ]. We have E[Xi] =

Pm−1
j=0 pij lj . We define

f(S) = E[mini∈S Xi] for each subset S of variables. All
logarithms are to base e.

2.1 NP–Hardness
We begin with a hardness result: It is NP–Hard to obtain

a poly(m) approximation on the objective for Minimum–
Element while respecting the cost budget, even for uniform
costs. We therefore focus on approximation algorithms for

2Continuous models introduce the issue of how the input is
specified, for most smooth continuous distributions we can
use a histogram with polynomially many pieces or we can
use the blackbox sampling method discussed in the next
section. Note that any polytime algorithm will implicitly
construct a representation with polynomially many pieces.

this problem which achieve the optimal objective while aug-
menting the cost budget. Thus the approximation results
are on the cost in this section.

Definition 2.1. A Covering Integer Program (CIP) over
n variables x1, x2, ..., xn (indexed by i) and m constraints
(indexed by j) has the form

min
X

i

cixi

subject to: A~x ≥ ~b

~x ∈ {0, 1}n

where ci ∈ <+ and A ∈ Zm×n, i.e., the elements Aji of
the constraint matrix are non-negative integers. This is a
generalization of Set–Cover where the matrix A is {0, 1}
and ci = 1. A CIP is defined to be column-monotone if
Aji ≤ A(j+1)i for all i and for all j < m. Without loss of

generality, we can assume that bj ∈ Z+ and bj+1 ≥ bj.

Suppose we are given a column-monotone CIP with a cost
budget C and our goal is to determine whether the opti-
mum value of the CIP is less than C or more than rC; if
the optimum value lies between C and rC then either of the
two answers is considered valid. We will relate the hard-
ness of this decision problem (which we call r-GAP-CIP)
to the hardness of approximating the Minimum–Element
problem.

An (r, s)-approximation for the Minimum–Element prob-
lem violates the cost budget by at most r and obtains an
objective function value (i.e. the expectation of the mini-
mum) that is at most s times the optimum objective function
value with the original cost budget.

Lemma 2.2. The r-GAP-CIP problem with polynomially
bounded (in n and m) coefficients Aji reduces, in polynomial
time, to the problem of obtaining an (r, poly(m))-approximation
for Minimum–Element .

Proof. Fix any constant k, and let q = mk+1. Define
n distributions over values µ0, µ1, . . . , µm where µ0 = 0 and
µj−µj−1 = qbj . Distribution Xi has observation cost ci, and
Pr[Xi ≥ µj−1] = q−Aji . Observe that column-monotonicity
is crucial for this definition to correspond to a valid probabil-
ity distribution; the requirement that Aji’s be polynomially
bounded is crucial for the reduction to be polynomial time.
Let the cost budget for the Minimum–Element problem be
C.

First assume that the original CIP has a solution x1, x2, ..., xn

with cost at most C. Let S be the set {i : xi = 1}. For the

1

Interval I1

Pr
[X

i >
 r]

a1 a20 r

Figure 1: Notation used in Minimum–Element .



Minimum–Element problem, probe the variables Xi, i ∈ S.
For any j,

Pr[min
i∈S

Xi ≥ µj−1] =
Y
i∈S

Pr[Xi ≥ µj−1] = q−
P

i∈S Aji ≤ q−bj .

Therefore,

E[min
i∈S

Xi] =
X

j

(µj − µj−1) Pr[min
i∈S

Xi ≥ µj−1] ≤ m.

Now suppose that the original CIP has no solution of cost
rC or less. Then for any index set S such that

P
i∈S ci ≤ rC,

there must be at least one constraint j such that
P

i∈S Aji ≤
bj − 1. Thus, Pr[mini∈S Xi ≥ µj−1] = q−

P
i∈S Aji ≥ q1−bj .

Now,

E[min
i∈S

Xi] ≥ (µj − µj−1) Pr[min
i∈S

Xi ≥ µj−1] ≥ q.

Thus, the problem of distinguishing whether the optimum
value of the original CIP was less than C or more than
rC has been reduced to the problem of deciding whether
Minimum–Element has an optimum objective value ≤ m
with cost budget C or an optimum value ≥ q with cost bud-
get rC.

Since q/m = mk, we have obtained a polynomial time
reduction from r-GAP-CIP to the problem of obtaining an
(r, mk)-approximation of the Minimum–Element problem.

Theorem 2.3. It is NP–Hard to obtain any poly(m) ap-
proximation on the objective for Minimum–Element while
respecting the cost budget.

Proof. We reduce from the well-known NP-Hard prob-
lem of deciding if a set cover instance has a solution of value
k. The set cover problem is the following: given a ground
set U with m elements and n sets S1, S2, . . . , Sn ⊆ U over
these elements, decide if there are k of these sets whose union
is U .

Write this set cover instance as a CIP as follows. There is
an row for each element and a column for each set. Aji = 1 if
element j is present in set Si and 0 otherwise. All bj = 1 and
all ci = 1. To make this column-monotone, set Aji ← Aji+j
for each j, i and set bj ← 1 + jk. Clearly, if there is a so-
lution to this monotone instance of value k, this solution
has to be feasible for the set cover instance and is com-
posed of k sets. Conversely, if the set cover instance has a
solution with k sets, the monotone CIP has a solution of
value k. Since deciding if a set cover instance has a solu-
tion using k sets is NP-Hard, solving this class of 1-GAP-
CIP instances is NP–Hard. By the proof of Lemma 2.2,
this implies a (1, poly(m))-approximation to the Minimum–
Element problem is NP–Hard.

We have only been able to prove NP–Hardness of column-
monotone CIPs, and so have not been able to fully exploit
the approximation preserving reduction in Lemma 2.2. A
hardness of approximating column-monotone CIPs will im-
mediately lead to a stronger hardness result for the Minimum–
Element problem via Lemma 2.2.

2.2 Greedy Algorithm
The algorithm is described in Figure 2 and takes a relaxed

cost bound C̃ ≥ C as parameter, and outputs a solution of
cost C̃. As we discuss later, the parameter C̃ trades-off in
a provable fashion with value of the solution found. The

algorithm uses the slightly unnatural function log f(S) in-
stead of the more natural function f(S). As our analysis
shows, this modification provably improves our approxima-
tion bound. The analysis of this algorithm uses the theory of
submodularity [23]. Sub-modularity is a discrete analogue of
convexity which is the basis of many greedy approximation
algorithms. We formally define sub-modularity next.

Definition 2.4. A function g(S) defined on subsets S ⊆
U of a universal set U is said to be sub-modular if for any
two sets A ⊂ B ⊆ U and an element x /∈ B, we have g(A ∪
{x})− g(A) ≥ g(B ∪ {x})− g(B).

The key result in this section shows that the function log 1
f

used by the greedy algorithm is sub-modular.

Lemma 2.5. Let f(S) = E[mini∈S Xi]. Then, the func-
tion log 1

f
is sub-modular.

Proof. Consider two sets of variables A and B = A∪C,
and a variable X /∈ B. In order to prove the theorem, we

need to show that f(A∪{X})
f(A)

≤ f(B∪{X})
f(B)

. We first define the

following terms for each j = 0, 1, . . . , m− 1:

1. αj = Pr[(minY ∈A Y ) ≥ aj ] = ΠY ∈A Pr[Y ≥ aj ].

2. βj = Pr[(minY ∈C Y ) ≥ aj ] = ΠY ∈C Pr[Y ≥ aj ].

3. γj = Pr[X ≥ aj ].

The following sequence of statements are immediate:

1. The αj , βj and γj values are non-negative and mono-
tonically non-increasing with increasing j.

2. By the independence of the variables,

f(A ∪ {X}) =

m−1X
j=0

lj Pr[(X ≥ aj) ∧ (min
Y ∈A

Y ≥ aj)]

=

m−1X
j=0

lj Pr[X ≥ aj ] Pr[(min
Y ∈A

Y ) ≥ aj ]

=

m−1X
j=0

ljαjγj

Similarly, f(B) =
Pm−1

j=0 ljαjβj and f(B ∪ {X}) =Pm−1
j=0 ljαjβjγj .

Minimum–Element (C̃)

/* C̃ = Relaxed cost bound (C̃ ≥ C). */
S ← argminXi

E[Xi].

While (
P

i∈S ci ≤ C̃)

Xq ← argmini
log f(S∪{Xi})−log f(S)

ci
.

S ← S ∪ {Xq}
endwhile
Xf ← last variable chosen in above loop.
Output S \ {Xf}

Figure 2: Greedy Algorithm for Minimum–Element .



3. Therefore,

f(A ∪ {X})
f(A)

=

P
j ljαjγjP

j ljαj

and

f(B ∪ {X})
f(B)

=

P
j ljαjβjγjP

j ljαjβj

.

From above, we have

f(A ∪ {X})f(B)− f(B ∪ {X})f(A) =X
j<j′

lj lj′αjαj′(γj − γj′)(βj′ − βj) ≤ 0

This implies log 1
f

is a sub-modular function.

The connection between sub-modular functions and the
greedy algorithm is captured by the following well-known
theorem of Nemhauser, Wolsey, and Fisher [23].

Theorem 2.6 ([23]). Given a non-decreasing submod-
ular function g() on a universal set U , where each element
i ∈ U has a cost ci, and given a cost bound C ≥ maxi ci, let
S∗ = argmax{g(S)|

P
i∈S ci ≤ C}. Consider the greedy al-

gorithm that, having chosen a set T of elements, chooses the

next one element i that maximizes the ratio g(T∪{i})−g(T )
ci

.

Let g(Φ) denote the initial solution.

1. The maximum value greedy set T1 which does not vio-
late the cost constraint has g(T1)−g(Φ) ≥ (1−1/e)(g(S∗)−
g(Φ)).

2. For any ε, the greedy algorithm finds a maximum value
set Tε such that g(Tε) ≥ g(S∗) − ε with cost at most

C log g(S∗)−g(Φ)
ε

.

Intuitively, sub-modularity ensures that current greedy
choice has cost per unit increase in value of g() at most the
corresponding value for the optimal solution. For Minimum–
Element , let S∗ denote the optimal solution using cost C.
Also, let V = E[minn

i=1 Xi].

Theorem 2.7. The greedy algorithm for minimum ele-
ment achieves a (1 + ε) approximation to f(S∗) with cost

parameter C̃ = C(log log M
V

+ log 1
ε
).

Proof. In the above theorem, set g = log 1
f
. Also set

f(Φ) = M , implying g(Φ) = log 1
M

. Let S denote the
greedy set. Suppose f(S) ≤ (1+ε)f(S∗). Therefore, g(S) ≥
g(S∗)−log(1+ε) ≥ g(S∗)−ε. Therefore, Tε = S in the above

theorem, implying its cost C̃ ≤ C(log log M
f(S∗)

+ log 1
ε
).

Since f(S∗) ≥ V , we have C̃ ≤ C(log log M
V

+ log 1
ε
).

Note: If we had used f() (which is submodular) as sug-
gested by a naive greedy algorithm then we would have
needed a worse cost of C(log M

V
+ log 1

ε
) to achieve a (1 + ε)

approximation to f(S∗). Thus the improved analysis (and
algorithm) was necessary. We next prove the following lower
bound.

Theorem 2.8. The analysis of the greedy algorithm is
tight on the cost.

Proof. There are K = log log M intervals of form Ii =

[22i

, 22i+1
] for i = 1, 2, . . . , K. Distribution Xi (i = 1, 2, . . . , K)

takes value 22i

with probability (1 − 2−2i+1+ε) and takes

value 22r

otherwise for r = K + 1. All distributions have
unit cost. Optimum solution uses two distributions Y1 and
Y2 such that the survival probability at the start of inter-

val Ii for both of them is 2−2i+ε. The value of the optimal
solution is K and its cost is 2.

We claim that greedy first chooses XK . If greedy chose
any other distribution then on the last interval IK the contri-

bution would be at least (22r

−22r−1
)2−2r−1+ε. Since 2x2

>

2x+1 for x > 1, the contribution is at least 22r−12−2r−1+ε ≥
22r−1+ε. E[XK ] ≤ 2ε + 22r−1

, which is smaller.
At this point, the contribution from the interval IK to

greedy is 2ε. The contribution of the previous interval IK−1

is 22r−1
. Clearly, greedy will reduce the contribution to this

interval. Arguing inductively, greedy picks XK−1, XK−2,and
so on. This shows that the greedy algorithm chooses all of
XK , . . . , XK−log log K in order to be competitive on the ob-
jective, and therefore spends cost Ω(K).

2.3 Improved Approximation Algorithm
We now show an improved algorithms when the random

variables have small range. This is useful in many real life
situations.

Theorem 2.9. A modified greedy algorithm that starts
from a carefully chosen initial solution achieves a (1+ε) ap-
proximation with cost O(C log m) for discrete distributions
on m intervals. Further if the values of the discrete distri-
butions come from a polynomially bounded range of values
{0, 1, . . . , M − 1} then the approximation ratio (on the cost)
of a modified greedy algorithm is O(log log M).

Proof. We present a O(log m) approximation (on the
cost) to the Minimum–Element problem by combining the
greedy algorithm with column monotone CIPs. Let the
number of distinct values taken by the discrete distributions
be m, corresponding to the intervals I1, I2, . . . , Im. Let lj
denote the length of the interval Ij .

Definition 2.10. The survival density function (SDF) of
a random variable Y is F (r) = Pr[Y ≥ r].

Let SDF of variable Xi be denoted by Fi(r) = Pr[Xi ≥ r];
the value of Fi() for the interval Ij is therefore pij . Let
aji = log 1

pij
. Thus the matrix [a] is column–monotone.

We first guess the objective function value X∗. There are
polynomially many guesses if the guesses are in powers of
(1 + ε). We then write the following CIP where yi is an
indicator variable which is 1 if variable Xi is probed.

Minimize

nX
i=1

ciyi

nX
i=1

yiaji ≥ log lj − log X∗ ∀j = {1, 2, . . . , m}

yi ∈ {0, 1} ∀i ∈ {1, 2, . . . , n}

This program essentially insists that if S is the chosen set
of variables then the area under the SDF of the solution,
Pr[mini∈S Xi ≥ r], is at most X∗ in each interval Ij . This



is satisfied by the optimum solution because the entire area
under the SDF of the optimum solution is X∗. The optimal
solution is therefore feasible for this program with

P
i ciyi ≤

C. In addition, any feasible integer solution to this program
has objective value at most mX∗. We now use the following:

Proposition 2.11. [6, 20]. If a CIP with m constraints
has a feasible solution, we can find a solution with approxi-
mation ratio O(log m), i.e., cost O(C log m) in this case.

Note that the value of the solution found is mX∗ since
any feasible solution has at most this value. We now run
the greedy algorithm starting with this solution and adding
the input distributions greedily until the solution value is
at most X∗. Using the above analysis of the greedy al-
gorithm, this incurs a cost of at most O(C log log mX∗

X∗ ) =
O(C log log m). Therefore, the approximation is O(log m)
on the cost.

To prove the second part, suppose the discrete distribu-
tions are integer valued in the range {0, 1, . . . , M − 1}. We
first group the intervals so that the lengths are increasing in
powers of 2. There are log M groups. It is easy to see that
the optimal solution discretized so that the SDF is uniform
within each group has value at most 2X∗.

We write the covering program over these log M groups
and round it. The cost of the solution is O(C log log M), and
this achieves an objective value of 2X∗ log M . We then run
the greedy algorithm, which reduces the objective value to
X∗ by spending an additional cost of O(C log log M). There-
fore, the overall approximation on the cost is O(log log M).

3. KNAPSACK
We consider two variants of the knapsack problem: the

first where the profits are random variables and the second
where the sizes are random variables. In each case, the goal
is to choose a subset of items to observe such that the ex-
pected profit of packing the best subset of these items into
the knapsack is maximized. We present greedy algorithms
which achieve a constant factor approximation to the opti-
mal expected profit.

3.1 Random Profits
We first consider the problem when the profits are ran-

dom variables. The profit of item i follows distribution
Xi. Item i has size si ≤ B, and the knapsack capac-
ity is B. The goal is to choose a subset S of distribu-
tions whose total cost is at most C, in order to maximize
g(S) = E[maxQ⊆S,

P
i∈Q si≤B

P
i∈Q Xi].

The road-map of the proof: The function g(S) is not
sub-modular. However, we can define a different function
f(S) which is sub-modular, and relate g(S) and f(S); thereby
showing g(S) is approximately sub-modular. However, the
hurdles are not over, we may not be able to compute f(S)

for arbitrary subset, and have to use an estimate f̂(S). For
polynomially bounded values, these estimates can be based
on Black-Box sampling of the data. Since this is a very
natural and common variant of the problem, we present a
0.5(1 − 1

e
) − 1

n
approximation for this case based on easy

to implement algorithms. The more general case, where the
profits can be exponentially large with exponentially small
probabilities is considered in Appendix 3.1.1.

Lemma 3.1. For any subset S, let
f(S) = E[max~y≥0,yi≤1,

P
i∈S siyi≤B

P
i∈S Xiyi] then g(S) ≥

0.5f(S).

Proof. The function f(S) denotes the expected “frac-
tional” profit when S is used. f(S) is computed by averag-
ing over all samples of the profit obtained by packing the
items in order of decreasing profit to size ratio, with the
possibility of the last item packed fractionally, i.e., having a
fractional yi. In any scenario of values of profits of items, the
integer profit is at least half the fractional profit. Therefore,
g(S) ≥ 0.5f(S).

x
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Figure 3: (a). The definition of l(x) in Lemma 3.2.
(b), (c). Effect of adding z in Lemma 3.2.

Lemma 3.2. The function f(S) is sub-modular.

Proof. Consider any two sets S1 ⊆ S2 and a variable
z /∈ S2. Consider any sample of profits from the joint distri-
bution for items in S2 ∪ {z}. This naturally defines samples
from the joint distributions over S1 ∪ {z}, S2, and S1 by
restricting the sample to these items.

Consider the items in decreasing order of ratio of profit to
size in this sample. In the ordering for S1 ∪ {z}, the item
z appears at no later a position than in the ordering for
S2 ∪ {z}. We now show that if the addition of z increases
the (fractional) profit of S2, it increases the profit of S1 by
at least that amount.

For a given set S, sort the items in decreasing order of
profit to size ratio. For every x ∈ [0, B], consider the frac-
tional solution when the knapsack size is restricted to x
(which is the prefix of items the sorted order with total size
x) and let l(x) denote the least profit to size ratio of any
item in this solution. This is illustrated in Figure 3(a). Plot
l(x) as a function of x for S. The area under the curve is
precisely the profit of the knapsack solution for items in S.
The curve is also monotonically non-increasing.

Let l1(x) denote the curve for S1, and l2(x) the same for
S2. Note that l2(x) ≥ l1(x) for all x ∈ [0, B]. Let the profit
per unit size of z be t, and its size be s.

Now consider adding z to the two sets. If z is such that
size s′ fits in the knapsack in the solution for S2 ∪ {z}, the



size that fits in S1 ∪ {z} is s′′ ≥ s′. The increase in profit

(by adding z) for S1 is
PB

x=B−s′′(t− l1(x)) and the quantity

for S2 is
PB

x=B−s′(t− l2(x)). The latter quantity is always
smaller. Refer Figure 3(b) and 3(c) for intuition. This im-
plies the marginal increase in profit by the addition of z
to S1 will be at least as large as that to S2 in every sam-
ple. Since f is the average of the profit over these samples,
f(S1 ∪ {z})− f(S1) ≥ f(S2 ∪ {z})− f(S2). This implies f
is sub-modular.

The natural greedy algorithm therefore yields a (1 − 1
e
)

approximation to the expected fractional profit using Theo-
rem 2.6. Since the fractional profit is at most twice the best
integer profit, our approximation ratio is 0.5(1− 1/e).

Knapsack
S ← argmaxXi

E[Xi].
While (

P
i∈S ci ≤ C)

Xq ← argmaxi
f̃(S∪{Xi})−f̃(S)

ci
.

S ← S ∪ {Xq}
endwhile
Xf ← last variable chosen in above loop.
Output S \ {Xf}

Figure 4: Greedy Algorithm for Knapsack.

Estimating the value of f : We now show how to approxi-
mate f(S) efficiently. Given a subset S, the function f(S) is
estimated by sampling from the joint distribution of profits
of items in S. For every sample, compute the best fractional
profit and average this value over all samples.

Let i∗ = argmaxiE[Xi]. Let tmax = E[Xi∗ ]. For any dis-
tribution Xi, let Xi ≤ mtmax. We assume m is polynomially
bounded. We remove this restriction in Section 3.1.1.

Lemma 3.3. Let S be any set such that f(S) ≥ tmax. A
sample size of 3mn4 is sufficient to estimate f approximately
by f̃ such that (1− 1/n)f(S) ≤ f̃(S) ≤ (1 + 1/n)f(S) with
probability at least 1− e−n.

Proof. By the assumption Xi ≤ mtmax, the maximum
profit in any sample is at most mntmax. Since E[f̃(S)] =
f(S) ≥ tmax, by a suitable application of Chernoff bounds:

Pr[|f(S)− f̃(S)| ≥ f(S)
n

] ≤ e
− 3mn4tmax

2mn3tmax ≤ e−n.

The greedy algorithm uses the estimates f̃ obtained from
the samples instead of the function f . The following theorem
follows immediately. Note that the theorem holds even if the
distributions are specified as Black boxes from which we can
sample.

Theorem 3.4. The greedy algorithm for Knapsack (pre-

sented in Figure 4), using the estimates f̃ , computes a 0.5(1−
1/e)− 1

n
approximation with very high probability.

Proof. Since there are 2n sets in all, by the previous
lemma and the union bound, with high probability, (1 −
1/n)f(S) ≤ f̃(S) ≤ (1 + 1/n)f(S) for all such sets S. Let

S∗ denote the optimal set. We have |f̃(S∗)−f(S∗)| ≤ f(S∗)
n

.
The greedy algorithm using the samples, computes S0 such
that f̃(S0) ≥ f̃(S∗)(1 − 1/e). Again, |f̃(S0) − f(S0)| ≤
f(S0)

n
≤ f(S∗)

n
. Therefore, f(S0) ≥ f(S∗)(1−1/e−2/n).

3.1.1 Exponentially Large Profits
We now present the solution to the knapsack problem

when the profits are random variables taking on possibly
exponentially large values. One of the hurdles to efficient
sampling in this case is the presence of very high profit items
which occur with very (exponentially) low probability. The
total profit from these ”problem” situations is considered
separately. In these situations, at least one of the variables
is in the low probability high profit scenario.

Let Y ∗ = maxi E[Xi]. Let OPT be the value of the opti-
mal solution.

Proposition 3.5. Y ∗ ≤ OPT ≤ (n + 1)Y ∗.

The above proposition follows from the fact that the best
solution can pick everything (regardless of sizes) and Y ∗

will at least pick the largest profit item (in expectation).
Let El[X] =

R ∞
r=l

rfX(r)dr, where fX denotes the proba-
bility density function of random variable X.

Lemma 3.6. For any set S of random variables queried,
let J denote the set of events s.t. at least one of the Xi’s
queried is above n3Y ∗. The contribution of all events in J to
the expected profit of the knapsack is at most

P
i∈S En3Y ∗ [Xi]+

Y ∗

n
and at least (1− 1

n2 )
P

i∈S En3Y ∗ [Xi] with probability at

least 1− 1/n2.

Proof. By Markov’[s inequality, Pr[Xi ≥ n3Y ∗] ≤ 1
n3 .

Now conditioned on the fact that Xi ≥ n3Y ∗, the maximum
contribution from all the other variables is at most nY ∗.
The net contribution of Xi is therefore at most En3Y ∗ [Xi]+
nY ∗ 1

n3 . Summing over all i proves the first part of the claim.
For the second part, simply observe that conditioned on

the event Xi ≥ n3Y ∗, the probability that there is some
other j such that Xj ≥ n3Y ∗ is at most 1

n2 .

The final algorithm chooses the solution of larger value among
these three:

1. Choose the highest expected profit item to observe and
place in the knapsack.

2. Compute the set S with cost at most C which max-
imizes

P
i∈S En3Y ∗ [Xi]. This is simply an instance

of knapsack where the profits are the En3Y ∗ [Xi] and
the sizes are the ci. The value of the solution can be
approximated to factor of 1− ε using the standard dy-
namic programming algorithm. In any scenario, we
choose at most one item from this set to place in the
knapsack.

3. Ignore profit values larger than n3Y ∗ in the distribu-
tions. Compute the set S that maximizes f(S) (the
expected fractional knapsack profit of choosing set S)
subject to the cost constraint. By Theorem 3.4, this
can be approximated to factor of 1

2
(1 − 1

e
) with high

probability using estimation of f by sampling com-
bined with the greedy algorithm.

Theorem 3.7. The approximation ratio of the above al-
gorithm is at least 1

4
(1 − 1

e
) on the profit, while respecting

the cost constraint.

Proof. In any optimal solution which chooses set S to
observe, let J be the set of events where one of the observed
variables has profit larger than n3Y ∗.



If the optimal solution obtains at least half its expected
profit from events in J , by Lemma 3.6, the profit of these
events is at most

P
i∈S En3Y ∗ [Xi]+

Y ∗

n
. The set T chosen in

the second step approximately maximizes this quantity. The
profit from T is at least (1− 1

n2 )
P

i∈T En3Y ∗ [Xi]. The profit
of the solution is at least Y ∗ by the first step. Therefore,
this solution is within a factor of 1/2 of the optimal profit.

If the optimal solution obtains more than half its profit
from events not in J , choose a set in the third step which is
a 1

2
(1− 1/e) approximation to the best possible profit if all

distributions were truncated at n3Y ∗.
An additional factor of two is lost since f represents the

fractional optimal solution.

3.2 Random Job Sizes
Consider the situation where the sizes of the items are

random variables and the profits are deterministic values.
Item i has size which is a random variable Xi, profit ti,
and observation cost ci. The knapsack capacity is B. We
assume 0 ≤ Xi ≤ B for all items i. The goal is to choose
a set S∗ of items to probe and estimate the exact sizes of
such that

P
i∈S∗ ci ≤ C, and the expected profit g(S∗) of

packing in the knapsack is maximized, where for a set S,
g(S) = E[maxQ⊆S,

P
i∈Q Xi≤B

P
i∈Q ti].

Denote by f(S) the fractional profit that is obtained by
probing the set S and packing a subset in the knapsack.
Therefore, f(S) = E[max~y≥0,yi≤1,

P
i∈S Xiyi≤B

P
i∈S tiyi].

As shown above, g(S) ≥ 0.5f(S). Using the same proof
ideas as in the previous subsections it is easy to show the
following.

Lemma 3.8. The function f(S) is submodular.

Lemma 3.9. A sample size of 3n4 is sufficient to estimate
f approximately by f̃ such that (1 − 1/n)f(S) ≤ f̃(S) ≤
(1 + 1/n)f(S) with probability at least 1− e−n.

By Theorem 2.6, we approximate f(S) to a factor of 1−1/e,
which implies a 1

2
(1 − 1/e) approximation to the optimal

value of g(S). Using the estimates f̃ instead of f we get
(including for Black–box sampling),

Theorem 3.10. The greedy algorithm computes a 1
2
(1 −

1/e)− 1
n

approximation with very high probability.

4. THE MIXED MODEL
So far the only variables we were allowed to use in our

solution were the ones that we observed. In general, our
solution can use both probed and unprobed variables. For
instance, in the Minimum–Element problem, if the mini-
mum value among the probed set is larger than the expected
value of a variable that has not been probed, we would prefer
to use that variable as opposed to one of the probed values.

We first show that the restriction of using only the probed
set does not matter in the case of finding the Minimum–
element (and similarly for maximum element).

Theorem 4.1. In order to achieve the same (or better)
objective value for Minimum–Element , the solution that
uses only probed variables probes at most one more variable
than the solution that is allowed to use unprobed variables.

Proof. Consider the optimal solution in the mixed model.
Suppose it probes set S∗ and let X∗ denote the variable

not in S∗ with the smallest expectation. The strategy is to
probe S∗ and if the minimum value observed is larger than
E[X∗], output X∗. The value of the solution is given by the
expression E[min(minY ∈S∗ Y,E[X∗])]. Consider now the so-
lution that probes S∗ ∪ {X∗}. The value of this solution is
E[min(minY ∈S∗ Y, X∗)]. It is easy to see that this value is
smaller than the value of the optimal strategy for the mixed
model.

However for Knapsack with profits as random variables,
the issue is more complicated since we can use both un-
probed and probed values in the solution. The objective
function f(S) for a set of probed items S is the best ex-
pected profit of packing items into the knapsack when the
profit of items in S are their observed values, and the profits
for items not in S are their expected values. This function
is no longer sub-modular.

The algorithm separates the problem into the probed and
unprobed parts: If a variable Xi is not probed, its profit is
simply E[Xi]. Therefore, the profit of the unprobed part is
at most the profit of the knapsack instance where all profits
are their expectations. For the profit of the probed part,
use the algorithm for knapsack from Section 3 to compute
a O(1) approximation. Of the two solutions, choose the one
with the larger value. Since the optimal solution can be
similarly decomposed, we have the following theorem.

Theorem 4.2. For knapsack, the above algorithm yields
an O(1) approximation to the optimal profit.

5. CONCLUSIONS
We have presented a framework (along with simple greedy

algorithms) for studying the cost-value trade-off in resolv-
ing uncertainty based on the objective function being opti-
mized. This paradigm will increasingly play a role in model-
driven optimization in sensor networks and other complex
distributed systems. As future work, we plan to enhance the
model with adaptive observations, correlated random vari-
ables, other metrics measuring the trade-off (like the differ-
ence between value and cost), observing time-evolving pro-
cesses, and optimizing more complex objective functions.
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