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A Monotonicity Conditions

We begin with the covariance object of interest under average monotonicity of Frandsen et al. (2019)

(Condition 2). For a given case i and set of agents J, define

Y, 7= Z pPj (Pj _ﬁ) (dif _3")

jeg

where p; is the share of cases assigned to agent j, P=3 jpjPj is the p-weighted average treatment
propensity, and d; = . jpjdij is the p-weighted average potential treatment of case 7.
To consider probabilistic monotonicity (Condition 3), which allows d;; to be random, we consider

the probability limit of ¥; 4 over random draws of d;;, as the number of draws grows large:
@i,j = Z Pj (Pj —ﬁ) (Pr(dl-j = 1) -FE [3,]) .
N

where E [El] =Y, p;Pr(dij=1).

Proposition A.1. Probabilistic monotonicity (Condition 3) in some set of agents J implies @i, 720
foralli.

Proof. Under probabilistic monotonicity, for any j and j’, P; > P; implies that Pr(d;; =1) >
Pr(d;;» = 1) for all i. Thus, any (p-weighted) covariance between P; and Pr (d;; = 1) must be weakly
positive for all i, in any set of agents J where probabilistic monotonicity holds. @i, 7 1s in fact the

p-weighted covariance between P; and Pr (d;; = 1) for a given i, so @i, g =0forall i. m]

To analyze the implications of skill-propensity independence (Condition 4), we define the limit
as the number of agents grows large. We assume that when the set of agents is 7, the skill «;,
diagnosis rate P;, an assignment weight ¢; such that p; = ¢/ 7c 757, and any other decision-
relevant characteristics of each agent j € J are drawn independently from a distribution H.

For a case i, let G denote the distribution of (e ;(;), P(;)) incorporating the uncertainty from both
the draws from H and the assignment process. Skill-propensity independence (Condition 4) implies
that ;) and P;(; are independent under G. We let 7; (@, p) denote the probability that the case
is diagnosed conditional on the assigned agent’s’ skill @ and diagnosis rate p, and 7; (p) denote the
probability conditional only on p. Probabilistic monotonicity (Condition 3) implies that 7; (a, p) is
increasing in p.

Let ¥; denote the probability limit of ¥; 4 as the number of agents in J grows large.
Proposition A.2. Skill-propensity independence (Condition 4) implies ¥; > 0 for all i.

Proof. Note that under skill-propensity independence we can write G (a, p) = Go (@) Gp (p), where
G. and G, are the marginal distributions of p and @. By the law of large numbers, the probability
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limit @[ is the expectation under the joint distribution G: @,- =FEg [( p —ﬁ) (7r,~ (a,p) —Ei)]. More-

OVver,

£6(p-7) (n,-(a,m_zi)]=//(p—ﬁ)m<a,p>dg(a,p)

pJa
:L(p—ﬁ)ﬂi(p)dgp (p)
>0

The first equality uses the fact that Eg [(P g —ﬁ) 3,-] =0, the second equality uses skill-propensity
independence, and the final inequality uses P = Eg [P j] and the fact that 7; (@, p) increasing in p

implies 7r; (p) increasing in p. O

B Identification of Preferences

Proposition B.3. If the posterior probability of s; = 1 is continuously increasing in w;; for any signal,

ROC curves must be smooth and concave.

Proof. Without loss of generality, consider a uniform signal w ~ U (0, 1). Then under the threshold

rule noted in Section 2.1, P; = 1 —7;. Furthermore,

.
TPR; = —/ Pr(s=1|w,a;)dw;
S Ji-p;
1 1
FPR;, = — 1-Pr(s=1|w,a;)dw.
* 1-SJi-p
This impli 1 R ¢ 1=s Pr(s=1|1-P;, ;) hich i . ¢
is implies a slope in ROC space o S Tohi(s11-Pr0)) at P;, which is decreasing in P; i
Pr(s=1|w,a;) is increasing in w. O

o, . . . o F(1,1)—u; (0,1
Proposition B.4. Knowing the cost of a false negative relative to a false positive, §; = % €
K j\Ys TASE)
(0,00), is sufficient to identify the function u; (-,-) up to normalizations.

Proof. The agent’s expected loss from choosing d = 1 rather than d = 0 is
Elu(l,s)—u(0,s)|w,a] =[u(1,1)—u(0,1)]Pr(s=1|w,a)+[u(1,0)—u(0,0)]Pr(s =0|w,a).

The optimal decision is thus d = 1 if and only if

u(l,1)—u(0,1) S Pr(s=0|w,a)
1(0,00—u(1,0) ~ Pr(s=1|w,a)
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C Mapping Data to ROC Space

In this appendix, we detail parameters that map the observed data on diagnoses (d;) and false negatives
(m;) for each patient to the key objects of the true positive rate (TPR;) and the false positive rate
(FPRj) for each radiologist in ROC space. As discussed in Section 4.1, this mapping requires a
parameter for the prevalence of pneumonia, or S = 1 —® (v). Under quasi-random assignment, this
prevalence of pneumonia is (conditionally) the same across radiologists.

In addition, we allow for two additional parameters to address practical concerns. First, some
chest X-rays are ordered for reasons completely unrelated to pneumonia (e.g., rib fractures). We thus
consider a proportion of cases « that are not at risk for pneumonia and are recognized as such by all
radiologists. Second, we do not observe false negatives immediately at the same time that the chest
X-ray is read. So we allow for a share A of undiagnosed cases that do not have pneumonia to develop
it and be diagnosed subsequently, thus being incorrectly observed as false negatives.

We begin with the observed radiologist-specific diagnosis and miss rates P‘;bs and FN ;?bs, which

~ ——obs
are population values of the estimates P;’.bs and FN (J) * defined in the main text. They relate to true
shares FN;, TN, FP;, and TP; as follows:

obs
Pj

obs
FNj

(1-k)(TP;j+FP;)=(1-k) Pj; (C.1)
(1-k) (FNj+ATN;). (C2)

Using Equations (C.1) and (C.2) above and the fact that TN; = 1—P; — FN;, we derive

obs obs
_APPEFN
(A-x)(1-2) 1-a

FN; (C3)

We can derive the remaining shares by using TN; =1-P;—FN;, TP;=S—-FN;, and FP; = P; -

Tﬁl)ji

obs obs
| P+FNS

TN; = - ;
/ 1-12 (1-k)(1-2)
— /lP?bS+FN;.’bS_ 1\
I (I-k)(1=2) 1=}’

bs bs
p - P;?5+FN;?b B 1 g
J (I-k)(1=2) 1-a

The underlying true positive rates and false positive rates are thus

obs obs
TPR;: = L:l_l /leh+FNj — A :
77 TP;+FN; S\(1-x)(1=2) 1-2a)°
FPR; = i ! PPN A S
77 FP;+TN; 1-S|{(1-x)(1-2) 1-2
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Conditional on S, «, and A, we can thus transform data for a given radiologist in reduced-form

space to the relevant radiologist-specific rates in ROC space:

S.k,
(Po, FNQ™) 2225 (FPR;, TPR)).

= bs T 0b .
In Figure V, we show the implied (FPR;,TPR;) based on ( P?bs’ 7 N; S) and model estimates of

S, k, and A. This figure does not account for the fact that (ﬁ?bs, fﬁ?bs) are measured in finite sample,
and we simply impose that TPR; < 1, FPR; >0, and TPR; > F PR}, sequentially. The first step of
TPR; < 1 truncates 597 out of 3,199 radiologists (or 18.7% of radiologists), which mainly comes
from the radiologists whose observed miss rate, ﬁ;bs, is smaller than A. The second step of FPR; >
0 truncates 44 radiologists. The third step of TPR; > FPR; truncates 68 radiologists. In Appendix
Figure A.14, we plot empirical Bayes posterior means of (FPR;,TPR;) based on (}/’\_‘;bs, fﬁjbs) and
all estimated model parameters.

While ROC-space radiologist rates depend on S, «, and 4, it is important to note that two key find-
ings are invariant to these parameters. First, Figure VI and Appendix Figure A.9 imply an upward-
sloping relationship between Pfl?bs and F N;?bs. By Equations (C.1) and (C.3), we can see that this
violates the prediction that A € [-1,0], based on P; and FN;. Specifically, comparing two radiolo-
gists j and j’, Equations (C.1) and (C.3) imply that

b b
FN?® —FN3»® FN;-FN;
—pa_pon - UV —p e =LAl
Pj _ij J—tr

So the coefficient estimand A°® > 0 from a regression of F N}’bs on P;’.bs implies that A > 0 for any
A1€[0,1).

Second, by Remark 2, an upward sloping relationship between P; and FN; contradicts uniform
skill regardless of S. Therefore, regardless of S, the pattern of (FPR;,TPR;) across radiologists in
ROC space, as in Figure V, should remain downward-sloping and inconsistent with the assumption
of uniform skill.!

To illustrate the second point, we show in Appendix Figure A.6 that the pattern of (FPR;,TPR;)
across radiologists remains inconsistent with uniform skill, at lower and upper bounds for S. To
construct these bounds, we first divide all radiologists into ten bins based on their diagnosed shares
P ;. For each bin ¢, we set a lower bound for S at the weighted-average (underlying) miss rate,
or §q = ﬁq = ZJGZJJ"TY’;:N’
that all diagnoses are false positives. We set an upper bound for S at the weighted-average sum of
2jedq i (ﬁv j+13j)

2jedy i
take the intersection of these bounds from all bins as the bounds in the full sample, which gives us

, where g is the set of agents in bin g. In other words, we assume

the (underlying) miss rate and diagnosis rate, or Eq = ﬁq +ﬁq = . Finally, we

IConsider two agents j and j’. Let ATPR = TPR;j—TPRj; AFPR=FPRj—FPRj; AP=Pj—Pj; and AFN =
FNj—FNj. Itis easy to show that ATPR = —LAFN and AFPR = 115 (AP +AFN). So RLER — 1S AFN . The

condition that AKFI,V € (—1,0) is equivalent to the condition that ﬁp;llg >0, aslongas S € (0,1).
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S =max|<4<10S, =0.015 and S =minj<4<10S, =0.073.

Further, as we discuss in Section 4.4, our overall results remain robust to alternative values for
k. As shown in Appendix Table A.10, model parameters are stable and suggest wide variation in
diagnostic skill. Model implications for reducing variation by uniform preferences or uniform skill

similarly remain robust.

D Tests of Monotonicity

Under the standard monotonicity assumption (Condition 1(iii)), when comparing a radiologist j” who
diagnoses more cases than radiologist j, there cannot be a case i such that d;; = 1 and d;;» = 0.
In this appendix, we conduct informal tests of this assumption that are standard in the judges-design
literature, along the lines of tests in Bhuller et al. (2020) and Dobbie et al. (2018). These monotonicity
tests confirm whether the first-stage estimates are non-negative in subsamples of cases. We first
present results of implementing these standard tests. We then draw relationships between these tests,

which do not reject monotonicity, and our analysis in Section 4, which strongly rejects monotonicity.

Results

We define subsamples of cases based on patient characteristics. We consider four characteristics:
probability of diagnosis (based on patient characteristics), age, arrival time, and race. We define two
subsamples for each of the characteristics, for a total of eight subsamples: (i) above-median age,
(ii) below-median age, (iii) above-median probability of diagnosis, (iv) below-median probability of
diagnosis, (v) arrival time during the day (between 7 a.m. and 7 p.m.), (vi) arrival time at night
(between 7 p.m. and 7 a.m.), (vii) white race, and (viii) non-white race.

The first testable implication follows from the following intuition: Under monotonicity, a radiol-
ogist who generally increases the probability of diagnosis should increase the probability of diagnosis
in any subsample of cases. Following the judges-design literature, we construct leave-out propensi-
ties for pneumonia diagnosis and use these propensities as instruments for whether an index case is
diagnosed with pneumonia, as in Equation (4).

In each of the eight subsamples indexed by r, we estimate the following first-stage regression,

using observations in subsample 7,
di :(}’ij(l')'i'Xl‘ﬂ'r +Ti7]r +é&;. (D4)

Consistent with our quasi-experiment in Assumption 1, we control for time categories interacted with
station identities, or T;. We also control for patient characteristics X;, as in our baseline first-stage
regression. Under monotonicity, we should have @, > 0 for all r.

The second testable implication is slightly stronger: Under monotonicity, an increase in the prob-
ability of diagnosis by changing radiologists in any subsample of patients should correspond to in-

creases in the probability of diagnosis in all other subsamples of patients. To capture this intuition,
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we construct “reverse-sample” instruments that exclude any case in subsample r:

We estimate the first-stage regression, using observations in subsample 7, :
d; :arZ]T(rl.)+Xi7rr +Ti77r +é&;. (DS)

As before, we control for patient characteristics X; and time categories interacted with station dum-
mies T;, and we check whether «, > 0 for all r.

In Appendix Table A.6, we show results for these informal monotonicity tests, based on Equations
(D.4) and (D.5). Panel A shows results corresponding to the standard leave-out instrument, or @, from
the Equation (D.4). Panel B shows results corresponding to the reverse-sample instrument, or @, from
Equation (D.5). Each column corresponds to a different subsample. All 16 regressions yield strongly

positive first-stage coefficients.

Relationship with Reduced-Form Analysis

At a high level, the informal tests of monotonicity in the judges-design literature use information
about observable case characteristics and treatment decisions, while our analysis in Section 4 exploits
additional information about outcomes tied to an underlying state that is relevant for the classification
decision. In this subsection, we will clarify the relationship between these analyses.

We begin with the standard condition for IV validity, Condition 1. Following Imbens and Angrist
(1994), we abstract from covariates, assuming unconditional random assignment in Condition 1(ii),
and consider a discrete multivalued instrument Z;. In the judges design, the instrument can be thought
of as the agent’s treatment propensity, or Z; = P ;) € {p1,p2,..., Pk }, Which the leave-out instrument
approaches with infinite data. We assume that p; < py < --- < pg. We also introduce the notation
d; (Z;) € {0,1} to denote potential treatment decisions as a function of the instrument; in our main
framework, this amounts to d;; = d; (p) for all j such that P; = p.

Now consider some binary characteristic x; € {0,1}. We first note that the following Wald es-
timand between two consecutive values pj and pg41 of the instrument characterizes the probability

that x; = 1 among compliers i such that d; (px+1) > d; (pi):

E[x;di|Z; = pis1] = E [x;di| Z; = pi]
Eldi|Z; = prm1]l - E[di| Z; = pi]

=E[x;|di (px+1) > di (pi)].

Since x; is binary, this Wald estimand gives us Pr(x; = 1|d; (pr+1) > di (pr)) € [0,1].
Under Imbens and Angrist (1994), 2SLS of x;d; as an “outcome variable,” instrumenting d; with

all values of Z;, will give us a weighted average of the Wald estimands over k € {1,...,K—1}.
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Specifically, consider the following equations:

xid; = Axdi+l/t;-v; (D.6)
d; Clei+Vl)-C. (D.7)

The 2SLS estimator of A* in this set of equations should converge to a weighted average:

K-1

A= > QuPr(x;=1|d; (pr+1) > di (Px)) .,
=

where weights Q are positive and sum to 1. Therefore, we would expect that A* € [0, 1].

The informal monotonicity tests we conducted above ask whether some weighted average of
Pr(d; (px+1) > di (pr)|x; = 1) is greater than 0. Since Pr(x; = 1) > 0 and Pr(d; (pr+1) > d; (px)) >
0, the two conditions—Pr (d; (pr+1) > d;i (px)|x; =1) > 0and Pr(x; = 1|d; (pr+1) > d; (px)) > 0—
are equivalent. Therefore, if we were to estimate Equations (D.6) and (D.7) by 2SLS, we would
in essence be evaluating the same implication as the informal monotonicity tests standard in the
literature.

In contrast, in a stylized representation of Section 4, we are performing 2SLS on the following

equations:

Ad;+u;; (D.8)
aZ;+v;. (D.9)

m;

d;

Recall that m; =1(d; =0,s; = 1) = s; (1 — d;). Following the same reasoning above, we can state the

estimand A as follows:
K-1

A== QPr(s;=1d; (pra) > di (px)),
k=1

which is a negative weighted average of conditional probabilities. This yields the same prediction
that we stated in Remark 3 (i.e., A € [-1,0]). As we discuss in Section 2.3, weaker conditions of
monotonicity would leave this prediction unchanged.

More generally, we could apply the same reasoning to any binary potential outcome y; (d) € {0, 1}
under treatment choice d € {0, 1}. Tt is straightforward to show that, if we replace m; with y;d; in
Equation (D.8), the 2SLS system of Equations (D.8) and (D.9) would yield

K-1
A=) QrPr(yi(1)=1ld;(prs1) > di (px)) € [0,1].
k=1
Alternatively, replacing m; with —y; (1 —d;) in Equation (D.8) would imply
-1

A=) QcPr(yi(0) = 1ldi (prs1) > d; (pr)) € [0,1].
k=1
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How might we interpret our results together in Section 4 and in this appendix? We show above that
the informal monotonicity tests are necessary for demonstrating that binary observable characteristics
have admissible probabilities (i.e., Pr(x; = 1) € [0,1]) among compliers. On the other hand, our
analysis in Section 4 strongly rejects that the key underlying state s; has admissible probabilities
among compliers. Specifically, our finding that A ¢ [—1,0] is equivalent to showing that Pr(s; = 1) ¢
[0,1] among compliers, weighted by the probability that they contribute to the LATE. Observable
characteristics may be correlated with s;, but s; is undoubtedly related to characteristics that are
unobservable to the econometrician but, importantly, observable to radiologists. The importance of
these unobservable characteristics will drive the difference between our analysis and the standard
informal tests for monotonicity.

If monotonicity violations are more likely to occur between cases based on an underlying state
than they to occur between cases based on observable characteristics, as would be plausible in clas-
sification decisions with variation in skill, then an analysis based on the underlying state should be
stronger than an analysis based only on observable characteristics.

Finally, we note in Section 2.3 that our analysis in Section 4 is strongly connected to the concep-
tual intuition for testing IV validity described in Kitagawa (2015). Kitagawa (2015) shows that with
data on treatment d;, outcome y;, and instrument Z;, the strongest testable implication of IV validity
is that potential outcomes should have positive density among compliers. Kitagawa (2015) and Mou-
rifie and Wan (2017) extend this intuition when we also have access to some observable characteristic
x;. In this case, the implication of IV validity can be strengthened to requiring potential outcomes to
have positive density among compliers within each bin of x;. Thus, to implement a stronger test of IV
validity (including monotonicity), we could undertake a similar test of A € [—1,0] using observations

within each bin of x;.

E Details of Structural Analysis

E.1 Optimal Diagnostic Thresholds

We provide a derivation of the optimal diagnostic threshold, given by Equation (7) in Section 5.1. We
start with a general expression for the joint distribution of the latent index for each patient, or v;, and
radiologist signals, or w;;. These signals determine each patient’s true disease status and diagnosis

status:

Si 1(v; >Vv);

dij 1(Wij>Tj)-

We then form expectations of unconditional rates of false positives and false negatives, or FP; =

Pr(d;j=1,5;=0) and FN; =Pr(d;; =0,s; = 1), respectively. Consider the radiologist-specific joint
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distribution of (w;;,v;) as f; (x,y). Then

Tj +00

FN] = PI‘(WU’<TJ‘,V['>;):/ / f](x,}’)dydx’
-0 JV
+00 v

FP]- = PI'(Wij>Tj,Vi<V):/ / fj(x,y)dydx.
Tj —00

The joint distribution f; (x,y) and ¥ are known to the radiologist. Given her expected utility function
in Equation (6),
Euij] == (FP;+B;FN;),

where §; is the disutility of a false negative relative to a false positive, the radiologist sets 7; to
maximize her expected utility.

The first order condition from expected utility is

dFP;  9FN;
- -Bj = 0.
Tj a‘['j

Denote the marginal density of w;; as g;. Denote the conditional density of v; given w;; as f; (y|x) =
Ji(x.y)

8j(x)
order condition for the optimal threshold yields

and the conditional cumulative distribution as F; (y|x) = /_ yoo fj (t|x) dt. Then solving this first

OFP; 5
- —B;

(91']-

OFN;

aTj

/_fj(Tj»y)dy—ﬁj/ fi(tj,y)dy

/_ij(YITj)gj (Tj)dy—ﬁj/ fi(vl7) g () dy

00 v

(
Fi (V7)) g (vj) = B; (1= F; (Vl7;)) & (7;) =0.

The solution to the first order condition T;f satisfies

- Bj
Fj(vhj) i (E.10)
Equation (E.10) can alternatively be stated as
Fi (717)
By=———".
1 F (V| T;f)

This condition intuitively states that at the optimal threshold, the likelihood ratio of a false positive
over a false negative is equal to the relative disutility of a false negative.

As a special case, when (w,- j,v,-) follows a joint-normal distribution, as in Equation (5), we
know that v;|w;; ~ N(ajwl-j, 1 —ai), or (vi—a;wi;) /41 —a§|w,~j ~ N(0,1). This implies that
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F; (Vl TJ*) =® ((V— a/jT;.‘) /1 - cx?) . Plugging in Equation (E.10) and rearranging, we obtain Equa-
tion (7):

= 241 _Bi
, v l_afq) (1+ﬁj)
(). B)) = :

@j

Below we verify that 9°E [ui j] / 87']2. <0 at TJ".‘ in a more general case, so T; is the optimal threshold
that maximizes expected utility.
Comparative Statics

Returning to the general case, we need to impose a monotone likelihood ratio property to ensure that

Equation (E.10) implies a unique solution and to analyze comparative statics.

Assumption E.1 (Monotone Likelihood Ratio Property). The joint distribution f; (x,y) satisfies

fi (x2,¥2) . fi (x1,y2)
fiG2.y) ~ fi(xyn)’

VX2 >X1,y2> y1,J-

We can rewrite the property using the conditional density:

fi (y2lx2) . fi (yalxr)
fityilx2) = fi (vilxn)’

Vxz2 > Xx1,y2 > y1,J.

That is, the likelihood ratio f; (y2|x2) /fj (y1lx2), for yo > y; and any j, always increases with x.
In the context of our model, when a higher signal w;; is observed, the likelihood ratio of a higher v;
over a lower v; is higher than when a lower w;; is observed. Intuitively, this means that the signal
a radiologist receives is informative of the patient’s true condition. As a special case, if f(x,y)
is a bivariate normal distribution, the monotone likelihood ratio property is equivalent to a positive
correlation coefficient.

Assumption E.1 implies first-order stochastic dominance. Fixing x, > x| and considering any
y2 > y1, Assumption E.1 implies

fi (v2lx2) fi (vilxn) > fi (valx1) fi (yilx2). (E.11)

Integrating this expression with respect to y; from —oo to y, yields

y2 y2
fi (y2lx2) fi (y1lx1) dyr > fi (v2lx1) fj (yilx2) dy:.

Rearranging, we have
fi(y2lx2)  Fj(y2lx2)
> > VY2.
fi(valx1)  Fj(y2lx1)




Similarly, integrating Equation (E.11) with respect to y, from y; to co yields

+00 +0o

fi (y2lx2) fj (yilx1) dy2 > fi (v2lx1) fj (vilx2) dys.
Y1 Y1

Rearranging, we have
1_Fj()’1|x2)>fj()’1|x2) y
AL
L=Fj(yilx1)  fi(yilxr)

Combining the two inequalities, we have

Fj(ylx1) > Fj (y|x2),Vy. (E.12)

Under Equation (E.12), for a fixed v, F; (v|7;) decreases with 7, i.e., dF; (v|7;) /07; <0. We

can now verify that

O°E [uj] .\ 9F; (Vl7;)
a—T]; * = (1+8;)g; (Tj) oy - <0.
Tj=T: Jj

J

Therefore, T;’.‘ represents an optimal threshold that maximizes expected utility.
Using Equation (E.12) and the Implicit Function Theorem, we can also derive two reasonable

comparative static properties of the optimal threshold. First, T;’.‘ decreases with §3;:

oty (aF,(ﬂTj) ! 0

93. 2 . :

8,8] (1 +18j) 6T] sz‘r_;f

Second, T;.‘ increases with v:
a7} OF; (V) \~
J — % J J

=) () | o

J Tj:Tj*.

In other words, holding fixed the signal structure, a radiologist will increase her diagnosis rate when
the relative disutility of false negatives increases and will decrease her diagnosis rate when pneumonia
is less prevalent.

We next turn to analyzing the comparative statics of the optimal threshold with respect to skill. For

a convenient specification with single-dimensional skill, we return to the specific case of joint-normal

IR |

signals:
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Taking the derivative of the optimal threshold with respect to a; in Equation (7), we have

N -1(_Bi = 2
aq—j; _CD (1+;3,~)_V l—aj
da; 2 [{_. 2

J @; 1 a;

These relationships yield the following observations. When «; =1, ‘r}k =v. When «; =0, the ra-
diologist diagnoses no one if §; < % (i.e., T]’.‘ = o0), and the radiologist diagnoses everyone if

Bj> % (i.e., TJ’? = —00). When «; € (0, 1), the relationship between T;f and «; depends on the

prevalence parameter v. Generally, if §; is greater than some upper threshold B, T; will always

increase with a;; if §; is less than some lower threshold g, 77 will always decrease with «a;; if

Bj€ (éﬁ) is in between the lower and upper thresholds, T]".‘ will first decrease then increase with a;.
The thresholds for 8; depend on v:

. D (V) ]
B = mln(—l—dD(V)’l)’
= D (v)
B = max(—l_q)(v),l).

The closer v is to 0, the less space there will be between the thresholds. The range of 5; between the
thresholds generally decreases as v decreases.

Intuitively, there are two forces that drive the relationship between T]"f and «;. First, the threshold
of radiologists with low skill will depend on the overall prevalence of pneumonia. If pneumonia is
uncommon, then radiologists with low skill will tend to diagnose fewer patients; if pneumonia is
common, then radiologists with low skill will tend to diagnose more patients. Second, the threshold
will depend on the relative disutility of false negatives, ;. If 5; is high enough, then radiologists
with lower skill will tend to diagnose more patients with pneumonia. Depending on the size of 3;,

this mechanism may not be enough to have T]’.‘ always increasing in a;.

E.2 Simulated Maximum Likelihood Estimation

In Section 5.2, we estimate the hyperparameter vector 8 = ( HarMB:sTa, OB, /l,?) by maximum likeli-
hood:

ézargglale"g/ff(’77”5?1’”1|7’j)f(7’119)d71-
J
To calculate the radiologist-specific likelihood,
.Zj(ﬁ;?,ﬁjf’,njﬂo):/gj(ﬁ;?,ﬁj’,nj|yj)f(yj|a)dyj,

we need to evaluate the integral numerically. We approximate the integral using multiple-dimensional
sparse grids as introduced in Heiss and Winschel (2008), which generates R nodes ‘y; following the

density f (y j|0), given any hyperparameter vector §. These nodes are chosen based on Gaussian
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quadratures and are assigned weights w” such that ). w" = 1. We use a high accuracy level, which
leads to R =921 nodes in a two-dimensional integral. Then we take the weighted average across all

nodes of the likelihood as an approximation of the integral:

R
~d ~m ~ rep (sd sm
‘,Zﬂj(nj,nj,nj|0) ~Zw oiﬂj(nj,nj N

The overall log-likelihood becomes

s 2 (o) )zmg(z 2 (w0

E.3 Empirical Bayes Posterior Means

)

After estimating @, we want to find the empirical Bayes posterior mean 7 ;= (@, B ;) for each radiol-

ogist j. Using Bayes’ theorem, the empirical conditional posterior distribution of y; is

(7 3 ) B f(y_i’ﬁ?’ﬁT’”.i 9) B f(ﬁj-l,ﬁj-","j|7’j)f(7'j|é)
J

nj0) = ~— = - ,
f(ﬁj-lﬁT nj 9) ff(ﬁ}’,ﬁ}”’”j’w)f(?’.f|‘9)d7’j

where f (ﬁj.l,ﬁ;.",n j‘y j) is equivalent to .Z; (ﬁj.i,ﬁ;",n j‘y j). The denominator is then equivalent to

the likelihood .Z; (ﬁ;l , fz;.”, n;|@). The empirical Bayes predictions are the following posterior means:

~ /71 ( ji ”1‘71) (7j|é)d7’j
5 . Nzd sm . i
4 /7] (yjln],nj,n,ﬂ) =
J 1 iymls) 1 (2160) v,
As above, the integrals are evaluated numerically using sparse grids. We generate R nodes y; follow-

ing the density f (7/ j| é) and calculate the empirical Bayes posterior means as

7))

R ~d
SR Wiyt (ad
zflw’f(;f ;"n,

A

Yi=

)

F Robustness

In this appendix, we discuss alternative empirical implementations from the baseline approach. Ap-

pendix Table A.8 presents results for the following empirical approaches:

1. Baseline. This column presents results for the baseline empirical approach. This approach
uses observations from all stations; the sample selection procedure is given in Appendix Table

A.1. We risk-adjust diagnosis and false negative status by 77 patient characteristic variables,
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described in Section 4.2, in addition to the controls for time dummies interacted with stations
dummies required for plausible quasi-random assignment in Assumption 1. We define a false
negative as a case that was not diagnosed initially with pneumonia but returned within 10 days

and was diagnosed at that time with pneumonia.

. Balanced. This approach modifies the baseline approach by restricting to 44 stations we select
in Section 4.2 with stronger evidence for quasi-random assignment. Risk-adjustment and the

definition of a false negative are unchanged from baseline.

. VA users. This approach restricts attention to a sample of veterans who use VA care more than
non-VA care. We identify this sample among dual enrollees in Medicare and the VA. We access
both VA and Medicare records of care inside and outside the VA, respectively. We count the
number of outpatient, ED, and inpatient visits in the VA and in Medicare, and keep veterans
who have more total visits in the VA than in Medicare. The risk-adjustment and outcome

definition are unchanged from baseline.

. Admission. This approach redefines a false negative to only occur among patients with a
greater than 50% predicted chance of admission. Patients with a lower predicted probability of
admission are all coded to have m; = 0. The sample selection and risk adjustment are the same

as in baseline.

. Minimum controls. This approach only controls for time dummies interacted with station
dummies, T;, as specified by Assumption 1, without the 77 patient characteristic variables.

The sample and outcome definition are unchanged from baseline.

. No controls. This approach includes no controls. That is, we bypass the risk-adjustment

procedure and use raw counts (n‘.l ,n'

J7
~d ~m _, .
(nj,nj,n]).

. Fix A, flexible p. This approach allows for flexible estimation of p in the structural model

N j) in the likelihood, rather than the risk-adjusted counts

(whereas we assume that p = 0 in the baseline structural model). Using results from our baseline

estimation, we fix 4 = 0.026 instead.

Rationale

Relative to the baseline approach, the “balanced” and “minimum controls” approaches respectively

evaluate the importance of selecting stations with stronger evidence of quasi-random assignment and

of controlling for rich patient observable characteristics. If results are robust under these approaches,

then it is less likely that potential non-random assignment could be driving our results.

We evaluate results under the “VA users” approach in order to assess the potential threat that false

negatives may be unobserved if patients fail to return to the VA. Although the process of returning to

the VA is endogenous, it is only a concern under non-random assignment of patients to radiologists

or under exclusion violations in which radiologists may influence the likelihood that a patient returns
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to the VA, separate of incurring a false negative. Veterans who predominantly use the VA relatively
to non-VA options are more likely to return to the VA for unresolved symptoms. Therefore, if results
are robust under this approach, then exclusion violations and endogenous return visits are unlikely to
explain our key findings.

Similarly, we assess an alternative definition of a false negative in the “admission” approach,
requiring that patients are highly likely to be admitted as an inpatient based on their observed charac-
teristics. Admitted patients have a built-in pathway for re-evaluation if signs and symptoms persist,
worsen, or emerge; they need not decide to return to the VA. This approach also addresses a related
threat that fellow ED radiologists may be more reluctant to contradict some radiologists than others,
since admitted patients typically receive radiological evaluation from other divisions of radiology.

We take the “no controls” approach in order to assess the importance of linear risk-adjustment for
our structural results. Although linear risk adjustment may be inconsistent with our nonlinear struc-
tural model, we expect that structural results should be qualitatively unchanged if risk-adjustment is
relatively unimportant. In “fix 4, flexible p,” we examine whether our structural model can rationalize

the slight negative correlation between a; and §; implied by the data in Appendix Figure A.13.

Results

Appendix Table A.8 shows the robustness of key results under alternative implementations. Panel
A reports sample statistics and reduced-form moments. All empirical implementations result in
large variation in diagnosis and miss rates across radiologists. Standard deviations for both rates
are weighted by the number of cases. The standard deviation of residual miss rates, after control-
ling for radiologist diagnosis rates, reveals that substantial heterogeneity in outcomes remains even
after controlling for heterogeneity in decisions. This suggests violations, under all approaches, in the
strict version of monotonicity in Condition 1(iii). Most importantly, the IV slope remains similarly
positive across approaches. This suggests consistently strong violations in the weaker monotonicity
conditions in Conditions 2-4.

Panel B of Appendix Table A.8 summarizes policy implications from decomposing variation into
skill and preference components, as described in Section 6. In most implementations, more variation
in diagnosis can be explained by heterogeneity in skill than by heterogeneity in preferences. An even
larger proportion of variation in false negatives can be explained by heterogeneity in skill; essentially
none of the variation in false negatives can be explained by heterogeneity in preferences.

Appendix Table A.9 shows corresponding structural model results under each of these alternative
implementations. Panel A reports parameter estimates, and Panel B reports moments in the distribu-
tion of (a;,;) implied by the model parameters. The implementations again suggest qualitatively

similar distributions of «, 3, and .

A.l16



G Extensions

G.1 General Loss for False Negatives

Our baseline specification of utility in Equation (6) considers a fixed loss for any false negative rela-
tive to the loss for a false positive. In reality, some cases of pneumonia (e.g., those involving partic-
ularly virulent strains or vulnerable patients) may be much more costly to miss. In this appendix, we
show that implications are qualitatively unchanged under a more general model with losses for false
negatives that may be higher for these more severe cases.

We consider the following utility function:

-1, ifdij:l,SiZO,
uij =1-pjh(vi), ifd;j=0,5;=1,

0, otherwise,

where £ (v;) is bounded, differentiable, and weakly increasing in v;.> As before, s; = 1(v; > ¥), and
B > 0. Without loss of generality, we assume h(v) =1, so hA(v;) > 1,Vv;.
Denote the conditional density of v; given w;; as f; (v;|w;;) and the corresponding conditional

cumulative density as F; (v;|w;;). Expected utility, conditional on w;; and d;; =0, is

Evi[u,-j(vi,dijz()”wij] = —ﬁjEVI.[h(Vi)l(dijIO,Si=1)|Wij]

8; / B (ve) £ vl dvi.

The corresponding expectation when d;; =1 is
Ey [uij (viodij=1)|wi;] = —Pr(si=0.di; = 1]wi;)

v +00
—/ fj(Vi|Wij)dVi:f fivilwij)dvi—1.

The radiologist chooses d;; = 1 if and only if E,, [u;; (vi,d;j = 1)|w,~j] > Ey, [uij (viodij = 0)|wl-j],
or

/ (1+,3J-h(v,-))fj(vi|wij)dv,~>1.

If h (v;) = 1 for all v;, then this condition reduces to Pr (v; > v|w;;) = 1= F; (v|w;;) > . In the

1
1+3;
general form, if the radiologist is indifferent in diagnosing or not diagnosing, we have

2The boundedness assumption ensures that the integrals below are well-defined. This is a sufficient condition but not
necessary. The differentiability assumption simplifies calculation.
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=/ (1+ﬁjh(Vi))fj(Vi|Wij)dVi
= [ ) gy by avie [ By 00 =155 (i)
> (1+8)(1=F;(¥|w;j)),

as we assume /(v;) > 1. Now the marginal patient may have a lower conditional probability of having
pneumonia than the case where h(v;) = 1,Vv;, as false negatives may be more costly.

Define the optimal diagnosis rule as

dj(wij)=1 (/ (I+Bjh(vi)) fi(vilwij)dv; > 1].

Proposition G.5 shows conditions under which the optimal diagnosis rule satisfies the threshold cross-

ing property.

Proposition G.5. Suppose the following two conditions hold:
1. For any wlfj > wij, the conditional distribution of v; given €] g first-order dominates (FOSD)
the conditional distribution of v; given €;;, i.e., Fj(v,-lwlfj) < Fi(vilwij), Vv,
2.0< F,~(17|w,-j) <1, VW,','. lim Fj(ﬂW,‘j) =land lim Fi(ﬂlwij) =0.
- 7 w00 : Wij—+oo -
Then the optimal diagnosis rule satisfies the threshold-crossing property, i.e., for any radiologist j,

there exists T;.‘ such that

0, wij < T;,

dj(wij) = :
1, Wij 2 7

We first prove the following lemma.

Lemma G.6. Suppose wlfj > wij. IfFj(vilwlfj) < F;(vilwij), for each v;, then dj(w;;) = 1 implies
dj(wl{j) =1.

Proof. Using integration by parts, we have

/vm (1+B;h (vi)) (fj (W|W§j) —fi (Vi|Wi.i))dVi

= (1+B8;h(v)) (Fj (Vilwfj)—Fj (Vi|Wij)) tm—/ﬁmﬁjh'(vi) (Fj(ViIW{J-)—Fi(ViIWij))dw
== (1+8)) (Fy (7Iw};) = F (71wiy)) _/v+°°ﬁjhf(w) (F5alwiy) = F3 (ilwip) ) dvi > 0,

since Fj(vilwlfj) < Fj(vilwij), Yvi, h(v;) is bounded, A(V) = 1, and h’(v;) > 0.
We now proceed to the proof of Proposition G.5. O
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Proof. The second condition of Proposition G.5 ensures that
+00

lim (1+ﬂjh(vi))fj(v,-|wij)dvi < (1+Mﬂ])(1 —W_l_i_)m_oon(17|w,-j)) =0<1;

Wij =00 Jo

+00

111‘11 (1+ﬁjh(v,-))fj(vl-|wl-j)dvi > (1+,8])(1 - 11111 Fj(vlwij)) = 1+,8j > 1,

where M =suph(v;). So lim d;j(w;;)=0and lim d;(w;;)=1. Using Lemma G.6, the optimal
Wi j——00 Wi j—+00

diagnosis rule satisfies the threshold-crossing property. In particular, the optimal threshold TJ’T satisfies

/ (1+th(vi))ﬁ(vi|T;)dVi:1.
O

Proposition G.7. Suppose the conditions in Proposition G.5 hold and f; is fixed. Then the optimal

threshold T]*. decreases with ;. In particular, T;.‘ — +ooas fj — 0" and T]".‘ — —o00 as f§; — +oo.

Proof. Consider radiologists j and j’'with 8; > ;. Denote their optimal thresholds as T;f and T]*
respectively. We have f;m (1+Bh(v)) fivilt})dvi=1and

+00

[ o0y fiontepasi= [ (g 00) 5i0nlea
~r=8p) [ b0 fyil)dvi <0,

So f;w (1+Byh (vi)) f;(vilt})dvi < 1, or djr(7}) = 0. By Proposition G.5, we know that 77 < 7.
Since T]’.‘ decreases with 3}, if bounded below or above, it must have limits as §; approaches +co

or 0. We can confirm that this is not the case. For example, suppose T]".‘ is bounded below. The limit
1
exists and is denoted by 7. Take g, > T(WZ) Then

/ (1480 (v) £y (il dvi > (1+ )(1-F;(7]T)

1
1-F(v|z)

1 _ —
> (1 +T(‘7|I))(l —F;j(7|1)) =2-F;(¥|2).

The second inequality holds since T;'? > 1. Take the limit and we have

+00

lim (1+/3jh(v,~))fj(vl-|7';f)dvi >2-F;(v|r) > L.

Bj—teo J5

This is a contraction, so TJ’T is not bounded below. Similarly, we can show T]”.‘ is not bounded above. O
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From now on, we assume w;; and v; follow a bivariate normal distribution:

e )

Conditional on observing w;, the true signal v; follows a normal distribution N (a;jw;;,1 - a?). So

Vi—jwij
s
1-a?
J

where @ (-) is the CDF of the standard normal distribution.

Fi(vilwij) =@

Corollary G.8. Suppose w;; and v; follow the bivariate normal distribution specified above. Then if

aj > 0, the optimal diagnosis rule satisfies the threshold-crossing property.

Proof. When w;; and v; follow the bivariate normal distribution with the correlation coefficient being

Vi—Qjwij

aj, we have F; (vi|w;j) = ® —L | 1tis easy to verify that the two conditions in Proposition
1- a/i

G.5holdif a; > 0.

Define the optimal threshold T;f =7i(e),B;; h(-)) by

oo 1 Vi—a;T;
(1+ﬂ_~h<vi>)—¢(' ’;)dv,-=1,
-/17 ! \/l_a§ \/l—a.

J

where ¢(-) is the density of the standard normal distribution. m]

Corollary G.9. The optimal threshold satisfies

V- l—az.(l)_l( BiM )
J

1+,8jM

= _ 28— Bi
v 1 aj(I) (1+,8j)

< r}‘ <
aj aj

’

where M = sup h(v;).

Proof. Since h(v;) > 1, we have

+eo 1 Vi—a;T;
1= [ o ¢( 1_(12_")dvi

+00 1 —a; *
> (1+8)) | ¢(V aJT;)dw

1—® 17—(11-7'; ‘
Vi)
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Rearrange and we can get the upper bound of TJ".‘. Similarly, we can derive the lower bound of T
The proposition below summarizes the relation between the general case and case where h(v;) =
]

l,\7’v,~.
Proposition G.10. Let T;f =7j(aj,B);h(-)). Define

" h(vi)g ( C”“)dw
L P

/'+oo¢ (V, a/j‘rj ) dyl

ll—a/j

Then we can use the new ,B;. to characterize the optimal threshold

B =B, B;:h() = B;

v

(@ B h() =7, B h() =1).

Proof. Let T}“ =7j(a;,Bj;h(-)) and T_;’." = Tj(ozj,,B_;.;h(') =1). Then

oo 1 Vi—Qaj T oo 1 Vi—Q"T’f/
(1+ﬂ'h(vi)) ¢ g dv; = 1+ﬁ,' ¢ JTj dv;=1.

vV ! 1- > J 1— 2

v 1 —a? o] v 1 —a? o’

Substitute the expression of ,8} into the second equality and we have

/+0<> /+°°h(vl)¢( \/Tj)dVl | ey
] 1+4; - \/1 a’ dvi=1
e |5

v Y
1-ej

o (1+ﬁjh<vl>>¢(”‘£f)dvl
:>/ J 1 ¢(v, ajTJ)d l:l
v +oo | vi—a;T} 1—a? 1-aj
Fofigefen N
= [ aepnon) (J )d : I_Q’;)dw |
= ] +Bh(vi))d Vi =
1—01; v J k+w¢(Vi;ajzj)dVi

=1

oo vi—a; Ty +eo Vi—a;T;
L i L i

ﬁ‘/‘ [0) R, dViZ/ 0} L dv;.
v 1-a? v l—a?

J

*

So we have T]’f’ =1;.
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Proposition G.11. For fixed ; and h(-), ,8} =,8;.(a/j,ﬁj;h(-)) decreases with ;.

Proof. The optimal threshold T;-k =1j(j),B);h(-)) is given by

/+oo (1+Bh(vi)) ;05 (Vi_aj?)dw =1.
v \/l—a/§ j

By Proposition G.10, we can write

/+Ooh(Vl)¢(Vi/i(:J)dVi / (1+th(yl _1)¢(Vl (Ij‘rj)

B =PB; - =
/;OO‘?( l,—l_;?'")dw ( - )
_/ (1+ﬁjh(Vt))¢(\/7]j) Vi_‘/;j ¢(\/1_7w]2_j)dvi 1_a§

= = -1.
Vi (th] dv: +00 vi—aj‘rj*. dvi
Frol ) Frol )
Vi a/]‘r
Define x; = ———=. Then dv; = /1 - afidxi. Using variable transformation, we have
1 a;
2
, I-a; 1
,Bj = —-1= -1.
f+oo¢ Vvi— (IJT] dVl - 17—aj‘r_;f
1- aj 1—(1}2
Vi—@)T;
Denote Q(vi,a;,8;) = ———" For fixed f;, the relationship between . and a; reduces the re-
1-a?

J
lationship between Q(v,a;,5;) and «;. Using integration by parts for the formula of the optimal

threshold, we have

oP
+oo 1 Vi—a;T; too
1:/ (1+ﬂjh(Vi)) ¢( é’)dvizf (1+ﬂjh(Vi)) Tdvi

J1 —a? 1-aj
Vi

J
FJ) / B (v;)® ﬁ)dv,-
148 M— (14+8,)D(Q(%. ). ,)) ~ B, / W () (O (vis . ;) dvi,

= (1+Bjh(vi))®@
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where M = sup h(v;). Take the derivative with respect to a;,

Q(v,a;.B,)
0 = —(1+5)¢(Q(, a,,ﬁ,»—a’ ’
L
e 9Q(vi,aj.B)
85 [ W08y ) T gy, G.13)
v J
00(v,a;, ;) : .
We want to show that B e— < 0 for all @; € (0,1). We prove this by contradiction. Assume
a;
00(v,a;,B; 20(v;,a;,B; a;
that for some «’; € (0,1), we have M > 0. Since Qo 5P = J >0,
J oa; Q= (’)ozjévi (1 —Q/j)3/2
j=a;
(V a_]’ﬁ_])
we know that B P increases with v; for any fixed @; € (0,1), in particular for a; = a . Then
a;
00(v;,ai,B; 00 (v, a;, )
M > M > ( for any v; > v. Since h’(v;) > 0, we have
(9ai ajz(t’. Ha/i a/j=a’.
J J
aQ(Vvajvﬁ]) Q( l’a/] B])

dVilaj:a/ > 0.

>0, [ 00900001, =5

Then Equation (G.13) cannot hold for a; = a/;., as the right hand is strictly negative, a contradiction.

So, we must have %;W <0,Va; € (0,1). Therefore,
0(v,a;.B;)
aﬁ; ¢(Q(V aj9ﬁ]))# <0
daj  (1-0(Q(7,a;,8))%

G.2 Incorrect Beliefs

Under the model of radiologist signals implied by Equation (5), we can identify each radiologist’s
skill @; and her diagnostic threshold 7;. The utility in Equation (6) implies the optimal threshold in
Equation (7), as a function of skill @; and preference ;. If radiologists know their skill, then this
allows us to infer B from «; and 7;.

In this appendix, we allow for the possibility that radiologists may be misinformed about their
skill: A radiologist may believe she has skill a} even though her true skill is ;. Since only (true) «;
and 7; are identified, we cannot separately identify a/;. and §; from Equation (7). In this exercise, we
therefore assume S, in order to infer a;. for each radiologist.

We start with our baseline model and form an empirical Bayes posterior mean of (a;,f3;) for
each radiologist. We use Equation (7) to impute the empirical Bayes posterior mean of 7;. Thus, for
each radiologist, we have an empirical Bayes posterior mean of (a,3;,7;) from our baseline model;
the distributions of the posterior means for @, 5;, and 7; are shown in separate panels of Appendix
Figure A.13.

To extend this analysis to impute each radiologist’s belief about her skill, a}., we perform the

A.23



following two additional steps: First, we take the mean of the distribution of empirical Bayes posterior
means {ﬁ J'}_,'e be which we calculate as 6.71. Second, we set all radiologists to have g; = 6.71. We
use each radiologist’s empirical Bayes posterior mean of 7; and the formula for the optimal threshold
in Equation (7) to infer her belief about her skill, a}.

The relationship between a/;., B, and 7; is shown in Figure IX. As shown in the figure, for
Bj =6.71, the comparative statics of T]".‘ are first decreasing and then increasing with a radiologist’s
perceived a/;.. Thus, holding fixed 5; = 6.71, an observed 7; does not generally imply a single value
of aj’.. If 7; is too low, then there will not be a value of cx} to generate 7; with 8; = 6.71; this case
occurs only for a minority of radiologists. Other 7; generally can be consistent with either a value
of a;. on the downward-sloping part of the curve or with a value of oz;. on the upward-sloping part
of the curve. In this case, we take the higher value of a/;., since the vast majority of empirical Bayes
posterior means of @; are on the upward-sloping part of Figure IX.

Appendix Figure A.19 plots each radiologist’s perceived skill, or 01;., on the y-axis and her actual
skill, or a, on the x-axis. The plot shows that the radiologists” perceptions of their skill generally
correlate well with their actual skill, particularly among higher-skilled radiologists. Lower-skilled

radiologists, however, tend to over-estimate their skill relative to the truth.

G.3 Simulation of Linear Risk Adjustment

As described in Section 5.2, we estimate our structural model using moments for each radiologist that
are risk-adjusted by linear regressions. An alternative approach would be to explicitly incorporate het-
erogeneity in Pr (s; = 1), by station, time, and patient characteristics, into the structural model . While
this approach is more consistent with the structural model, it is often computationally prohibitive.

In this appendix section, we use Monte Carlo simulations to examine the effectiveness of linear
risk adjustment in recovering the underlying structural parameters of our model. Specifically, we
fix the set of radiologists at each station and the number of patients that each radiologist examines,
or nj, to match the actual data. Assuming that parameter estimates in Table I are the truth, we

simulate primitives {a/ B j} independent of n;. We also simulate at-risk patients from a binomial

Jjeg’
distribution with the probability of being at risk of 1 —«.

For patients at risk, we simulate their latent index v; and the radiologist-observed signal w;; using
«a; of the assigned radiologist j. Importantly, in this simulation, we model conditional random as-

signment of patients to radiologists within station. For v; and w;; that are jointly normally distributed,

[ ] )

Si =1(Vi >Vg(j)),

as in Equation (5),

we have

where V() depends on the station £ (j) in which radiologist j works. Radiologists know v, ;). The
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optimal threshold is then

) T —1-edet ()
() 8520 ())) = — ,
J

which generates d;; =1 (w;; > v (a;,8;;£(j))). We finally simulate patients who did not initially
have pneumonia but later developed it with A.

Each simulated dataset has the same number of observations as in the original dataset, with four
variables for each patient i: the radiologist identifier j, the station identifier £, the diagnosis indicator
d;=2.;1(j =j(i))d;j, and the (observed) false negative indicator m; = 1(d; =0,s; = 1). We obtain
risk-adjusted radiologist moments from the simulated data by regressing diagnosis or false negative
indicators on radiologist dummies and station dummies.

The key object of confounding risk across groups of observations is the distribution of v,. We
assume that this distribution is normal and calibrate its standard deviation based on the following
target: the ratio of the standard deviation of unadjusted radiologist diagnosis rates to the standard
deviation of adjusted radiologist diagnosis rates. In the actual data, these standard deviations are
shown in Appendix Table A.8, as 1.966 and 1.023, respectively. Conceptually, the ratio of these
standard deviations captures the net effect of risk adjustment on reduced-form radiologist diagnosis
rates. In each of five simulated datasets, we calculate a similar ratio. In our calibration, we aim to
match the average of these ratios across the five simulations, holding the random-generating seed
fixed in each simulation.

In each of the simulations, we redo three sets of results based on unadjusted or adjusted radiol-
ogist moments. First, we re-estimate the model parameters. Second, we re-compute counterfactual
variation in diagnoses and false negatives when either variation in skill or variation in preferences is
eliminated, as described in Section 6.1. Third, we re-compute welfare under policy counterfactuals,
as described in Section 6.2. As shown in Appendix Figure A.20, the results of this exercise suggest
that linear risk adjustment eliminates most of the bias due to confounding variation in risk across
groups of observations. For many estimated parameters and counterfactual results, the bias is almost

eliminated by linear risk adjustment.

G.4 Controlling for Radiologist Skill

Intuitively, monotonicity should hold within bins of skill. In this appendix section, we explore a
Monte Carlo proof of concept for whether controlling for agent skill in a judges-design regression can
recover complier-weighted treatment effects. Specifically, we simulate data that match our observed
data, taking structural estimates as the truth. We then evaluate whether we can recover the complier-
weighted “treatment effect,” or —Pr (s = 1) in our case, that one should obtain under IV validity when
regressing m; on d;, instrumenting d; with Z;.

As in Appendix G.3, we take parameter estimates in Table I as the truth and simulate true primi-

tives {0/ 7B f}j e We similarly fix observations per radiologist and simulate patients at risk. Among
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these patients, we simulate v; and w;;. We determine which patients are diagnosed with pneumonia
and which patients are false negatives based on TJ’T (a;,B;). in Equation (7), and v. This implies that,
unlike the simulations in Appendix G.3, patients are unconditionally randomly assigned. Finally, we
simulate patients who did not initially have pneumonia but later developed it with A.

In the remainder of this appendix section, we will derive the target LATE and then compare

whether we can estimate it using various strategies to control for skill.

Derivation of the Properly Specified Estimand. The ideal experiment would be to compare radi-
ologists with the same a;. However, we have a continuous distribution of «; and a finite number of
radiologists. We therefore derive an approximation of the true relationship between F N;?bS and P;?bs,
conditional on skill &, under a large number of radiologists with the same skill and a large number
of patients per radiologist. We then integrate this approximation over the distribution of skill.

Specifically,

PP (apBy) = (1=0Pr(wy > 1) = (1=0) (1-0 (1)); (G.14)

FN;-’bs (aj,ﬂj) = (1-«k) (Pr(wl-j < T;,Vi >V|aj) +/lPr(wij < T}‘,vi < V’aj)), (G.15)

where TJ*. =7*(a;,B;) in Equation (7). Conditional on «/, there exists a one-to-one mapping in the
reduced-form space between F N Io.bs and P;?bs.

Conditional on the realization of skill @, we draw J + 1 radiologists with varying §; from the true
distribution and derive their optimal thresholds T;.‘. We calculate their population diagnosis and miss
rates as p; = E [d;] j (i) = J] :P;?bs (a;,B;) andm; = E [m;] j (i) = j] :FN;?bs (a;,B;), respectively.
We consider the LATE when we use p; as the scalar instrument for diagnosis d;. We rank radiologists
based on p; from smallest to largest, so that pg < p; < --- < p;. From Theorem 2 of Imbens and
Angrist (1994), the LATE conditional on skill « is

7
A () = Z¢j5j,j—1,
Jj=1

where

(Pj=pi-1) 2L 1 (P1=P)

lﬁj = —
St (Pm=pm-1) T p1 (p1 =)
5 =
= _
> Pj—Pj-1

; is a non-negative weight, which depends on the first-stage difference in diagnosis rates between
radiologists and the probability of assignment to j, or p;. ¢; ;- is the Wald estimand based on
random assignment between j and j — 1. Note that p; = (J + 1)~! for all j, by random assignment,
and p = ﬁ Z]J':o Dj-

We then simulate K values of @y from the true distribution to derive the LATE (unconditional on
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skill) as
| &
A== > A" .
X ]Zf (k)

We choose reasonably large J = 1,000 and K = 1,000. This can be seen as the approximation of the
expectation of the LATE across many realizations of skill. We compute A* = -0.154.

Estimation Results. We then estimate the effect of diagnosis d; on the false negative indicator m;
and present results in Appendix Table A.11. As in the main text, we estimate this effect by judges-
design IV, exploiting the relationship between radiologist diagnosis and miss rates.

The standard specification is shown in Column 1 of all panels. Specifically, we perform 2SLS
of m; on d;, instrumenting d; by the leave-out diagnosis propensity Z;, given in Equation (4). Since
cases are randomly assigned unconditionally in this simulation, we include no further controls. This
result is significantly positive, at 0.096, despite the true negative LATE of A* = —-0.154.

In Panel A, we show results of regressions that control for true skill, ;. For Column 2 of this
panel, we control for «; linearly in the 2SLS regression. For Columns 3-6, we divide «; into 5, 10,
20, and 50 bins, respectively, and include indicators for bins of @; as controls in the regression. The
results in these columns encompass the true LATE.

In Panel B, we show results of similar regressions that replace functions of true skill a; with
corresponding functions of the empirical Bayes posterior mean of a;, or &;. Specifically, for Column
2, we control for &; linearly; for Columns 3-6, we divide &; into 5, 10, 20, and 50 bins, respectively,
and include indicators for bins of «; as controls in the regression. To account for the fact that @; is a
generated regressor, we construct standard errors by 50 bootstrapped samples, drawing observations
by radiologist with replacement and keeping the total number of radiologists fixed. These results are
also strongly negative, but they are more negative than the true LATE. The confidence intervals are
also substantially wider.

In Panel C, we show results from indirect least squares regressions of m; on empirical Bayes
posteriors of P; and ;. For Column 2, we control for the posterior mean & linearly; for Columns 3-
6, we control for posterior probabilities that «; resides in each of 5, 10, 20, and 50 bins, respectively.
We construct standard errors by the same bootstrap procedure that we use for Panel B. The estimates
of the LATE are negative and less biased than in Panel B. Nevertheless, they are still generally larger
in magnitude than the true LATE.

These results suggest that we can recover the true LATE when we control for true skill. However,
estimates are biased, albeit in the opposite direction in our simulation, when we use empirical Bayes
posteriors of skill. In Appendix Figure A.21, we confirm that estimates from regressions that use
empirical Bayes posteriors for radiologists with a very large number of cases approach the true LATE.
Even so, the number of cases per radiologist is already high in our simulated sample. By construction,
each radiologist has at least 100 cases, and we match the distribution of cases for each radiologist to
the actual distribution, shown in Appendix Figure A.1. We leave further refinement of this approach

in finite samples to future work.
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Figure A.1: Distribution of Radiologists and Cases
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Note: This figure shows the distributions of radiologists across stations, of radiologists across station-months,
of cases across radiologists, and of cases across radiologist-months. As shown in Appendix Table A.1, the
minimum number of cases for a radiologist is 100, and the minimum number of cases for a radiologist-month
pair is 5. In this figure, we truncate the number of cases per radiologist at 10,000; 57 radiologists, or 1.78% of
the total, have more cases than this limit. We truncate the number of cases per radiologist-month at 200; 1,274
radiologist-months, or 1.02% of the total, have more cases than this limit.
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Figure A.2: Covariate Balance (Miss Rate)
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Note: This figure shows coefficients and 95% confidence intervals from regressions of the false-negative indi-
cator m; (left column) or the assigned radiologist’s leave-out miss rate (middle and right columns) on covariates
X;, controlling for time-station interactions T;. The 66 covariates are the variables listed in Appendix A.2, less
the 11 variables that are indicators for missing values. The leave-out miss rate is calculated analogously to the
leave-out diagnosis propensity Z;. The left and middle panels use the full sample of stations. The right panel
uses 44 stations with balance on age, defined in Section 4.2. The outcome variables are multiplied by 100.
Continuous covariates are standardized so that they have standard deviations equal to 1. For readability, a few
coefficients (and their standard errors) are divided by 10, as indicated by “/10” in the covariate labels. At the
bottom of each panel, we report the F-statistic and p-value from the joint F-test of all covariates.
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Figure A.3: Predicting Diagnosis and False Negatives (Stations with Balance on Age)
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Note: This figure shows coefficients and 95% confidence intervals from regressions of diagnosis status d;
(left column) or the false negative indicator m; (right column) on covariates X;, controlling for time-station
interactions T; in the sample of 44 stations with balance on age (defined in Section 4.2). This is analogous to
the left-hand columns of Figure VI and Appendix Figure A.2 respectively, with the restricted sample of stations.
The outcome variables are multiplied by 100. The 66 covariates are the variables listed in Appendix A.2, less
the 11 variables that are indicators for missing values. Continuous covariates are standardized so that they have
standard deviations equal to 1. For readability, a few coefficients (and their standard errors) are divided by 10,
as indicated by “/10” in the covariate labels. At the bottom of each panel, we report the F-statistic and p-value
from the joint F-test of all covariates.
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Figure A.4: Randomization Inference
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Note: This figure plots histograms of station-level p-values for quasi-random assignment computed using ran-
domization inference. We first residualize predicted diagnosis and false negative indicators d; and r; by
minimal controls T;. We then create 100 samples in each of which we randomly reassign the residualized
values to patients within each station. For each of these samples as well as the baseline sample we regress the
residualized values on radiologist dummies, and calculate the case-weighted standard deviation of estimated
radiologist fixed effects. We then define the p-value for each station to be the share of the 100 samples that
yield a larger standard deviation than the baseline sample. In each panel, light gray bars represent station counts
among the 60 stations that fail the test according to age; dark gray bars represent station counts out of the 44
stations that pass the test according to age.
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Figure A.5: Variation in Radiologist Miss Rates Under Counterfactual Sorting
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Note: This figure plots the standard deviation of radiologist fixed effects in simulations on the y-axis in resorted
data where ¢ € [0, 100] percent of patients are randomly assigned to radiologists. The dashed line indicates the
standard deviation in the observed data. Panel A shows results for the full sample. Panel B shows results for
the sample of 44 stations selected for balance on age, as defined in Section 4.2. To construct the figure, we first
residualize 7i; by minimal controls T;. We then create 101 samples. In each, we first reassign ¢ € {0, 1, ..., 100}
percent of cases randomly and the remaining cases perfectly sorted by i, to radiologists within the same station
(holding the total number of cases for each radiologist constant). For each of these samples and the baseline
sample, we regress the reassigned values on radiologist fixed effects and display the standard deviation of the
estimated values. The shaded gray regions reflect 95% confidence intervals across 50 bootstrapped samples,
drawn by radiologist blocks. The confidence interval corresponding to the dashed line in Panel A is ¢ € [96,99];
in Panel B, it is ¢ € [97,100].
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Figure A.6: Projecting Data on ROC Space Using Alternative Parameter Values
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Note: This figure plots the true positive rate (ﬁj) and false positive rate (FP\R ) analogously to Figure V,
under alternative values of prevalence (S), the share of X-rays not at risk for pneumonia (x), and the share of
cases in which pneumonia first manifests after the initial visit (4). In Panels A and B, we consider upper and
lower bounds for S, as defined in Section 4.1. In Panels C and D, we increase and decrease 1 by 50% relative
to the baseline value A = 0.026. In Panels E and F, we increase and decrease k by 50% relative to its baseline
value « = 0.336. Appendix C provides details on this projection.
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Figure A.7: Diagnosis and Miss Rates, Fixed Effects Specification
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Note: This figure plots the relationship between miss rates and diagnosis rates across radiologists, using radi-
ologist dummies as instruments. Plots are analogous to Figure VI. The x-axis plots P;).bs and the y-axis plots

ﬁj-bs, defined in Section 4.3, both residualized by minimal controls of station-time interactions. Panel A
shows results in the full sample of stations, and Panel B shows results in the subsample comprising 44 stations
with balance on age, as defined in Section 4.2. The coefficient in each panel corresponds to the 2SLS estimate
and standard error (in parentheses) for the corresponding IV regression, as well as the number of cases (V) and
the number of radiologists (J). To account for clustering by radiologist, we test for first-stage joint significance
by a comparing an F-statistic of the radiologist dummies with F-statistics in 100 bootstrapped samples, drawn
by a two-step procedure by radiologist and then by patient (both with replacement). The p-value for the joint
significance is less than 0.01.
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Figure A.8: First Stage
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Note: This figure shows a binned scatter plot illustrating the first-stage relationship corresponding to Panel A
of Figure VI. The y-axis shows residuals from a regression of diagnosis d; on the covariates X; and minimal
controls T;. The x-axis shows residuals from a regression of the leave-out propensity instrument Z; on the
same controls. The overall probability of diagnosis is added to residuals on the y-axis, and the average case-
weighted Z; is added to residuals on the x-axis. We report the first-stage coefficient as well as the number of
cases (N) and the number of radiologists (J). The standard error is clustered at the radiologist level and shown
in parentheses.
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Figure A.9: Radiologist-Level Variation
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Note: This figure shows the relationship between radiologists’ miss rates and diagnosis rates. We collapse the
underlying data in Panel A of Figure VI to the radiologist level by taking the average. Each dot represents a
radiologist, weighted by the number of cases. The coefficient and standard error are identical to those shown
in Panel A of Figure VI. A radiologist in the case-weighted 90th percentile of miss rates has a miss rate 0.7
percentage points higher than that of a radiologist in the case-weighted 10th percentile. We calculate this by
subtracting the case-weighted 10th percentile residual from the case-weighted 90th percentile residual from the
underlying case-weighted regression.
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Figure A.10: Distribution of Slope Estimates Across Stations
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Note: This figure shows the distribution of station-level estimates of the slope A relating radiologists’ miss rates
to their diagnosis rates. Each estimate is computed using the analogous IV procedure to that used to produce
Figure VI with data from a single station. In the figure, 73 out of 104 stations have an estimate of the coefficient
greater than zero.
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Figure A.11: Area Under the Curve (AUC) and Skill (@)
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Note: The Area Under the Curve (AUC) is the integral of an ROC curve. This figure shows the one-to-one
mapping between AUC and the measure of skill @ under the assumptions of our structural model. When « =0,
the ROC curve coincides with the 45-degree line and AUC = 0.5. When a = 1, the ROC curve reduces to the
left and top lines and AUC = 1.
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Figure A.13: Distributions of Radiologist Posterior Means
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Note: This figure plots the distributions of radiologist empirical Bayes posterior means of our main spec-
ification. The first three subfigures plot the distributions of skill &;, diagnostic thresholds 7* (&;,;), and
preferences ;. The last subfigure plots the joint distribution of skill and preferences. The method to calculate

empirical Bayes posterior means is described in Appendix E.3.

A4l



Figure A.14: ROC Curve with Model-Generated Moments
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Note: This figure presents, for each radiologist, the true positive rate (TPR;) and false positive rate (FPR;)
implied by radiologist posterior means of our main structural specification. Radiologist posterior means ¥ ; =
(6/ j,[? j) are calculated after estimating the model, described in Appendix E.3, and are the same as shown in
Appendix Figure A.13. Large-sample P; and F N are functions of radiologist primitives, given by p; (y;) =

Pr(w,-j > T;|‘}/j) and poj (¥;) = Pr(w,-j <7V >V|yj), given in Section 5. As in Figure V, TPR; = 1—

FN;/S and FPR; = (P;+FN;—-S)/(1-5). This figure also plots the iso-preference curves for 8 € {5,7,9}
from (0,0) to (0,1) in ROC space. Each iso-preference curve illustrates how the optimal point in ROC space
varies with skill for a fixed preference.
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Figure A.15: Heterogeneity in Skill
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Note: This figure shows the relationship between the empirical Bayes posterior mean of a radiologist’s skill
(@) on the x-axis and the following variables on the y-axis: (i) the radiologist’s age; (ii) the proportion of the
radiologist’s exams that are chest X-rays; (iii) the log median time that the radiologist spends to generate a
chest X-ray report; (iv) the log median length of the issue reports; (v) the rank of the medical school that the
radiologist attended according to U.S. News & World Report; and (vi) gender. Except for gender, the three
lines show the fitted values from the 25th, 50th, and 75th quantile regressions. For gender, the line shows the
fitted values from an OLS regression. The dots are the median values of the variables on the y-axis within
30 bins of . Appendix Figure A.16 shows the corresponding plots with preferences (83) on the x-axis. Some
variables are missing for a subset of radiologists. For age, the result is based on a model that allows underlying
primitives to vary by radiologist and age bin (we group five years as an age bin). See Section 5.5 for more
details. Each panel reports the slope as well as the number of observations (V). The standard error is shown in
parentheses.
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Figure A.16: Heterogeneity in Preferences
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Note: This figure shows the relationship between a radiologist’s empirical Bayes posterior mean of her prefer-
ence () on the x-axis and the following variables on the y-axis: (i) the radiologist’s age; (ii) the proportion of
the radiologist’s exams that are chest X-rays; (iii) the log median time that the radiologist spends to generate
a chest X-ray report; (iv) the log median length of the issue reports; (v) the rank of the medical school that
the radiologist attended according to U.S. News & World Report; and (vi) gender. Except for gender, the three
lines show the fitted values from the 25th, 50th, and 75th quantile regressions. For gender, the line shows the
fitted values from an OLS regression. The dots are the median values of the variables on the y-axis within each
bin of 8. 30 bins are used. Figure A.15 shows the corresponding plots with diagnostic skill (@) on the x-axis.
Some variables are missing for a subset of radiologists. For age, the result is based on a model that allows
underlying primitives to vary by radiologist and age bin (we group five years as an age bin). See Section 5.5
for more details. Each panel reports the slope as well as the number of observations (N). The standard error is
shown in parentheses.
A44



Figure A.17: Variation Decomposition

A: Diagnosis Rate
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Note: This figure illustrates our method of calculating the variation in diagnosis and miss rates due to variation
in skill and preferences. For x € [0, 1], we first keep 8; unchanged and replace a; by (1 —x) a; +x-a, where &
is the median value of ;. When x = 0, this step simply gives «/;. When x = 1, this step replaces all ;; with @
and thus eliminates all variation in «/ ;. We derive the new diagnosis and miss rates under different x, calculate
their standard deviations, and divide them by the original standard deviation with x = 0. We perform a similar
calculation by shrinking §; to the median value B as x approaches 1 and keeping a j unchanged. Panel A shows
the effect of reducing variation in skill or variation in preferences on the variation in diagnosis rates. Panel B
shows the effect on the variation in miss rates. We report numbers that correspond to x =1 in Section 6.1.
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Figure A.18: Counterfactual Policies
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Note: This figure plots the counterfactual welfare gains of different policies. Welfare is defined in Equation
(10) and is normalized to O for the status quo and 1 for the first best (no false positive or false negative out-
comes). The x-axis represents different possible disutility weights that the social planner may place on false
negatives relative to false positives, or 8°. The first policy imposes a common diagnostic threshold to maximize
welfare. The second policy also imposes a common diagnostic threshold to maximize welfare but incorrectly
computes welfare under the assumption that radiologists have the same diagnostic skill. The third policy trains
radiologists to the 25th percentile of diagnostic skill (if their skill is below the 25th percentile) and allows them
to choose their own diagnostic thresholds based on their preferences.
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Figure A.19: Possibly Incorrect Beliefs about Accuracy
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Note: This figure plots the relationship between radiologists’ true accuracy and perceived accuracy, in an
alternative model in which variation in diagnostic thresholds for a given skill is driven by variation in perceived
skill, holding preferences fixed. This contrasts with the baseline model in which radiologists perceive their
true skill but may vary in their preferences. We calculate the mean preference from our benchmark estimation
results at S = 6.71, and we assign this preference parameter to all radiologists. We then use the formula for the
optimal threshold as a function of 8 =6.71 and (perceived) accuracy to calculate perceived accuracy. Appendix
G.2 describes this procedure to calculate perceived accuracy in further detail.
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Figure A.20: Comparing Results with and without Risk Adjustment

A: Model Parameter Estimates
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Note: This figure shows structural results from simulated data with heterogeneity in pneumonia risk across
stations. We simulate data to match the actual data in the number of radiologists in each station and the number
of patients assigned to each radiologist. The simulated data come from the data generating process described
in Appendix G.3, which matches the baseline model in Section 5.1 but allows for heterogeneity in pneumonia
risk across stations. We take model parameter estimates in Table I as the truth and additionally include station-
specific thresholds v, to model heterogeneity in pneumonia risk across stations. In each simulated dataset, we
re-estimate structural parameters using radiologist diagnosis and miss rates that are either unadjusted (shown
in triangles) or adjusted by linear regressions controlling for station dummies (shown in circles). Panel A
shows model parameter estimates, as defined in Table I. Panel B shows variance decomposition results that
follow from the model parameter estimates, as described in Section 6.1. Panel C similarly shows welfare under
counterfactual policies, as described in Section 6.2. Horizontal lines denote true values of each object.
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Figure A.21: Slope Estimates with Skill Controls, Radiologists Ordered by Volume
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Note: This figure shows 2SLS estimates in simulated data of A* in subsamples of radiologists ordered by
volume. A* is the LATE of diagnosis d; on false negative m; (i.e., —Pr(s;)), which we should obtain in valid
judges-design (IV) regressions examining relationship between radiologist diagnosis and miss rates. We regress
m; on d;, instrument d; with the leave-out diagnosis propensity Z; in Equation (4), and control for the empirical
Bayes posterior mean of radiologist skill. Each estimate is based on a subsample of radiologists included in
order of volume (from highest to lowest volume). The far-right end of the x-axis shows the estimate from the
full sample; that estimate corresponds to Column 2 of Panel B in Appendix Table A.11. The 95% confidence
interval is shaded in gray; standard errors are clustered by radiologist. The true estimand, A* = —0.154, is
shown in the dashed line. Appendix G.4 provides further details.
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Table A.2: Patient and Order Characteristic Variables

Category

Variables

Demographics
(13 variables)

Prior utilization
(3 variables)

Prior diagnoses
(32 variables)

Vital signs and WBC
count
(21 variables)

X-ray order
(8 variables)

Age, indicator for male gender, indicator for married, 2
indicators for religion (Roman Catholic, Baptist, other
religion as omitted), 4 indicators for race* (Black,
White, American Indian, Pacific Islander, Asian/other
race as omitted), indicator for veteran, distance
between home and VA station performing X-ray*

Previous year outpatient visits, previous year inpatient
visits, previous year ED visits

31 Elixhauser indicators (dividing hypertension
indicator into 2 indicators for complicated and
uncomplicated hypertension), indicator for prior
pneumonia

Systolic blood pressure*, diastolic blood pressure*,
pulse*, pain*, O2 saturation*, respiratory rate*,
temperature*, indicator for fever, indicator for
supplemental O2 provided*, flow rate of supplemental
02, concentration of supplemental O2, white blood
cell (WBC) count*

Indicator for urgent order, indicator for X-ray with
multiple views (CPT 71020), number of X-rays by
requesting physician, indicator for above-median
average predicted diagnosis (based on the 13
demographic variables) of requesting physician,
indicator for above-median average predicted false
negative (based on the 13 demographic variables) of
requesting physician, requesting physician leave-out
share of pneumonia diagnosis, requesting physician
leave-out share of false negatives, requesting physician
leave-out share of urgent orders.

Note: This table describes 77 patient and X-ray order characteristic variables used as controls. * behind a
variable denotes that we include an additional variable to indicate missing values; there are 11 such variables.
Predicted diagnosis and predicted false negative are predicted probabilities formed by running a linear probabil-
ity regression of diagnosis indicator d; and false negative indicator m;, respectively, on demographic variables
to calculate a linear fit for each patient. These predicted probabilities are averaged within each requesting

physician.
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Table A.3: Covariate Balance

Stations with

All Stations Balance on Age
Panel A: Diagnosis and Leave-Out Diagnosis Propensity
Leave-Out Leave-Out
Diagnosis Diagnosis
dy d> Diagnosis ~ Propensity d Propensity
Demographics 13 3,198 458.62 4.63 1,093 0.91
[0.000] [0.000] [0.538]
Prior diagnosis 32 3,198 550.12 3.60 1,093 1.44
[0.000] [0.000] [0.055]
Prior utilization 3 3,198 833.74 11.00 1,093 1.79
[0.000] [0.000] [0.147]
Vitals and WBC count 21 3,198 1341.36 4.01 1,093 1.00
[0.000] [0.000] [0.463]
Ordering characteristics 8 3,198 238.20 7.61 1,093 4.32
[0.000] [0.000] [0.000]
All variables 77 3,198 608.20 2.28 1,093 1.40
[0.000] [0.000] [0.015]
Panel B: False Negative and Leave-Out Miss Rate
False Leave-Out Leave-Out
d; dy Negative Miss Rate dy Miss Rate
Demographics 13 3,198 456.37 4.43 1,093 1.98
[0.000] [0.000] [0.019]
Prior diagnosis 32 3,198 318.08 2.84 1,093 1.45
[0.000] [0.000] [0.053]
Prior utilization 3 3,198 1044.72 9.57 1,093 0.25
[0.000] [0.000] [0.863]
Vitals and WBC count 21 3,198 516.95 4.21 1,093 1.23
[0.000] [0.000] [0.213]
Ordering characteristics 8 3,198 304.37 11.26 1,093 2.32
[0.000] [0.000] [0.018]
All variables 77 3,198 194.22 2.64 1,093 1.28
[0.000] [0.000] [0.055]

Note: This table presents results of joint statistical significance from regressions of different outcomes on
groups of patient characteristics. Each cell presents the F-statistic of the joint significance of a group of patient
characteristics in a regression of an outcome, controlling for minimal controls T;. Panel A mirrors Figure
IV, where Column 1 uses the diagnosis indicator as the outcome and Columns 2-3 use assigned radiologist’s
leave-out diagnosis propensity. Panel B mirrors Appendix Figure A.2, where Column 1 uses the false negative
indicator as the outcome and Columns 2-3 use assigned radiologist’s leave-out miss rate. In both panels,
Columns 1 and 2 show regressions using the full sample of stations with 4,663, 840 observations and Column 3
shows regressions using the sample of 44 stations with balance on age with 1,464,642 observations, described
in Section 4.2. dj, the first degree of freedom of the F-statistic, corresponds to the number of covariates; d»,
the second degrees of freedom, corresponds to the number of radiologists minus 1. The p-value corresponding
to each F-statistic is displayed in brackets. Patient characteristics are described in further detail in Section
3 and Appendix Table A.2. Appendix Figure IV shows estimated coefficients and 95% confidence intervals
for regressions with “all variables” in Panel A; Appendix Figure A.2 shows estimated coefficients and 95%
confidence intervals for regressions with “all variables” in Panel B.
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Table A.5: Statistics on Radiologist-Level Moments

Percentiles

Mean SD 10th 25th 75th 90th

Panel A: Observed, Risk-Adjusted

Diagnosis rate P;?bs

. ——obs
Miss rate FN j

0.070 0.010 0.059 0.065 0.074 0.082
0.022 0.005 0.017 0.019 0.024 0.027

Panel B: Also Adjusted for £ =0.336 and 4 = 0.026

Diagnosis rate P;

Miss rate FN i

False positive rate FPR 7
True positive rate ﬁj

0.105 0.015 0.089 0.097 0.112 0.123
0.010 0.007 0.002 0.006 0.013 0.018
0.068 0.019 0.048 0.057 0.078 0.090
0.802 0.131 0.654 0.748 0.878 0.959

Note: This table presents statistics for various radiologist-level moments. Panel A shows raw risk-adjusted
diagnosis and miss rates, which are fitted radiologist fixed effects from regressions of d; and m; on radiologist
fixed effects, patient characteristics X;, and minimal controls T;, respectively. Panel B adjusts for the share of
X-rays not at risk of pneumonia (£ = 0.336), calibrated in Section 3, and the share of cases whose pneumonia
manifests after the first visit (1 = 0.026), estimated in Section 5.2. False positive rates and true positive rates
are then computed using the estimated prevalence rate (S = 0.051). All statistics are weighted using the number

of cases. See Appendix C for more details.
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Table A.7: Judges-Design Estimates of the Effect of Diagnosis on Other Outcomes

Stations with

Outcome All Stations Balance on Age

Admissions within 30 days 1.114 0.633 -0.076 0.587
(0.338) (0.219)

ED visits within 30 days 0.146 0.290 -0.385 0.290
(0.121) (0.201)

ICU visits within 30 days 0.201 0.044 -0.088 0.042
(0.051) (0.067)

Inpatient-days in initial admission 10.695 2.530 0.588 2.209
(2.317) (2.193)

Inpatient-days within 30 days 11.383 3.330 -1.123 3.043
(2.059) (1.879)

Mortality within 30 days 0.150 0.033 -0.126 0.033
(0.032) (0.057)

Note: This table presents results using the assigned radiologist’s leave-out diagnosis propensity in Equation (4)
as the instrument to calculate the effect of diagnosis on other outcomes, similar to the benchmark outcome of
false negative status in Figure VI. All regressions control for 77 variables of patient characteristics, described in
Section 3 and Appendix Table A.2, and time dummies interacted with location dummies. Columns 1 and 3 give
results of the IV estimates. Standard errors are given in parentheses. Columns 2 and 4 report mean outcomes.
Columns 1 and 2 show regressions using the full sample of stations; Columns 3 and 4 show regressions using
the sample of 44 stations with balance on age, described in Section 4.2.
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Table A.10: Model Results Under Alternative Values of «

Panel A: Value of «

K 0.168 0.336 0.504
Panel B: Model Parameter Estimates
Ha 1.023 0.945 0.798
Oao 0.291 0.296 0.311
Hp 1.916 1.895 1.863
0B 0.143 0.136 0.129
A 0.020 0.026 0.035
v 1.740 1.635 1.499
Panel C: Variation Decomposition
Diagnosis, Uniform skill 0.627 0.613 0.618
Diagnosis, Uniform preference 0.698 0.709 0.694
False negative, Uniform skill 0.224 0.220 0.216
False negative, Uniform preference 0.965 0.966 0.967

Note: This table presents the analogous results in Table I under different values of «. In the baseline estimation,
k =0.336 is calibrated as the fraction of patients whose probability of having pneumonia predicted by a machine
learning algorithm is smaller than 0.01. We use two other values of « that represent a 50% decrease (Column
1) and 50% increase (Column 3) around the calibrated value (Column 2). Panel A shows model parameter
estimates corresponding to these alternative thresholds. Panel B shows the variation decomposition under these
alternative thresholds. Parameters are described in further detail in Sections 5.1 and 5.2, and counterfactual
variation exercise is described in further detail in Section 6.1.
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Table A.11: Slope Estimates Controlling for Radiologist Skill

(D (2) (3) “4) (5) (6)
Panel A: True Skill
Diagnosis 0.096 -0.124 -0.132 -0.147 -0.155 -0.156

(0.016) (0.014) (0.019) (0.019) (0.017) (0.017)

Panel B: Skill Posteriors
Diagnosis 0.096 -0.342 -0.575 -0.668 -0.698 -0.752
(0.016) (0.084) (0.084) (0.119) (0.143) (0.237)
Panel C: Indirect Least Squares

Diagnosis 0.096 -0.251 -0.364 -0.369 -0.208 -0.051
(0.016) (0.043) (0.034) (0.036) (0.058) (0.119)

Note: This table presents slope estimates in simulated data of A*, or the LATE of diagnosis d; on false negative
m;, based on IV regressions identified by the judges-design relationship between radiologist diagnosis and miss
rates. Column 1 in all panels presents the same specification, akin to the benchmark I'V regression in the paper,
instrumenting d; with the leave-out diagnosis propensity Z; in Equation (4), with no further controls. For Panel
A, we additionally control for true (simulated) radiologist skill a;. For Column 2 of this panel, we control for
linear «;; for Columns 3-6, we control for indicators for each of 5, 10, 20, and 50 bins of «, respectively. For
Panel B, we use the empirical Bayes posteriors instead of true skill, defined in Appendix E.3. For Column 2 of
this panel, we linearly control for the posterior mean of @;; for Columns 3-6, we control for indicators for each
of 5, 10, 20, and 50 bins of this posterior mean, respectively. Panel C shows results from indirect least squares,
regressing m; on posteriors of P; and a; by OLS. For Column 2 of this panel, we control for the posterior mean
of a; for Columns 3-6, we control for posterior probabilities that a; resides in each of 5, 10, 20, and 50 bins,
respectively. Standard errors, shown in parentheses, are clustered by radiologist. In Panels B and C, standard
errors are computed by 50 samples drawn by block bootstrap with replacement, at the radiologist level. We
compute the true estimand A* = —0.154. Appendix G.4 provides further details.
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