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Physicians, judges, teachers, and agents in many other settings differ sys-
tematically in the decisions they make when faced with similar cases. Standard
approaches to interpreting and exploiting such differences assume they arise solely
from variation in preferences. We develop an alternative framework that allows
variation in preferences and diagnostic skill and show that both dimensions may be
partially identified in standard settings under quasi-random assignment. We ap-
ply this framework to study pneumonia diagnoses by radiologists. Diagnosis rates
vary widely among radiologists, and descriptive evidence suggests that a large
component of this variation is due to differences in diagnostic skill. Our estimated
model suggests that radiologists view failing to diagnose a patient with pneumo-
nia as more costly than incorrectly diagnosing one without, and that this leads
less skilled radiologists to optimally choose lower diagnostic thresholds. Variation
in skill can explain 39% of the variation in diagnostic decisions, and policies that
improve skill perform better than uniform decision guidelines. Failing to account
for skill variation can lead to highly misleading results in research designs that
use agent assignments as instruments. JEL Codes: I1, C26, J24, D81.

I. INTRODUCTION

In a wide range of settings, agents facing similar problems
make systematically different choices. Physicians differ in their
propensity to choose aggressive treatments or order expensive
tests, even when facing observably similar patients (Chandra,
Cutler, and Song 2011; Van Parys and Skinner 2016; Molitor
2017). Judges differ in their propensity to hand down strict or le-
nient sentences, even when facing observably similar defendants
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(Kleinberg et al. 2018). Similar patterns hold for teachers, man-
agers, and police officers (Bertrand and Schoar 2003; Figlio and
Lucas 2004; Anwar and Fang 2006). Such variation is of interest
because it implies differences in resource allocation across similar
cases and because it has increasingly been exploited in research
designs using agent assignments as a source of quasi-random vari-
ation (e.g., Kling 2006).

In such settings, we can think of the decision process in two
steps. First, there is an evaluation step in which decision makers
assess the likely effects of the possible decisions given the case
before them. Physicians seek to diagnose a patient’s underlying
condition and assess the potential effects of treatment, judges seek
to determine the facts of a crime and the likelihood of recidivism,
and so on. We refer to the accuracy of these assessments as an
agent’s diagnostic skill. Second, there is a selection step in which
the decision maker decides what preference weights to apply to
the various costs and benefits in determining the decision. We
refer to these weights as an agent’s preferences. In a stylized case
of a binary decision d ∈ {0, 1}, we can think of the first step as
ranking cases in terms of their appropriateness for d = 1 and the
second step as choosing a cutoff in this ranking.

Although systematic variation in decisions could in principle
come from either skill or preferences, a large part of the prior liter-
ature we discuss below assumes that agents differ only in the lat-
ter. This matters for the welfare evaluation of practice variation,
as variation in preferences would suggest inefficiency relative to a
social planner’s preferred decision rule, whereas variation in skill
need not. It matters for the types of policies that are most likely to
improve welfare, as uniform decision guidelines may be effective
in the face of varying preferences but counterproductive in the
face of varying skill. As we show below, it matters for research
designs that use agents’ decision rates as a source of identifying
variation, as variation in skill will typically lead the key mono-
tonicity assumption in such designs to be violated.

In this article, we introduce a framework to separate hetero-
geneity in skill and preferences when cases are quasi-randomly
assigned, and we apply it to study heterogeneity in pneumo-
nia diagnoses made by radiologists. Pneumonia affects 450 mil-
lion people and causes 4 million deaths every year worldwide
(Ruuskanen et al. 2011). Although it is more common and deadly
in the developing world, it remains the eighth leading cause of
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SELECTION WITH VARIATION IN DIAGNOSTIC SKILL 731

death in the United States, despite the availability of antibiotic
treatment (Kung et al. 2008; File and Marrie 2010).

Our framework starts with a classification problem in which
both decisions and underlying states are binary. As in the stan-
dard one-sided selection model, the outcome only reveals the true
state conditional on one of the two decisions. In our setting, the
decision is whether to diagnose a patient and treat her with an-
tibiotics, the state is whether the patient has pneumonia, and the
state is observed only if the patient is not treated, because once a
patient is given antibiotics it is often impossible to tell whether she
actually had pneumonia. We refer to the share of a radiologist’s pa-
tients diagnosed with pneumonia as her diagnosis rate. We refer
to the share of patients who leave with undiagnosed pneumonia—
that is, the share of patients who are false negatives—as her miss
rate. We draw close connections between two representations of
agent decisions in this setting: (i) the reduced-form relationship
between diagnosis and miss rates, which we observe directly in
our data; and (ii) the relationship between true and false positive
rates, commonly known as the receiver operating characteristic
(ROC) curve. The ROC curve has a natural economic interpreta-
tion as a production possibilities frontier for “true positive” and
“true negative” diagnoses. This framework thus maps skill and
preferences to respective concepts of productive and allocative ef-
ficiency.

Using Veterans Health Administration (VHA) data on
5.5 million chest X-rays in the emergency department (ED), we
examine variation in diagnostic decisions and outcomes related
to pneumonia across radiologists who are assigned imaging cases
in a quasi-random fashion. We measure miss rates by the share
of a radiologist’s patients who are not diagnosed in the ED but
return with a pneumonia diagnosis in the next 10 days. We be-
gin by demonstrating significant variation in diagnosis and miss
rates across radiologists. Reassigning patients from a radiologist
in the 10th percentile of diagnosis rates to a radiologist in the 90th
percentile would increase the probability of a diagnosis from 8.9%
to 12.3%. Reassigning patients from a radiologist in the 10th per-
centile of miss rates to a radiologist in the 90th percentile would
increase the probability of a false negative from 0.2% to 1.8%.
These findings are consistent with prior evidence documenting
variability in the diagnosis of pneumonia across and within ra-
diologists based on the same chest X-rays (Abujudeh et al. 2010;
Self et al. 2013).
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We turn to the relationship between diagnosis and miss rates.
At odds with the prediction of a standard model with no skill
variation, we find that radiologists who diagnose at higher rates
actually have higher rather than lower miss rates. A patient as-
signed to a radiologist with a higher diagnosis rate is more likely
to go home with untreated pneumonia than one assigned to a ra-
diologist with a lower diagnosis rate. This fact alone rejects the
hypothesis that all radiologists operate on the same production
possibilities frontier and suggests a large role for variation in
skill. In addition, we find that there is substantial variation in
the probability of false negatives conditional on diagnosis rate.
For the same diagnosis rate, a radiologist in the 90th percentile of
miss rates has a miss rate 0.7 percentage points higher than that
of a radiologist in the 10th percentile.

This evidence suggests that interpreting our data through a
standard model that ignores skill could be highly misleading. At a
minimum, it means that policies focused on harmonizing diagno-
sis rates could miss important improvements in skill. Moreover,
such policies could be counterproductive if skill variation makes
varying diagnosis rates optimal. If missing a diagnosis (a false
negative) is more costly than falsely diagnosing a healthy patient
(a false positive), a radiologist with noisier diagnostic information
(less skill) may optimally diagnose more patients; requiring her to
do otherwise could reduce efficiency. Finally, a standard research
design that uses the assignment of radiologists as an instrument
for pneumonia diagnosis would fail badly in this setting. We show
that our reduced-form facts strongly reject the monotonicity condi-
tions necessary for such a design. Applying the standard approach
would yield the nonsensical conclusion that diagnosing a patient
with pneumonia (and thus giving her antibiotics) makes her more
likely to return to the emergency room with pneumonia in the
near future.

We show that, under quasi-random assignment of patients
to radiologists, the joint distribution of diagnosis rates and miss
rates can be used to identify partial orderings of skill among the
radiologists. The intuition is simple: in any pair of radiologists,
a radiologist that has both a higher diagnosis rate and a higher
miss rate than the other radiologist must be lower-skilled. Sim-
ilarly, a radiologist that has a lower or equal diagnosis rate but
a higher miss rate, by a difference exceeding any difference in
diagnosis rates, must also be lower-skilled.
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In the final part of the article, we estimate a structural model
of diagnostic decisions to permit a more precise characterization of
these facts. Following our conceptual framework, radiologists first
evaluate chest X-rays to form a signal of the underlying disease
state and then select cases with signals above a certain threshold
to diagnose with pneumonia. Undiagnosed patients who in fact
have pneumonia will eventually develop clear symptoms, thus re-
vealing false negative diagnoses. But among cases receiving a di-
agnosis, those who truly have pneumonia cannot be distinguished
from those who do not. Radiologists may vary in their diagnostic
accuracy, and each radiologist endogenously chooses a threshold
selection rule to maximize utility. Radiologist utility depends on
false negative and false positive diagnoses, and the relative utility
weighting of these outcomes may vary across radiologists.

We find that the average radiologist receives a signal that has
a correlation of 0.85 with the patient’s underlying latent state but
that diagnostic accuracy varies widely, from a correlation with the
latent state of 0.76 in the 10th percentile of radiologists to 0.93 in
the 90th percentile. The disutility of missing diagnoses is, on aver-
age, 6.71 times higher than that of an unnecessary diagnosis; this
ratio varies from 5.60 to 7.91 between the 10th and 90th radiolo-
gist percentiles. Overall, 39% of the variation in decisions and 78%
of the variation in outcomes can be explained by variation in skill.
We consider the welfare implications of counterfactual policies.
While eliminating variation in diagnosis rates always improves
welfare under the (incorrect) assumption of uniform diagnostic
skill, we show that this policy may actually reduce welfare. In
contrast, increasing diagnostic accuracy can yield much larger
welfare gains.

Finally, we document how diagnostic skill varies across
groups of radiologists. Older radiologists or radiologists with
higher chest X-ray volume have higher diagnostic skill. Higher-
skilled radiologists tend to issue shorter reports of their findings
but spend more time generating those reports, suggesting that
effort (rather than raw talent alone) may contribute to radiologist
skill. Aversion to false negatives tends to be negatively related to
radiologist skill.

Our strategy for identifying causal effects relies on quasi-
random assignment of cases to radiologists. This assumption is
particularly plausible in our ED setting because of idiosyncratic
variation in the arrival of patients and the availability of radiol-
ogists conditional on time and location controls. To support this
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assumption, we show that a rich vector of patient characteristics
that are strongly related to false negatives have limited predictive
power for radiologist assignment. Comparing radiologists with
high and low propensity to diagnose, we see statistically signifi-
cant but economically small imbalance in patient characteristics
in our full sample of stations, and negligible imbalance in a subset
of stations selected for balanced assignment on a single charac-
teristic (patient age). Further, we show that our main results are
stable in this latter sample of stations and robust to adding or
removing controls for patient characteristics.

Our findings relate most directly to a large and influential lit-
erature on practice variation in health care (Fisher et al. 2003a,
2003b; Institute of Medicine 2013). This literature has robustly
documented variation in spending and treatment decisions that
has little correlation with patient outcomes. The seeming implica-
tion of this finding is that spending in health care provides little
benefit to patients (Garber and Skinner 2008), a provocative hy-
pothesis that has spurred an active body of research seeking to
use natural experiments to identify the causal effect of spending
(e.g., Doyle et al. 2015). In this article, we build on Chandra and
Staiger (2007) in investigating the possibility of heterogeneous
productivity (e.g., physician skill) as an alternative explanation.1

By exploiting the joint distribution of decisions and outcomes,
we find significant variation in productivity, which rationalizes
a large share of the variation in diagnostic decisions. The same
mechanism may explain the weak relationship between decision
rates and outcomes observed in other settings.2

1. Doyle, Ewer, and Wagner (2010) show a potential relationship between
physician human capital and resource utilization decisions. Gowrisankaran,
Joiner, and Leger (2017) and Ribers and Ullrich (2019) provide evidence of
variation in diagnostic and treatment skill, and Silver (2021) examines re-
turns to time spent on patients by ED physicians and variation in the physi-
cians’ productivity. Mullainathan and Obermeyer (2022) show evidence of poor
heart attack decisions (low skill) evaluated by a machine learning benchmark.
Stern and Trajtenberg (1998) study variation in prescribing and suggest that
some of it may relate to physicians’ diagnostic skill.

2. For example, Kleinberg et al. (2018) find that the increase in crime asso-
ciated with judges who are more likely to release defendants on bail is about the
same as if these more lenient judges randomly picked the extra defendants to
release on bail. Arnold, Dobbie, and Yang (2018) find a similar relationship for
black defendants being released on bail. Judges that are most likely to release
defendants on bail in fact have slightly lower crime rates than judges that are less
likely to grant bail. As in our setting, policy implications in these other settings
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SELECTION WITH VARIATION IN DIAGNOSTIC SKILL 735

Perhaps most closely related to our article are evaluations
by Abaluck et al. (2016) and Currie and MacLeod (2017), both of
which examine diagnostic decision making in health care. Abaluck
et al. (2016) assume that physicians have the same diagnostic skill
(i.e., the same ranking of cases) but may differ in where they set
their thresholds for diagnosis. Currie and MacLeod (2017) assume
that physicians have the same preferences but may differ in skill.
Also related to our work is a recent study of hospitals by Chandra
and Staiger (2020), who allow for comparative advantage and
different thresholds for treatment. In their model, the potential
outcomes of treatment may differ across hospitals, but hospitals
are equally skilled in ranking patients according to their potential
outcomes.3 Relative to these papers, a key difference of our study
is that we use quasi-random assignment of cases to providers.

More broadly, our work contributes to the health literature on
diagnostic accuracy. While mostly descriptive, this literature sug-
gests large welfare implications from diagnostic errors (Institute
of Medicine 2015). Diagnostic errors account for 7%–17% of ad-
verse events in hospitals (Leape et al. 1991; Thomas et al. 2000).
Postmortem examination research suggests that diagnostic errors
contribute to 9% of patient deaths (Shojania et al. 2003).

Finally, our article contributes to the “judges design” lit-
erature, which estimates treatment effects by exploiting quasi-
random assignment to agents with different treatment propensi-
ties (e.g., Kling 2006). We show how variation in skill relates to
the standard monotonicity assumption in the literature, which re-
quires that all agents order cases in the same way but may draw
different thresholds for treatment (Imbens and Angrist 1994; Vyt-
lacil 2002). Monotonicity can thus only hold if all agents have
the same skill. Our empirical insight that we can test and quan-
tify violations of monotonicity (or variation in skill) relates to
conceptual work that exploits bounds on potential outcome dis-
tributions (Kitagawa 2015; Mourifie and Wan 2017) as well as
more recent work to test instrument validity in the judges design

will depend on the relationship between agent skill and preferences (see Hoffman,
Kahn, and Li 2018; Frankel 2021).

3. Under this assumption, a sensible implication is that hospitals with compar-
ative advantage for treatment should treat more patients. Interestingly, however,
our work suggests that if comparative advantage (i.e., higher treatment effects on
the treated) is microfounded on better diagnostic skill, then hospitals with such
comparative advantage may instead optimally treat fewer patients.
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(Frandsen, Lefgren, and Leslie 2019) and to detect inconsistency
in judicial decisions (Norris 2019).4 Our identification results and
modeling framework are closely related to the contemporaneous
work of Arnold, Dobbie, and Hull (2020), who study racial bias in
bail decisions.

The remainder of this article proceeds as follows. Section II
sets up a high-level empirical framework for our analysis.
Section III describes the setting and data. Section IV presents our
reduced-form analysis, with the key finding that radiologists who
diagnose more cases also miss more cases of pneumonia. Section V
presents our structural analysis, separating radiologist diagnostic
skill from preferences. Section VI considers policy counterfactu-
als. Section VII concludes. All appendix material is in the Online
Appendix.

II. EMPIRICAL FRAMEWORK

II.A. Setup

We consider a population of agents j and cases i, with j(i) de-
noting the agent assigned case i. Agent j makes a binary decision
dij ∈ {0, 1} for each assigned case (e.g., not treat or treat, acquit or
convict). The goal is to align the decision with a binary state si ∈
{0, 1} (e.g., healthy or sick, innocent or guilty). The agent does not
observe si directly but observes a realization wi j ∈ R of a signal
with distribution Fj (·|si) ∈ � (R) that may be informative about si
and chooses dij based only on this signal.

This setup is the well-known problem of statistical classifica-
tion. For agent j, we can define the probabilities of four outcomes
(Figure I, Panel A): true positives, or T Pj ≡ Pr(dij = 1, si = 1);
false positives (type I errors), or FPj ≡ Pr(dij = 1, si = 0); true
negatives, or T Nj ≡ Pr(dij = 0, si = 0); and false negatives (type
II errors), or FNj ≡ Pr(dij = 0, si = 1). Pj = TPj + FPj denotes the

4. Kitagawa (2015) and Mourifie and Wan (2017) develop tests of instrument
validity based on an older insight in the literature noting that instrument valid-
ity implies nonnegative densities of compliers for any potential outcome (Imbens
and Rubin 1997; Balke and Pearl 1997; Heckman and Vytlacil 2005). Recent work
by Machado, Shaikh, and Vytlacil (2019) exploits bounds in a binary outcome to
test instrument validity and sign average treatment effects. Similar to Frandsen,
Lefgren, and Leslie (2019), we define a monotonicity condition in the judges de-
sign that is weaker than the standard one considered in these papers. However,
we demonstrate a test that is stronger than the standard in the judges design
literature.
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expected proportion of cases j classifies as positive, and Sj = TPj
+ FNj denotes the prevalence of si = 1 in j’s population of cases.
We refer to Pj as j’s diagnosis rate, and we refer to FNj as her miss
rate.

Each agent maximizes a utility function uj(d, s) with uj(1,
1) > uj(0, 1) and uj(0, 0) > uj(1, 0). We assume without loss of
generality that the posterior probability of si = 1 is increasing
in wij, so that any optimal decision rule can be represented by a
threshold τ j with dij = 1 if and only if wij > τ j.

We define agents’ skill based on the Blackwell (1953) infor-
mativeness of their signals. Agent j is (weakly) more skilled than
j′ if and only if Fj is (weakly) more Blackwell-informative than Fj ′ .
By the definition of Blackwell informativeness, this will be true
if either of two equivalent conditions hold: (i) for any arbitrary
utility function u(d, s), ex ante expected utility from an optimal
decision based on observing a draw from Fj is greater than from
an optimal decision based on observing a draw from Fj ′ ; (ii) Fj ′

can be produced by combining a draw from Fj with random noise
uncorrelated with si. We say that two agents have the same skill
if their signals are equal in the Blackwell ordering, and we say
that skill is uniform if all agents have equal skill.

The Blackwell ordering is incomplete in general, and it is
possible that agent j is neither more nor less skilled than j′. This
could happen, for example, if Fj is relatively more accurate in state
s = 0 while Fj ′ is relatively more accurate in state s = 1. In the
case in which all agents can be ranked by skill, we can associate
each agent with an index of skill α ∈ R, where j is more skilled
than j′ if and only if α j � α j ′ .

II.B. ROC Curves

A standard way to summarize the accuracy of classifica-
tion is in terms of the receiver operating characteristic (ROC)
curve. This plots the true positive rate, or TPRj ≡ Pr(dij =
1 |si = 1) = TPj

TPj+FNj
, against the false positive rate, or FPRj ≡

Pr(dij = 1 |si = 0) = FPj

FPj+TNj
, with the curve for a particular sig-

nal Fj indicating the set of all (FPRj , TPRj) that can be pro-
duced by a decision rule of the form dij = 1(wi j > τ j) for some τ j.
Figure I, Panel B shows several possible ROC curves.

In the context of our model, the ROC curve of agent j rep-
resents the frontier of potential classification outcomes she can
achieve as she varies the proportion of cases Pj she classifies as
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SELECTION WITH VARIATION IN DIAGNOSTIC SKILL 739

positive. If the agent diagnoses no cases (τ j = ∞), she will have
TPRj = 0 and FPRj = 0. If she diagnoses all cases (τ j = −∞), she
will have TPRj = 1 and FPRj = 1. As she increases Pj (decreases
τ j), both TPRj and FPRj must weakly increase. The ROC curve
thus reveals a technological trade-off between the “sensitivity” (or
TPRj) and “specificity” (or 1 − FPRj) of classification. It is straight-
forward to show that in our model, where the likelihood of si =
1 is monotonic in wij, the ROC curves give the maximum TPRj
achievable for each FPRj, and they not only must be increasing
but also must be concave and lie above the 45-degree line.5

If agent j is more skilled than agent j′, any (FPR, TPR) pair
achievable by j′ is also achievable by j. This follows immediately
from the definition of Blackwell informativeness, as j can always
reproduce the signal of j′ by adding random noise.

REMARK 1. Agent j has higher skill than j′ if and only if the ROC
curve of agent j lies everywhere weakly above the ROC curve
of agent j′. Agents j and j′ have equal skill if and only if their
ROC curves are identical.

The classification framework is closely linked with the stan-
dard economic framework of production. An ROC curve can be
viewed as a production possibilities frontier of TPRj and 1 −
FPRj. Agents on higher ROC curves are more productive (i.e.,
more skilled) in the evaluation stage. Where an agent chooses
to locate on an ROC curve depends on her preferences, or the
tangency between the ROC curve and an indifference curve. It is
possible that agents differ in preferences but not skill, so that they
lie along identical ROC curves, and we would observe a positive
correlation between TPRj and FPRj across j. It is also possible
that they differ in skill but not preferences, so that they lie at
the tangency point on different ROC curves, and we could observe
a negative correlation between TPRj and FPRj across j. Figure
II illustrates these two cases with hypothetical data on the joint
distribution of decisions and outcomes. This figure suggests some

5. Concavity follows from observing that if (FPR, TPR) and (FPR′, TPR′) are
two points on an agent’s ROC curve generated by using thresholds τ and τ ′, the
agent can also achieve any convex combination of these points by randomizing
between τ and τ ′. That the ROC curve must lie weakly above the 45-degree line
follows from noting that for any FPR an agent can achieve TPR = FPR by ignoring
her signal and choosing d = 1 with probability equal to FPR. The maximum
achievable TPR associated with this FPR must therefore be weakly larger.
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(A)

(B)

FIGURE II

Hypothetical Data Generated by Variation in Preferences versus Skill

This figure shows two distributions of hypothetical data in ROC space. The top
panel fixes skill and varies preferences. All agents are located on the same ROC
curve and are faced with the trade-off between sensitivity (TPR) and specificity
(1 − FPR). The bottom panel fixes the preference and varies evaluation skill.
Agents are located on different ROC curves but have parallel indifference curves.
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SELECTION WITH VARIATION IN DIAGNOSTIC SKILL 741

intuition, which we formalize later, for how skill and preferences
may be separately identified.

In the empirical analysis below, we visualize the data in two
spaces. The first is the ROC space of Figure II. The second is a plot
of miss rates FNj against diagnosis rates Pj, which we refer to as
“reduced-form space.” When cases are randomly assigned, so that
Sj is the same for all j, there exists a one-to-one correspondence
between these two ways of looking at the data, and the slope
relating FNj to Pj in reduced-form space provides a direct test of
uniform skill.6

REMARK 2. Suppose Sj ≡ Pr (si = 1| j (i) = j) is equal to a constant
S for all j. Then for any two agents j and j′,

i. (TPRj, FPRj) = (TPRj ′ , FPRj ′ ) if and only if (FNj, Pj) =
(FNj ′ , Pj ′ ).

ii. If the agents have equal skill and Pj �= Pj ′ , FNj−FNj′
Pj−Pj′

∈
[−1, 0].

II.C. Potential Outcomes and the Judges Design

When there is an outcome of interest yij = yi(dij) that only
depends on the agent’s decision dij, we can map our classifica-
tion framework to the potential outcomes framework with het-
erogeneous treatment effects (Rubin 1974; Imbens and Angrist
1994). The object of interest is some average of the treatment ef-
fects yi(1) − yi(0) across individuals. We observe case i assigned
to only one agent j, which we denote as j(i), so the identifica-
tion challenge is that we only observe di ≡ ∑

j 1 ( j = j (i)) dij and
yi ≡ ∑

j 1 ( j = j (i)) yij = yi (di) corresponding to j = j(i).
A growing literature starting with Kling (2006) has pro-

posed using heterogeneous decision propensities of agents to iden-
tify these average treatment effects in settings where cases i
are randomly assigned to agents j with different propensities of
treatment. This empirical structure is popularly known as the
“judges design,” referring to early applications in settings with
judges as agents. The literature typically assumes conditions of
instrumental variable (IV) validity from Imbens and Angrist

6. The two facts in Remark 2 are immediate from the observation that FNj
= Sj(1 − TPRj) and Pj = Sj · TPRj + (1 − Sj) · FPRj combined with the fact that
ROC curves are increasing.
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(1994).7 This guarantees that an IV regression of yi on di instru-
menting for the latter with indicators for the assigned agent re-
covers a consistent estimate of the local average treatment effect
(LATE).

CONDITION 1 (IV Validity). Consider the potential outcome yij and
the treatment response indicator dij ∈ {0, 1} for case i and
agent j. For a set of two or more agents j and a random sample
of cases i, the following conditions hold:

i. Exclusion: yij = yi(dij) with probability 1.
ii. Independence: (yi(0), yi(1), dij) is independent of the as-

signed agent j(i).
iii. Strict monotonicity: For any j and j′, dij � dij ′∀i, or dij �

dij ′∀i, with probability 1.

Vytlacil (2002) shows that Condition 1.iii is equivalent to all
agents ordering cases by the same latent index wi and then choos-
ing dij = 1(wi > τ j), where τ j is an agent-specific cutoff. Note that
this implies that the data must be consistent with all agents hav-
ing the same signals and thus the same skill. An agent with a
lower cutoff must have a weakly higher rate of both true and
false positives. Condition 1 thus greatly restricts the pattern of
outcomes in the classification framework.

REMARK 3. Suppose Condition 1 holds. Then the observed data
must be consistent with all agents having uniform skill. By
Remark 2, for any two agents j and j′, we must have FNj−FNj′

Pj−Pj′
∈

[−1, 0].

This implication is consistent with prior work on IV valid-
ity (Balke and Pearl 1997; Heckman and Vytlacil 2005; Kita-
gawa 2015). If we define yi to be an indicator for a false nega-
tive and consider a binary instrument defined by assignment to
either j or j′, equation (1.1) of Kitagawa (2015) directly implies
Remark 3. An additional intuition is that under Condition 1, for
any outcome yij, the Wald estimand comparing a population of
cases assigned to agents j and j′ is Yj−Yj′

Pj−Pj′
= E[ yi(1) − yi(0)

∣∣ dij >

dij ′ ], where Yj is the average of yij among cases treated by j

7. In addition to the assumption below, we require instrument relevance such
that Pr(dij = 1) �= Pr(dij′ = 1) for some j and j′. This requirement can be assessed
by a first-stage regression of di on judge indicators.
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SELECTION WITH VARIATION IN DIAGNOSTIC SKILL 743

(Imbens and Angrist 1994). If we define yi to be an indicator for
a false negative, the Wald estimand lies in [−1, 0], since yi(1) −
yi(0) ∈ {− 1, 0}.

By Remark 3, strict monotonicity in Condition 1.iii of the
judges design implies uniform skill. The converse is not true, how-
ever. Agents with uniform skill may yet violate strict monotonic-
ity. For example, if their signals are drawn independently from the
same distribution, they might order different cases differently by
random chance. One might ask whether a condition weaker than
strict monotonicity might be both consistent with our data and
sufficient for the judges design to recover a well-defined LATE.

Frandsen, Lefgren, and Leslie (2019) introduce one such con-
dition, which they call “average monotonicity.” This requires that
the covariance between agents’ average treatment propensities
and their potential treatment decisions for each case i be posi-
tive. To define the condition formally, let ρj be the share of cases
assigned to agent j, let P = ∑

j ρ j Pj be the ρ-weighted average
treatment propensity, and let di = ∑

j ρ jdij be the ρ-weighted av-
erage potential treatment of case i.

CONDITION 2 (Average Monotonicity). For all i,∑
j

ρ j(Pj − P)(dij − di) � 0.

Frandsen, Lefgren, and Leslie (2019) show that Condition 2,
in place of Condition 1.iii, is sufficient for the judges design to
recover a well-defined LATE. We note two more primitive condi-
tions that are each sufficient for average monotonicity. One is that
the probability that j diagnoses patient i is either higher or lower
than the probability j′ diagnoses patient i for all i. The other is
that variation in skill is orthogonal to the diagnosis rate in a large
population of agents.

CONDITION 3 (Probabilistic Monotonicity). For any j and j′,

Pr(dij = 1) � Pr(dij ′ = 1) or Pr(dij = 1) � Pr(dij ′ = 1),

for all i.

CONDITION 4 (Skill-Propensity Independence). (i) All agents can
be ranked by skill and we associate each agent with an index
αj such that j is (weakly) more skilled than j′ if and only if
α j � α j ′ ; (ii) probabilistic monotonicity (Condition 3) holds for
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any pair of agents j and j′ with equal skill; (iii) the diagnosis
rate Pj is independent of αj in the population of agents.

In Online Appendix A, we show that Condition 3 implies Con-
dition 2. We also show that in the limit, as the number of agents
grows large, Condition 4 implies Condition 2.

Under any assumption that implies that the judges design
recovers a well-defined LATE, the coefficient estimand � from
a regression of FNj on Pj must lie in the interval [−1, 0].8 The
implication that � ∈ [−1, 0]—or, equivalently, Pr(si = 1) ∈ [0, 1]
among compliers weighted by their contribution to the LATE—
is our proposed test of monotonicity. While this test may fail to
detect monotonicity violations, we show in Online Appendix D
that it nevertheless may be stronger than the standard tests of
monotonicity in the judges design literature because it relies on
the key (unobserved) state for selection instead of on observable
characteristics.

The results we show below imply � �∈ [−1, 0]. They thus im-
ply violation not only of the strict monotonicity of Condition 1.iii
but also of any of the weaker monotonicity Conditions 2, 3, and 4.
They not only reject uniform skill but also imply that skill must
be systematically correlated with diagnostic propensities. In Sec-
tion V, we show why violations of even these weaker monotonicity
conditions are natural: when radiologists differ in skill and are
aware of these differences, the optimal diagnostic threshold will
typically depend on radiologist skill, particularly when the costs of
false negatives and false positives are asymmetric. We also show
that this relationship between skill and radiologist-chosen diag-
nostic propensities raises the possibility that common diagnostic
thresholds may reduce welfare.

III. SETTING AND DATA

We apply our framework to study pneumonia diagnoses in
the emergency department (ED). Pneumonia is a common and
potentially deadly disease that is primarily diagnosed by chest
X-rays. Reading chest X-rays requires skill, as illustrated in

8. As noted, any LATE for the effect of di on yi = mi = 1 (di = 0, si = 1) must lie
in the interval [−1, 0]. This implies that the judges design IV coefficient estimand
from a regression of mi on di instrumenting with radiologist indicators must lie in
this interval. This corresponds to an OLS coefficient estimand from a regression
of FNj on Pj.
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SELECTION WITH VARIATION IN DIAGNOSTIC SKILL 745

FIGURE III

Example Chest X-rays

This figure shows example chest X-rays reproduced from figure 2 of Fabre et al.
(2018), “Radiology Residents’ Skill Level in Chest X-Ray Reading”, Diagnostic
and Interventional Imaging, 99, 361–370. Copyright C©2018 Société Française de
Radiologie, published by Elsevier Masson SAS. All rights reserved. These chest
X-rays represent cases on which there is expert consensus and which are used for
training radiologists. Only Panel E represents a case of infectious pneumonia, and
we add a red oval (color version available online) to denote where the pneumonia
lies in the right lower lobe. Panel A shows miliary tuberculosis; Panel B shows
a lung nodule (cancer) in the left upper lobe; Panel C shows usual interstitial
pneumonitis; Panel D shows left upper lobe atelectasis; Panel F shows right upper
lobe atelectasis.

Figure III, which shows example chest X-ray images from the
medical literature. We focus on outcomes related to chest X-rays
performed in EDs in the Veterans Health Administration (VHA),
the largest health care delivery system in the United States.

In this setting, the diagnostic pathway for pneumonia is as
follows:

i. A physician orders a radiology exam for a patient sus-
pected to have the disease.

ii. Once the radiology exam is performed, the image is as-
signed to a radiologist. Exams are typically assigned to
radiologists based on whoever is on call at the time the
exam needs to be read. We argue below that this assign-
ment is quasi-random conditional on appropriate covari-
ates.
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iii. The radiologist issues a report on her findings.
iv. The patient may be diagnosed and treated by the ordering

physician in consultation with the radiologist.

Pneumonia diagnosis is a joint decision by radiologists and physi-
cians. Physician assignment to patients may be nonrandom, and
physicians can affect diagnosis both via their selection of patients
for X-rays in step i and their diagnostic propensities in step iv.
However, so long as assignment of radiologists in step ii is as
good as random, we can infer the causal effect of radiologists on
the probability that the joint decision-making process leads to a
diagnosis. While interactions between radiologists and ordering
physicians are interesting, we abstract from them in this article
and focus on a radiologist’s average effect, taking as given the set
of physicians with whom she works.

VHA facilities are divided into local units called stations. A
station typically has a single major tertiary care hospital and a
single ED location, together with some medical centers and out-
patient clinics. These locations share the same electronic health
record and order entry system. We study the 104 VHA stations
that have at least one ED.

Our primary sample consists of the roughly 5.5 million com-
pleted chest X-rays in these stations that were ordered in the ED
and performed between October 1999 and September 2015.9 We
refer to these observations as cases. Each case is associated with
a patient and with a radiologist assigned to read it. In the rare
cases where a patient received more than one X-ray on a single
day, we assign the case to the radiologist associated with the first
X-ray observed in the day.

To define our main analysis sample, we first omit the roughly
600,000 cases for which the patient had at least one chest X-
ray ordered in the ED in the previous 30 days. We omit cases
with missing radiologist identity, patient age, or patient gen-
der, or with patient age greater than 100 or less than 20. Fi-
nally, we omit cases associated with a radiologist-month pair with
fewer than five observations and cases associated with a radiolo-
gist with fewer than 100 observations in total. Online Appendix
Table A.1 reports the number of observations dropped at each

9. We define chest X-rays by the Current Procedural Terminology codes 71010
and 71020.
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SELECTION WITH VARIATION IN DIAGNOSTIC SKILL 747

of these steps. The final sample contains 4,663,840 cases and
3,199 radiologists.10

We define the diagnosis indicator di for case i equal to 1 if
the patient has a pneumonia diagnosis recorded in an outpatient
or inpatient visit whose start time falls within a 24-hour window
centered at the time stamp of the chest X-ray order.11 We con-
firm that 92.6% of patients who are recorded to have a diagnosis
of pneumonia are also prescribed an antibiotic consistent with
pneumonia treatment within five days after the chest X-ray.

We define a false negative indicator mi = 1 (di = 0, si = 1) for
case i equal to one if di = 0 and the patient has a subsequent
pneumonia diagnosis recorded between 12 hours and 10 days af-
ter the initial chest X-ray. We include diagnoses in both ED and
non-ED facilities, including outpatient, inpatient, and surgical
encounters. In practice, mi is measured with error because it re-
quires the patient to return to a VHA facility and for the second
visit to correctly identify pneumonia. We show robustness of our
results to endogenous second diagnoses by restricting analyses to
veterans who solely use the VHA and who are sick enough to be
admitted on the second visit in Section V.D.

We define the following patient characteristics for each case i:
demographics (age, gender, marital status, religion, race, veteran
status, and distance from home to the VA facility where the X-
ray is ordered), prior health care utilization (counts of outpatient
visits, inpatient admissions, and ED visits in any VHA facility
in the previous 365 days), prior medical comorbidities (indicators
for prior diagnosis of pneumonia and 31 Elixhauser comorbidity
indicators in the previous 365 days), vital signs (e.g., blood pres-
sure, pulse, pain score, and temperature), and white blood cell
(WBC) count as of ED encounter. For each case, we measure char-
acteristics associated with the chest X-ray request. This contains
an indicator for whether the request was marked as urgent, an
indicator for whether the X-ray involved one or two views, and

10. Online Appendix Figure A.1 presents distributions of cases across radi-
ologists and radiologist-months and of radiologists across stations and station-
months.

11. Diagnoses do not have time stamps per se but are linked to visits, with time
stamps for when the visits begin. Therefore, the time associated with diagnoses
is usually before the chest X-ray order; in a minority of cases, a secondary visit
(e.g., an inpatient visit) occurs shortly after the initial ED visit, and we observe a
diagnosis time after the chest X-ray order. We include International Classification
of Diseases, Ninth Revision, (ICD-9) codes 480–487 for pneumonia diagnosis.
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requesting physician characteristics that we define below. For
each variable that contains missing values, we replace missing
values with zero and add an indicator for whether the variable is
missing. Altogether, this yields 77 variables of patient and order
characteristics (hereafter, “patient characteristics”) in five cate-
gories, 11 of which are indicators for missing values. We detail
these variables in Online Appendix Table A.2.

For each radiologist in the sample, we record gender, date of
birth, VHA employment start date, medical school, and proportion
of radiology exams that are chest X-rays. For each chest X-ray in
the sample, we record the time a radiologist spent to generate
the report in minutes and the length of the report in words. For
each requesting physician in the sample, we record the number
of X-rays ordered across all patients, above-/below-median indi-
cators for their average patient predicted diagnosis or predicted
false negative,12 the physician’s leave-out shares of pneumonia di-
agnoses and false negatives, and the physician’s leave-out share
of orders marked as urgent.

In the analysis that follows, we extend our baseline model
to address two limitations of our data. First, our sample includes
all chest X-rays, not only those that were ordered for suspicion
of pneumonia. If an X-ray was ordered for a different reason,
such as a rib fracture, it is unlikely even a low-skilled radiologist
would incorrectly issue a pneumonia diagnosis. We thus allow for
a share κ of cases to have si = 0 and to be recognized as such by
all radiologists. We calibrate κ using a random-forest algorithm
that predicts pneumonia diagnosis based on all characteristics
in Online Appendix Table A.2 and words or phrases extracted
from the chest X-ray requisition. We set κ = 0.336, which is the
proportion of patients with a random-forest predicted probability
of pneumonia less than 0.01.13

Second, some cases that we code as false negatives due to a
pneumonia diagnosis on the second visit may either have been at
too early a stage to have been identified even by a highly skilled
radiologist or have developed in the interval between the first and

12. These predictions are fitted values from regressing di or mi on patient
demographics.

13. We use an extreme gradient boosting algorithm first introduced in Fried-
man (2001) and use decision trees as the learner. We train a binary classification
model and set the learning rate at 0.15, the maximum depth of a tree at 8, and the
number of rounds at 450. We use all variables and all observations in each tree.
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second visit. We therefore allow for a share λ of cases that do not
have pneumonia detectable by X-ray at the time of their initial
visit to develop it and be diagnosed subsequently. We estimate λ

as part of our structural analysis below.

IV. MODEL-FREE ANALYSIS

IV.A. Identification

For each case i, we observe the assigned radiologist j(i), the
diagnosis indicator di, and the false negative indicator mi. As the
number of cases assigned to each radiologist grows large, these
data identify the diagnosis rate Pj and the miss rate FNj for each
j. The data exhibit one-sided selection in the sense that the true
state is only observed conditional on di = 0.14

The first goal of our descriptive analysis is to flexibly identify
the shares of the classification matrix in Figure I, Panel A, for each
radiologist. This allows us to plot the actual data in ROC space
as in Figure II. The values of Pj and FNj would be sufficient to
identify the remaining elements of the classification matrix if we
also knew the share Sj = Pr (si = 1| j (i) = j) of j’s patients who
had pneumonia since

TPj = Sj − FNj ;(1)

FPj = Pj − TPj ; and(2)

TNj = 1 − FNj − TPj − FPj .(3)

Identification of the classification matrix therefore reduces to the
problem of identifying the values of Sj.

Under random assignment of cases to agents, Sj will be equal
to the overall population share S ≡ Pr (si = 1) for all j. Thus, know-
ing S would be sufficient for identification. Moreover, the observed
data also provide bounds on the possible values of S. If there ex-
ists a radiologist j such that Pj = 0, we would be able to learn

14. False negatives are observable by construction in our setting as we define
si as cases of pneumonia that will not get better on their own and result in a
subsequent observed diagnosis. We conservatively assume that false positives are
unobservable, but in practice some cases can present with alternative explanations
for a patient’s symptoms that would rule out pneumonia.
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S exactly, as S = Sj = FNj. Otherwise, letting j denote the ra-
diologist with the lowest diagnosis rate (i.e., j = arg min j Pj) we
must have S ∈ [FNj, FNj + Pj].15 We show in Section V.B that S
is point identified under the additional functional-form assump-
tions of our structural model. We use an estimate of S = 0.051
from our baseline structural model, and we also consider bounds
for S; specifically, S ∈ [0.015, 0.073].16

The second goal of our descriptive analysis is to draw in-
ferences about skill heterogeneity and the validity of standard
monotonicity assumptions. Even without knowing the value of
S, we may be able to reject the hypothesis of uniform skill
using just the directly identified objects FNj and Pj. From
Remark 2, we know that skill is not uniform if there exist j and
j′ such that FNj−FNj′

Pj−Pj′
�∈ [−1, 0]. This will be true in particular if j

has both a higher diagnosis rate (Pj > Pj ′ ) and a higher miss rate
(FNj > FNj ′ ). By the discussion in Section II.C, this rejects the
standard monotonicity assumption (Condition 1.iii) as well as the
weaker monotonicity assumptions we consider (Conditions 2–4).

With additional assumptions, the data may identify a partial
or complete ordering of agent skill. Suppose, first, that we set
aside the possibility that two agents’ signals may not be compa-
rable in the Blackwell ordering and focus on the case where all
agents can be ordered by skill. Then for any j and j′ with Pj > Pj ′ ,
FNj−FNj′

Pj−Pj′
< −1 implies that agent j has strictly higher skill than

agent j′ and FNj−FNj′
Pj−Pj′

> 0 implies that agent j has strictly lower
skill than agent j′. The ordering in this case is partial because if
FNj−FNj′

Pj−Pj′
∈ [−1, 0] we can neither determine which agent is more

skilled nor reject that their skill is the same. If we further as-
sume (as in our structural model below) that agents’ signals come
from a known family of distributions indexed by skill α, that all
agents have Pj ∈ (0, 1), and that the signal distributions satisfy

15. See Arnold, Dobbie, and Hull (2020) for a detailed discussion and imple-
mentation of identification using these boundary conditions.

16. To construct these bounds, instead of using the radiologist with the lowest
diagnosis rate, we divide all radiologists into 10 bins based on their diagnosis
rates, construct bounds for each bin using the group weighted-average diagnosis
and miss rates, and take the intersection of all bounds. See Online Appendix C for
more details.
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appropriate regularity conditions, the data are sufficient to iden-
tify each agent’s skill.17

Looking at the data in ROC space provides additional intu-
ition for how skill is identified. Although knowing the value of S is
not necessary for the arguments in the previous two paragraphs,
we suppose for illustration that this value is known so that the
data identify a single point (FPRj, TPRj) in ROC space associated
with each agent j.18 Agents j and j′ have equal skill if (FPRj, TPRj)
and (FPRj ′ , TPRj ′) lie on a single ROC curve. Since ROC curves
must be upward-sloping, we reject uniform skill if there exist j and
j′ with FPRj < FPRj ′ and TPRj > TPRj ′ . Under the assumption
that all agents are ordered by skill, this further implies that j must
be strictly more skilled than j′. If signals are drawn from a known
family of distributions indexed by α and satisfying appropriate
regularity conditions, each value of α corresponds to a distinct
nonoverlapping ROC curve, and observing the single point (FPRj,
TPRj) is sufficient to identify the value of αj and the slope of the
ROC curve at (FPRj, TPRj).

Agent preferences are also identified when agents are ordered
by skill and signals are drawn from a known family of distribu-
tions. If the posterior probability of si = 1 is continuously increas-
ing in wij for any signal, ROC curves must be smooth and concave
(see Online Appendix B for proof). The implied slope of the ROC
curve at (FPRj, TPRj) reveals the technological trade-off between
false positives and false negatives, at which j is indifferent be-
tween d = 0 and d = 1. This trade-off identifies j’s cost of a false
negative relative to a false positive, or β j ≡ uj (1,1)−uj (0,1)

uj (0,0)−uj (1,0) ∈ (0,∞),
which is, in turn, sufficient to identify the function uj(·,·) up to
normalizations (see Online Appendix B for proof).

IV.B. Quasi-Random Assignment

A key assumption of our empirical analysis is quasi-random
assignment of patients to radiologists. Our qualitative research
suggests that the typical pattern is for patients to be assigned

17. For skill to be identified, the signal distributions need to satisfy regularity
conditions guaranteeing that the miss rate FNj achievable for any given diagnosis
rate Pj is strictly decreasing in skill. Then there is a unique mapping from (FNj,
Pj) to skill.

18. Richer data could identify more points on a single agent’s ROC curve, for
example, by exploiting variation in preferences (e.g., the cost of diagnosis) for the
same agent while holding skill fixed.
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sequentially to available radiologists at the time their physician
orders a chest X-ray. Such assignment will be plausibly quasi-
random provided we control for the time and location factors that
determine which radiologists are working at the time of each pa-
tient’s visit (e.g., Chan 2018).

ASSUMPTION 1 (Conditional Independence). Conditional on the
hour of day, day of week, month, and location of patient i’s
visit, the state si and potential diagnosis decisions {dij} j∈J	(i)

are independent of the assigned radiologist j(i).

In practice, we implement this conditioning by controlling for
a vector Ti containing hour-of-day, day-of-week, and month-year
indicators, each interacted with indicators for the station that
i visits. Our results thus require that Assumption 1 holds and
that this additively separable functional form for the controls is
sufficient. We refer to Ti as our minimal controls.

Although we expect assignment to be approximately random
in all stations, organization and procedures differ across stations
in ways that mean our time controls may do a better job of cap-
turing confounding variation in some stations than in others.19

We therefore present our main model-free analyses for two sets of
stations: the full set of 104 stations, and a subset of 44 of these
stations for which we detect no statistically significant imbalance
across radiologists in a single characteristic: patient age. Specifi-
cally, these 44 stations are all those for which the F-test for joint
significance of radiologist dummies in a regression of patient age
on those dummies and minimal controls, clustered by radiologist-
day, fails to reject at the 10% level.

To provide evidence on the plausibility of quasi-random as-
signment, we look at the extent to which our vector of observ-
able patient characteristics is balanced across radiologists con-
ditional on the minimal controls. Paralleling the main regression
analysis below, we first define a leave-out measure of the diagnosis

19. In our qualitative research, we identify at least two types of condition-
ing sets that are unobserved to us. One is that the population of radiologists in
some stations includes both “regular” radiologists who are assigned chest X-rays
according to the normal sequential protocol and other radiologists who read chest
X-rays only when the regular radiologists are not available or in other special
circumstances. A second is that some stations consist of multiple sublocations,
and patients and radiologists could sort systematically to sublocations. Because
our fixed effects do not capture either radiologist “types” or sublocations, either of
these could lead Assumption 1 to be violated.
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propensity of each patient’s assigned radiologist,

(4) Zi = 1
|Ij(i)| − 1

∑
i′ �=i

1(i′ ∈ Ij(i))di′ ,

where Ij is the set of patients assigned to radiologist j. We then
ask whether Zi is predictable from our main vector Xi of patient
i’s 77 observables after conditioning on the minimal controls.

Figure IV presents the results. Panels A and B present in-
dividual coefficients from regressions of di (a patient’s own di-
agnosis status) and Zi (the leave-out propensity of the assigned
radiologist), respectively, on the elements of Xi, controlling for Ti.
Continuous elements of Xi are standardized. At the bottom of each
panel we report F-statistics and p-values for the null hypothesis
that all coefficients on the elements of Xi are equal to zero. Al-
though Xi is highly predictive of a patient’s own diagnosis status,
it has far less predictive power for Zi, with an F-statistic two or-
ders of magnitude smaller and most coefficients close to zero. The
small number of variables that are predictive of Zi—most notably
characteristics of the requesting physician—are not predictive of
di for the most part, and there is no obvious relationship between
their respective coefficients in the regressions of di and Zi. Panel
C presents the analogue of Panel B for the subset of 44 stations
with balance on age.20 Here the F-statistic falls further and the
ordering-physician characteristics that stand out in the middle
panel are no longer individually significant. Thus, these stations
that were selected for balance only on age also display balance on
the other elements of Xi.

We present additional evidence of balance below and in the
Online Appendix. As an input to this analysis, we form predicted
values d̂i of the diagnosis indicator di, and m̂i of the false neg-
ative indicator mi, based on respective regressions of di and mi
on Xi alone. This provides a low-dimensional projection of Xi that
isolates the most relevant variation.

In Section IV.C, we provide graphical evidence on the mag-
nitude of the relationship between predicted miss rates m̂i
and radiologist diagnostic propensities Zi, paralleling our main
analysis which focuses on the relationship between mi and Zi.

20. For brevity, we omit the analogue of Panel A for these 44 stations. This
is presented in Online Appendix Figure A.3 and confirms that the relationship
between di and Xi remains qualitatively similar.
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(A) (B) (C)

FIGURE IV

Covariate Balance

This figure shows coefficients and 95% confidence intervals from regressions of
diagnosis status di (left column) or the assigned radiologist’s leave-out diagnosis
propensity Zi (middle and right columns, defined in equation (4)) on covariates Xi ,
controlling for time-station interactions Ti . The 66 covariates are the variables
listed in Online Appendix A.2, without the 11 variables that are indicators for
missing values. The left and middle panels use the full sample of stations. The
right panel uses 44 stations with balance on age, defined in Section IV.B. The
outcome variables are multiplied by 100. Continuous covariates are standardized
so that they have standard deviations equal to 1. For readability, a few coefficients
(and their standard errors) are divided by 10, as indicated by “/10” in the covariate
labels. At the bottom of each panel, we report the F-statistic and p-value from the
joint F-test of all covariates.
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This confirms that the relationship with m̂i is economically small.
We also show in Section IV.C that our key reduced-form regression
coefficient is similar whether we control for none, all, or some of
the variables in Xi.

In Online Appendix Figure A.2, we show similar results to
those in Figure IV using radiologists’ (leave-out) miss rates in
place of the diagnosis propensities Zi. In Online Appendix Ta-
ble A.3, we report F-statistics and p-values analogous to those
in Figure IV and Online Appendix Figure A.2 for subsets of the
characteristic vector Xi, showing that the main pattern remains
consistent across these subsets.

In Online Appendix Table A.4, we compare values of d̂i and
m̂i across radiologists with high and low diagnosis and miss rates,
similar to a lower-dimensional analogue of the tests in Figure IV
and Online Appendix Figure A.2. The results confirm the main
conclusions we draw from Figure IV, showing small differences
in the full sample of stations and negligible differences in the
44-station subsample.

In Online Appendix Figure A.4, we present results from a
permutation test in which we randomly reassign d̂i and m̂i across
patients within each station after partialing out minimal con-
trols, estimate radiologist fixed effects from regressions of the
reshuffled d̂i and m̂i on radiologist dummies, and then compute
the patient-weighted standard deviation of the estimated radi-
ologist fixed effects within each station. Comparing these with
the analogous standard deviation based on the real data pro-
vides a permutation-based p-value for balance in each station.
We find that these p-values are roughly uniformly distributed
in the 44 stations selected for balance on age, confirming that
these stations exhibit balance on characteristics other than age. In
Online Appendix Figure A.5, we present a complementary simu-
lation exercise that suggests that we have the power to reject
more than a small percentage of patients in these stations being
systematically sorted to radiologists.

IV.C. Main Results

The first goal of our descriptive analysis is to flexibly identify
the shares of the classification matrix in Figure I, Panel A, for
each radiologist. This allows us to plot the data in ROC space,

as in Figure II. We first form estimates P̂obs
j and F̂Nj

obs
of each
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radiologist’s risk-adjusted diagnosis and miss rates.21 We further
adjust these for the parameters κ and λ introduced in Section III
to arrive at estimates P̂j and F̂N j of underlying Pj and FNj. We
fix the share κ of cases not at risk of pneumonia to the estimated
value 0.336 discussed in Section III, and we fix the share λ of
cases in which pneumonia manifests after the first visit at the
value 0.026 estimated in the structural analysis.

There is substantial variation in P̂j and F̂N j . Reassigning pa-
tients from a radiologist in the 10th percentile of diagnosis rates
to a radiologist in the 90th percentile would increase the probabil-
ity of a diagnosis from 8.9% to 12.3%. Reassigning patients from
a radiologist in the 10th percentile of miss rates to a radiologist in
the 90th percentile would increase the probability of a false neg-
ative from 0.2% to 1.8%. Online Appendix Table A.5 shows these
and other moments of radiologist-level estimates.

Finally, we solve for the remaining shares of the classification
matrix by equations (1)–(3) and the prevalence rate S = 0.051
which we estimate in the structural analysis. We truncate the
estimated values F̂PRj and T̂PRj so that they lie in [0, 1] and
so that T̂PRj � F̂PRj .22 Online Appendix C provides further de-
tail on these calculations. We present estimates of (FPRj, TPRj)
in ROC space in Figure V. They show clearly that the data are
inconsistent with the assumption that all radiologists lie along a
single ROC curve, and instead suggest substantial heterogeneity
in skill.23

21. We form these as the fitted radiologist fixed effects from respective re-
gressions of di and mi on radiologist fixed effects, patient characteristics Xi , and
minimal controls Ti . We recenter P̂obs

j and F̂N
obs
j within each station so that the

patient-weighted averages within each station are equal to the overall population
rate and truncate these adjusted rates to be no less than zero. This truncation
applies to 2 out of 3,199 radiologists in the case of P̂obs

j and 45 out of 3,199 radi-

ologists in the case of F̂N
obs
j .

22. Imposing T̂PR j � 1 affects 597 observations (18.7% of the total). Imposing
F̂PR j � 0 affects 44 observations. Imposing T̂PR j � F̂PR j affects 68 observations.

23. In Online Appendix Figure A.6, we show how the results change when
we set S at the lower bound (S = 0.015) and upper bound (S = 0.073) derived
in Section IV.A. The values of TPR and FPR change substantially, but the over-
all pattern of a negative slope in ROC space remains robust. As discussed in
Section IV.A, the sign of the slope of the line connecting any two points in ROC
space is in fact identified independently of the value of S, so this robustness is, in
a sense, guaranteed. In the same figure, we show that varying the assumed values
of λ and κ similarly affects the levels but not the qualitative pattern in ROC space.
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FIGURE V

Projecting Data on ROC Space

This figure plots the true positive rate (T̂PR j ) and false positive rate (F̂PR j ) for
each radiologist across the 3,199 radiologists in our sample who have at least 100
chest X-rays. The figure is based on observed risk-adjusted diagnosis and miss
rates P̂obs

j and F̂N
obs
j , then adjusted for the share of X-rays not at risk for pneu-

monia (κ̂ = 0.336) and the share of cases in which pneumonia first manifests after
the initial visit (λ̂ = 0.026). The values of T̂PR j and F̂PR j are then computed using
the estimated prevalence rate Ŝ = 0.051. Values are truncated to impose T̂PR j � 1
(affects 597 observations), F̂PRj � 0 (affects 44 observations), and T̂PR j � F̂PR j
(affects 68 observations). See Section IV.C and Online Appendix C for more details.

The second goal of our descriptive analysis is to estimate
the relationship between radiologists’ diagnosis rates Pj and their
miss rates FNj. We focus on the coefficient estimand � from a
linear regression of FNj on Pj in the population of radiologists. As
discussed in Section II.C, � ∈ [−1, 0] is an implication of the stan-
dard monotonicity of Condition 1.iii and the weaker versions of
monotonicity we consider as well. Under our maintained assump-
tions, � �∈ [0, 1] implies that radiologists must not have uniform
skill and skill must be systematically correlated with diagnostic
propensities.
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Exploiting quasi-experimental variation under Assump-
tion 1, we can recover a consistent estimate of � from a 2SLS
regression of mi on di instrumenting for the latter with the leave-
out propensity Zi.24 In these regressions, we control for the vector
of patient observables Xi and the minimal time and station con-
trols Ti. Using the leave-out propensity is a standard approach
that prevents overfitting the first stage in finite samples, which
would bias the coefficient toward an OLS estimate of the relation-
ship between mi and di (Angrist, Imbens, and Krueger 1999). We
show in Online Appendix Figure A.7 that results are qualitatively
similar if we use radiologist dummies as instruments.

Figure VI presents the results. To visualize the IV relation-
ship, we estimate the first-stage regression of di on Zi, controlling
for Xi and Ti. We then plot a binned scatter of mi against the fitted
values from the first stage, residualizing them with respect to Xi
and Ti and recentering them to their respective sample means.
The figure also shows the IV coefficient and standard error.

In the overall sample (Panel A) and in the sample selected
for balance on age (Panel B), we show a strong positive rela-
tionship between diagnosis predicted by the instrument and false
negatives, controlling for the full set of patient characteristics.25

This upward slope implies that the miss rate is higher for high-
diagnosing radiologists not only conditionally (in the sense that
the patients they do not diagnose are more likely to have pneu-
monia) but unconditionally as well. Thus, being assigned to a
radiologist who diagnoses patients more aggressively increases
the likelihood of leaving the hospital with undiagnosed pneumo-
nia. Under Assumption 1, this implies violations in monotonicity.
The only explanation for this under our framework is that high-
diagnosing radiologists have less accurate signals, and that this
is true to a large enough degree to offset the mechanical negative
relationship between diagnosis and false negatives.

In Figure VII, we provide additional evidence on whether im-
balances in patient characteristics may explain this relationship.
This figure is analogous to Figure VI with the predicted false neg-
ative m̂i in place of the actual false negative mi and controls Xi

24. Observed mi and di do not account for the parameters κ and λ, so we
are estimating a coefficient �obs from a regression of FNobs

j on Pobs
j . In Online

Appendix C, we show that � ∈ [−1, 0] is equivalent to �obs ∈ [−1, −λ], which is an
even smaller admissible range.

25. We show the first-stage relationship in Online Appendix Figure A.8.
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(A)

(B)

FIGURE VI

Diagnosis and Miss Rates

This figure plots the relationship between miss rates and diagnosis rates across
radiologists using the leave-out diagnosis propensity instrument Zi, defined in
equation (4). We first estimate the first-stage regression of diagnosis di on Zi
controlling for covariates Xi and minimal controls Ti . We then plot a binned scat-
ter of the indicator of a false negative mi against the fitted first-stage values,
residualizing both with respect to Xi and Ti and recentering both to their re-
spective sample means. Panel A shows results for the full sample. Panel B shows
results in the subsample comprising 44 stations with balance on age, as defined in
Section IV.B. The coefficient in each panel corresponds to the 2SLS estimate for the
corresponding IV regression, as well as the number of cases (N) and the number
of radiologists (J). The standard error is clustered at the radiologist level and is
shown in parentheses.
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(A)

(B)

FIGURE VII

Balance on Predicted False Negative

This figure plots the relationship between radiologist diagnosis rates and pre-
dicted false negatives of patients assigned to radiologists using the leave-out diag-
nosis propensity instrument Zi. Plots are generated analogously to those in Figure
VI, except that the false negative indicator mi is replaced by the predicted value
m̂i from a regression of mi on Xi alone and controls Xi are omitted. Panel A shows
results for the full sample. Panel B shows results in the subsample comprising 44
stations with balance on age, as defined in Section IV.B. The coefficient in each
panel corresponds to the 2SLS estimate for the corresponding IV regression, as
well as the number of cases (N) and the number of radiologists (J). The standard
error is clustered at the radiologist level and is shown in parentheses.
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omitted. In the overall sample (Panel A), radiologists with higher
diagnosis rates are assigned patients with characteristics that
predict more false negatives. However, this relationship is small
in magnitude in the full sample and negligible in the subsample
of 44 stations with balance on age (Panel B). Notably, the positive
IV coefficient in Figure VI is even larger in the latter subsample
of stations.

In Online Appendix Figure A.9, we show a scatterplot that
collapses the underlying data points from Figure VI to the radiolo-
gist level. This plot reveals substantial heterogeneity in miss rates
among radiologists with similar diagnosis rates: for the same di-
agnosis rate, a radiologist in the case-weighted 90th percentile of
miss rates has a miss rate 0.7 percentage points higher than that
of a radiologist in the case-weighted 10th percentile. This provides
further evidence against the standard monotonicity assumption,
which implies that all radiologists with a given diagnosis rate
must also have the same miss rate.26

In Online Appendix D, we show that our data pass infor-
mal tests of monotonicity that are standard in the literature
(Dobbie, Goldin, and Yang 2018; Bhuller et al. 2020), as shown
in Online Appendix Table A.6. These tests require that diagnosis
consistently increases in Pj in a range of patient subgroups.27

Thus, together with evidence of quasi-random assignment in
Section IV.B, the standard empirical framework would suggest
this as a plausible setting in which to use radiologist assignment
as an instrument for the treatment variable dij.

However, were we to apply the standard approach and use
radiologist assignment as an instrument to estimate an average
effect of diagnosis dij on false negatives, we would reach the
nonsensical conclusion that diagnosing a patient with pneumonia
(and thus giving them antibiotics) makes them more likely

26. In Online Appendix Figure A.10, we investigate the IV-implied relation-
ship between diagnosis and false negatives in each station and show that in the
vast majority of stations the station-specific estimate of � is outside of the bounds
of [−1, 0].

27. In Online Appendix D, we show the relationship between these standard
tests and our test. We discuss that these results suggest that (i) radiologists con-
sider unobserved patient characteristics in their diagnostic decisions, (ii) these
unobserved characteristics predict si, and (iii) their use distinguishes high-skilled
radiologists from low-skilled radiologists.
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to return with untreated pneumonia in the following days.28

Standard tests of monotonicity may pass while our test may
strongly reject monotonicity by � �∈ [−1, 0] when monotonicity
violations systematically occur along an underlying state si but
not along observable characteristics. In Online Appendix D, we
formally show that our test would be equivalent to a standard
test if si were observable and were used as a characteristic to
form subgroups within which to confirm a positive first stage.29

IV.D. Robustness

Given the small but significant imbalance that we detect in
Section IV.B, we examine the robustness of our results to vary-
ing controls for patient characteristics and the set of stations we
consider. We first divide our 77 patient characteristics into 10
groups.30 Next, we run separate regressions using each of the 210

= 1,024 possible combinations of these 10 groups as controls.
Figure VIII shows the range of the coefficients from IV regres-

sions analogous to Figure VI across these specifications. The num-
ber of different specifications that corresponds to a given number
of patient controls may differ. For example, controlling for either
no patient characteristics or all patient characteristics each re-
sults in one specification. Controlling for n patient characteristics
results in “10 choose n” specifications. For each number of charac-
teristics on the x-axis, we plot the minimum, maximum, and mean
IV estimate of �. The mean estimate actually increases with more
controls, and no specification yields an estimate that is close to
zero. Panel A displays results using observations from all stations,
and Panel B displays results using observations from only the 44

28. As shown in Online Appendix Table A.7, in our sample of all stations, we
also find that diagnosing and treating pneumonia implausibly increases mortality,
repeat ED visits, patient-days in the hospital, and ICU admissions. However,
in the sample of 44 stations with balance on age, these effects are statistically
insignificant, reversed in sign, and smaller in magnitude.

29. We note in Section II.C a close connection between our test and tests of IV
validity proposed by Kitagawa (2015) and Mourifie and Wan (2017). Our test maps
more directly to monotonicity because we use an “outcome” mi = 1 (di = 0, si = 1)
that is mechanically defined by di and si, so that “exclusion” in Condition 1.i is
satisfied by construction.

30. We divide all patient characteristics into five categories in Online Ap-
pendix Table A.2. We further divide the first category (demographics) into six
groups: age and gender, marital status, race, religion, indicator for veteran sta-
tus, and the distance between home and the VA station performing the X-ray.
Combining these six groups with the other four categories gives us 10 groups.
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(A)

(B)

FIGURE VIII

Stability of Slope between Diagnosis and Miss Rates

This figure shows the stability of the IV estimate of Figure VI as we vary the set
of patient characteristics we use as controls. We divide the 77 variables in Xi into
10 subsets as described in Section IV.D and rerun the IV regression of Figure VI
using each of the 210 = 1,024 different combinations of the subsets in place of Xi .
The x-axis reports the number of subsets. The y-axis shows the average slope as a
solid line and the minimum and maximum slopes as dashed lines. Panel A shows
results in the full sample of stations; Panel B shows results in the subsample
comprising 44 stations with balance on age, as defined in Section IV.B.
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stations in which we find balance on age. As expected, slope statis-
tics are even more robust in Panel B.

V. STRUCTURAL ANALYSIS

In this section, we specify and estimate a structural model
with variation in skill and preferences. The model builds on the
canonical selection framework by allowing radiologists to observe
different signals of patients’ true conditions and rank cases dif-
ferently by their appropriateness for diagnosis.

V.A. Model

Patient i’s true state si is determined by a latent index νi ∼
N (0, 1). If νi is greater than ν, then the patient has pneumonia:

si = 1 (νi > ν) .

The radiologist j assigned to patient i observes a noisy signal
wi j ∼ N (0, 1) correlated with νi. The strength of the correlation
between wij and vi characterizes the radiologist’s skill αj ∈ (0, 1]:31

(5)
(

νi
wi j

)
∼ N

((
0
0

)
,

(
1 α j
α j 1

))
.

We assume that radiologists know both the cutoff value ν and their
own skill αj. Note that normalizing the means and variances of νi
and wij to zero and one respectively is without loss of generality.

The radiologist’s utility is given by

(6) uij =
⎧⎨
⎩

−1, if dij = 1, si = 0,

−β j, if dij = 0, si = 1,

0, otherwise.

31. The joint-normal distribution of vi and wij determines the set of potential
shapes of radiologist ROC curves. This simple parameterization implies concave
ROC curves above the 45-degree line, attractive features described in Section II.B.
In Online Appendix Figure A.11, we map the correlation αj to the area under the
curve (AUC), which is a common measure of performance in classification. The
AUC measures the area under the ROC curve: an AUC value of 0.5 corresponds
to classification no better than random chance (i.e., αj = 0) whereas an AUC value
of 1 corresponds to perfect classification (e.g., αj = 1).
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The key preference parameter β j captures the disutility of a false
negative relative to a false positive. Given that the health cost
of undiagnosed pneumonia is potentially much greater than the
cost of inadvertently giving antibiotics to a patient who does not
need them, we expect β j > 1. We normalize the utility of correctly
classifying patients to zero. Note that this parameterization of
uj(d, s) with a single parameter β j is without loss of generality, in
the sense that the ratio β j = uj (1,1)−uj (0,1)

uj (0,0)−uj (1,0) is sufficient to determine
the agent’s optimal decision given the posterior Pr(si = 1|wi j, α j),
as discussed in Section IV.A.

In Online Appendix E.1, we show that the radiologist’s op-
timal decision rule reduces to a cutoff value τ j such that dij =
1(wi j > τ j). The optimal cutoff τ ∗ must be such that the agent’s
posterior probability that si = 0 after observing wij = τ ∗ is equal
to β j

1+β j
. The formula for the optimal threshold is

(7) τ ∗(α j, β j) =
ν −

√
1 − α2

j �
−1

(
β j

1+β j

)
α j

.

The cutoff value in turn implies FPj and FNj, which give expected
utility

(8) E[uij] = −(FPj + βFNj).

The comparative statics of the threshold τ ∗ with respect to
ν and β j are intuitive. The higher ν, and thus the smaller the
share S of patients who in fact have pneumonia, the higher
the threshold. The higher is β j, and thus the greater the cost
of a missed diagnosis relative to a false positive, the lower the
threshold.

The effect of skill αj on the threshold can be ambiguous. This
arises because αj has two distinct effects on the radiologist’s pos-
terior on νi: (i) it shifts the posterior mean further from zero and
closer to the observed signal wij; and (ii) it reduces the poste-
rior variance. For αj ≈ 0, the radiologist’s posterior is close to the
prior N (0, 1) regardless of the signal. If pneumonia is uncom-
mon, in particular if ν > �−1( β j

1+β j
), she will prefer not to diagnose

any patients, implying τ ∗ ≈ ∞. As αj increases, effect (i) domi-
nates. This makes any given wij more informative and so causes
the optimal threshold to fall. As αj increases further, effect (ii)
dominates. This makes the agent less concerned about the risk of
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FIGURE IX

Optimal Diagnostic Threshold

This figure shows how the optimal diagnostic threshold varies as a function
of skill α and preferences β with iso-preference curves for β ∈ {5, 7, 9}. Each
iso-preference curve illustrates how the optimal diagnostic threshold varies with
the evaluation skill for a fixed preference, given by equation (7), using ν = 1.635
estimated from the model. Dots on the figure represent the empirical Bayes pos-
terior mean of α (on the x-axis) and τ (on the y-axis) for each radiologist. The
empirical Bayes posterior means are the same as those shown in Online Appendix
Figure A.13. Details on the empirical Bayes procedure are given in Online Ap-
pendix E.3.

false negatives and so causes the optimal threshold to rise. Given
equation (7), we should expect thresholds to be correlated with
skill when costs are highly asymmetric (i.e., β j is far from 1) or,
for low skill, when the condition is rare (i.e., ν is high). Figure IX
shows the relationship between αj and τ ∗

j for different values of β j.
Online Appendix E.1 discusses comparative statics of τ ∗ further.

In Online Appendix G.1, we show that a richer model allowing
pneumonia severity to impact both the probability of diagnosis
and the disutility of a false negative yields a similar threshold-
crossing model with equivalent empirical implications. In Online
Appendix G.2, we explore an alternative formulation in which
τ j depends on a potentially misinformed belief about αj and an
assumed fixed β j at some social welfare weight βs. From a social
planner’s perspective, for a given skill αj, deviations from τ ∗(αj, βs)
yield equivalent welfare losses regardless of whether they arise
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SELECTION WITH VARIATION IN DIAGNOSTIC SKILL 767

from deviations of β j from βs or from deviations of beliefs about αj
from the truth.

If we know a radiologist’s FPRj and TPRj in ROC space, we
can identify her skill αj by the shape of potential ROC curves, as
discussed in Section IV.A, and her preference β j by her diagnosis
rate and equation (7). Equation (5) determines the shape of poten-
tial ROC curves and implies that they are smooth and concave,
consistent with utility maximization. It also guarantees that two
ROC curves never intersect and that each (FPRj, TPRj) point lies
on only one ROC curve.

The parameters κ and λ can be identified by the joint-normal
signal structure implied by equation (5). With λ = 0, a radiologist
with FPRj ≈ 0 must have a nearly perfectly informative signal
and so should also have TPRj ≈ 1. We in fact observe that some
radiologists with no false positives still have some false negatives,
and the value of λ is determined by the size of this gap. Similarly,
with κ = 0, a radiologist with TPRj ≈ 1 should either have perfect
skill (implying FPRj ≈ 0) or simply diagnose everyone (implying
FPRj ≈ 1). So the value of κ is identified if we observe a radiologist
j with TPRj ≈ 1 and with FPRj far from 0 and 1, as the fraction of
cases that j does not diagnose. In our estimation described below,
we do not estimate κ but rather calibrate it from separate data as
described in Section III.32

V.B. Estimation

We estimate the model using observed data on diagnoses di
and false negatives mi. Recall that we observe mi = 0 for any i
such that di = 1, and mi = 1 is possible only if di = 0. We define
the following probabilities, conditional on γ j ≡ (α j, β j):

p1 j(γ j) ≡ Pr(wi j > τ ∗
j

∣∣ γ j);

p2 j(γ j) ≡ Pr(wi j < τ ∗
j , νi > ν

∣∣ γ j);

p3 j(γ j) ≡ Pr(wi j < τ ∗
j , νi < ν

∣∣ γ j).

32. While κ is in principle identified, radiologists with the highest TPRj have
FPRj ≈ 0 and do not have the highest diagnosis rate. These radiologists appear to
have close to perfect skill, which is consistent with any κ. Thus, we cannot identify
κ in practice. In Online Appendix Table A.10, we show that our results and their
policy implications do not depend qualitatively on our choice of κ.
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The likelihood of observing (di, mi) for a case i assigned to radiol-
ogist j(i) is

Li(di, mi| γ j(i))

=
⎧⎨
⎩

(1 − κ)p1 j(γ j(i)), if di = 1,

(1 − κ)(p2 j(γ j(i)) + λp3 j(γ j(i))), if di = 0, mi = 1,

(1 − κ)(1 − λ)p3 j(γ j(i)) + κ, if di = 0, mi = 0.

For the set of patients assigned to j, Ij ≡ {i: j(i) = j}, the likelihood
of d j = {di}i∈Ij

and m j = {mi}i∈Ij
is

L j(d j, m j |γ j)=
∏
i∈Ij

Li(di, mi| γ j(i))

= ((1 − κ)p1 j(γ j(i)))
nd

j ((1 − κ)(p2 j(γ j(i)) + λp3 j(γ j(i))))
nm

j

· ((1 − κ)(1 − λ)p3 j(γ j(i)) + κ)nj−nd
j −nm

j ,

where nd
j = ∑

i∈Ij
di, nm

j = ∑
i∈Ij

mi, and nj = |Ij|. From the above
expression, nd

j , nm
j , and nj are sufficient statistics of the likeli-

hood of d j and m j , and we can write the radiologist likelihood as
L j(nd

j , nm
j , nj |γ j).

Given the finite number of cases per radiologist, we make
an assumption on the population distribution of αj and β j across
radiologists to improve power. Specifically, we assume

(9)
(

α̃ j
β̃ j

)
∼ N

((
μα

μβ

)
,

(
σ 2

α ρσασβ

ρσασβ σ 2
β

))
,

where α j = 1
2

(
1 + tanh α̃ j

) ∈ (0, 1) and β j = exp β̃ j > 0. We set ρ =
0 in our baseline specification but allow its estimation in Online
Appendix F.

Finally, to allow for potential deviations from random assign-
ment, we fit the model to counts of diagnoses and false nega-
tives that are risk-adjusted to account for differences in patient
characteristics Xi and minimal controls Ti. We begin with the
risk-adjusted radiologist diagnosis and miss rates P̂obs

j and F̂N
obs
j

defined in Section IV.C. We then impute diagnosis and false nega-
tive counts ñd

j = nj P̂obs
j and ñm

j = nj F̂N
obs
j , where nj is the number

of patients assigned to radiologist j; the imputed counts are not
necessarily integers.
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In a second step, we maximize the following log-likelihood to
estimate the hyperparameter vector θ ≡ (μα,μβ, σα, σβ, λ, ν):

θ̂ = arg max
θ

∑
j

log
∫

L j
(
ñd

j , ñm
j , nj

∣∣ γ j
)

f (γ j

∣∣ θ )dγ j .

We compute the integral by simulation, described in further detail
in Online Appendix E.2. Given our estimate of θ and each radiolo-
gist’s risk-adjusted data, (ñd

j , ñm
j , nj), we can also form an empirical

Bayes posterior mean of each radiologist’s skill and preference (αj,
β j), which we describe in Online Appendix E.3.

Our risk-adjustment approach can be seen as fitting the
model to an “average” population of patients and radiologists
whose distribution of diagnosis and miss rates are the same as the
risk-adjusted values we characterize in our reduced-form analy-
sis. An alternative would be to incorporate heterogeneity by sta-
tion, time, and patient characteristics explicitly in the structural
model; for example, allowing these to shift the distribution of pa-
tient health. Although this would be more coherent from a struc-
tural point of view, doing so with sufficient flexibility to guarantee
quasi-random assignment would be computationally challenging.
We show in Section V.D that our main results are qualitatively
similar if we exclude Xi from risk adjustment or even omit the
risk-adjustment step altogether. We show evidence from Monte
Carlo simulations in Online Appendix G.3 that our linear risk ad-
justment is highly effective in addressing bias due to variation in
risk across groups of observations, even when it is misspecified as
additively separable.

V.C. Results

Table I, Panel A shows estimates of the hyperparameter vec-
tor θ in our baseline specification. Panel B shows moments in the
distribution of posterior means of (αj, β j) implied by the model pa-
rameters. In the baseline specification, the mean radiologist skill
is relatively high at 0.85. This implies that the average radiologist
receives a signal that has a correlation of 0.85 with the patient’s
underlying latent state νi. This correlation is 0.76 for a radiolo-
gist at the 10th percentile of this skill distribution and is 0.93 for
a radiologist at the 90th percentile of the skill distribution. The
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TABLE I
STRUCTURAL ESTIMATION RESULTS

Panel A: Model parameter estimates
Estimate Description

μα 0.945 Mean of α̃ j , α j = 1
2

(
1 + tanh α̃ j

)
(0.219)

σα 0.296 Standard deviation of α̃ j
(0.029)

μβ 1.895 Mean of β̃ j , β j = exp β̃ j
(0.249)

σβ 0.136 Standard deviation of β̃ j
(0.044)

λ 0.026 Share of at-risk negatives developing subsequent
pneumonia(0.001)

ν̄ 1.635 Prevalence S = 1 − � (ν)
(0.091)

κ 0.336 Share not at risk for pneumonia

Panel B: Radiologist posterior means
Percentiles

Mean 10th 25th 75th 90th
α 0.855 0.756 0.816 0.908 0.934

(0.050) (0.079) (0.065) (0.035) (0.025)
β 6.713 5.596 6.071 7.284 7.909

(1.694) (1.608) (1.659) (1.750) (1.780)
τ 1.252 1.165 1.208 1.298 1.336

(0.006) (0.009) (0.006) (0.008) (0.012)

Notes. This table shows model parameter estimates (Panel A) and moments in the implied distribution
of empirical Bayes posterior means across radiologists (Panel B). μα and σα determine the distribution of
radiologist diagnostic skill α, and μβ and σβ determine the distribution of radiologist preferences β (the
disutility of a false negative relative to a false positive). We assume that α and β are uncorrelated. λ is
the proportion of at-risk chest X-rays with no radiographic pneumonia at the time of exam but subsequent
development of pneumonia. ν describes the prevalence of pneumonia at the time of the exam among at-risk
chest X-rays. κ is the proportion of chest X-rays not at risk for pneumonia. It is calibrated as the pro-
portion of patients with predicted probability of pneumonia less than 0.01 from a random forest model of
pneumonia based on rich characteristics in the patient chart. Parameters are described in further detail in
Sections V.A and V.B. The method to calculate empirical Bayes posterior means is described in Online Ap-
pendix E.3. Standard errors, shown in parentheses, are computed by block bootstrap, with replacement, at
the radiologist level.

average radiologist preference weights a false negative 6.71 times
as high as a false positive. This relative weight is 5.60 at the 10th
percentile of the preference distribution and is 7.91 at the 90th
percentile of this distribution.

In Online Appendix Figure A.12, we compare the distribu-
tions of observed data moments of radiologist diagnosis and miss
rates with those simulated from the model at the estimated
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SELECTION WITH VARIATION IN DIAGNOSTIC SKILL 771

parameter values.33 In all cases, the simulated data match the
observed data closely.

In Figure IX, we display empirical Bayes posterior means
for (αj, β j) in a space that represents optimal diagnostic thresh-
olds. The relationship between skill and diagnostic thresholds is
mostly positive. As radiologists become more accurate, they diag-
nose fewer people (their thresholds increase) because the costly
possibility of making a false negative diagnosis decreases. In On-
line Appendix Figure A.13, we show the distributions of the em-
pirical Bayes posterior means for αj, β j, and τ j, and the joint dis-
tribution of αj and β j. Finally, in Online Appendix Figure A.14,
we transform empirical Bayes posterior means for (αj, β j) into mo-
ments in ROC space. The relationship between TPRj and FPRj
implied by the empirical Bayes posterior means is similar to that
implied by the flexible projection shown earlier in Figure V.

V.D. Robustness

In Online Appendix F, we explore alternative samples,
controls, and structural estimation approaches. To evaluate ro-
bustness to potential violations in quasi-random assignment, we
estimate our model restricting to data from 44 stations with quasi-
random assignment selected in Section IV.B. To assess robustness
to our risk-adjustment procedure, we also estimate our model
with moments that omit patient characteristics Xi from the risk-
adjustment procedure, and we estimate the model omitting the
risk-adjustment step altogether, plugging raw counts (nd

j , ny
j , nj)

directly into the likelihood. To address potential endogenous re-
turn ED visits, we restrict our sample to only heavy VA users. To
address potential endogenous second diagnoses, we restrict false
negatives to cases of pneumonia that required inpatient admis-
sion.

Finally, we consider sensitivity to alternative assumptions.
First, we estimate an alternative model that allows for flexible

33. We construct simulated moments as follows. We first fix the number of
patients each radiologist examines to the actual number. We then simulate pa-
tients at risk from a binomial distribution with the probability of being at risk
of 1 − κ. For patients at risk, we simulate their underlying true signal and the
radiologist-observed signal, νi and wij, respectively, using our posterior mean for αj.
We determine which patients are diagnosed with pneumonia and which patients
are false negatives based on τ ∗(αj, βj), νi, and ν. We finally simulate patients who
did not initially have pneumonia but later develop it with λ.
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correlation ρ. While λ and ρ are separately identified in the data,
they are difficult to separately estimate, so we fix ρ = 0 in the
baseline model.34 In the alternative approach, we fix λ = 0.026
and allow for flexible ρ. Second, we consider alternative values
for κ and report results in Online Appendix Table A.10.

Our main qualitative findings are robust across all of these al-
ternative approaches. Both reduced-form moments and estimated
structural parameters are qualitatively unchanged. As a result,
our decompositions of variation into skill and preferences, dis-
cussed in Section VI, are also unchanged.

V.E. Heterogeneity

To provide suggestive evidence of what may drive variation
in skill and preferences, we project our empirical Bayes posterior
means for (αj, β j) onto observed radiologist characteristics. Online
Appendix Figure A.15 shows the distribution of observed charac-
teristics across bins defined by empirical Bayes posterior means
of skill αj. Online Appendix Figure A.16 shows analogous results
for the preference parameter β j.

As shown in Online Appendix Figure A.15, higher-skilled ra-
diologists are older and more experienced (Panel A).35 Higher-
skilled radiologists also tend to read more chest X-rays as a share
of the scans they read (Panel B). Interestingly, those who are
more skilled spend more time generating their reports (Panel C),
suggesting that skill may be a function of effort as well as charac-
teristics like training or talent. Radiologists with more skill also
issue shorter rather than longer reports (Panel D), possibly point-
ing to clarity and efficiency of communication as a marker of skill.
There is little correlation between skill and the rank of the medi-
cal school a radiologist attended (Panel E). Finally, higher-skilled
radiologists are more likely to be male, in part reflecting the fact
that male radiologists are older and tend to be more specialized

34. We do not have many points representing radiologists with many cases
who exactly have FPRj = 0. Points in (FPRj, TPRj) space with FPRj ≈ 0 and TPRj
< 1 can be rationalized by λ > 0, a very negative ρ, or some combination of both.
With infinite data, we should be able to separately estimate λ and ρ, but with
finite data, it is difficult to fit both λ and ρ.

35. These results are based on a model that allows underlying primitives to
vary by radiologist j and age bin t (we group five years as an age bin), where within
j, μα and μβ each change linearly with t. We estimate a positive linear trend for μα

and a slightly negative trend for μβ . We find similar relationships when we assess
radiologist tenure on the job and log number of prior chest X-rays.
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SELECTION WITH VARIATION IN DIAGNOSTIC SKILL 773

in reading chest X-rays (Panel F). The results for the preference
parameter β j, in Online Appendix Figure A.16, tend to go in the
opposite direction. This reflects the fact that our empirical Bayes
estimates of αj and β j are slightly negatively correlated.

It is important to emphasize that large variation in charac-
teristics remains, even conditional on skill or preference. This is
broadly consistent with the physician practice style and teacher
value-added literature, which demonstrate large variation in de-
cisions and outcomes that appear uncorrelated with physician or
teacher characteristics (Epstein and Nicholson 2009; Staiger and
Rockoff 2010).

VI. POLICY IMPLICATIONS

VI.A. Decomposing Observed Variation

To assess the relative importance of skill and preferences
in driving observed decisions and outcomes, we simulate coun-
terfactual distributions of decisions and outcomes in which we
eliminate variation in skill or preferences separately. We first
simulate model primitives (αj, β j) from the estimated parameters.
Then we eliminate variation in skill by imposing α j = α, where α

is the mean of αj, while keeping β j unchanged. Similarly, we elim-
inate variation in preferences by imposing β j = β, where β is the
mean of β j, while keeping αj unchanged. For baseline and coun-
terfactual distributions of underlying primitives—(αj, β j), (α, β j),
and (α j, β)—we simulate a large number of observations per radi-
ologist to approximate the shares Pj and FNj for each radiologist.

Eliminating variation in skill reduces variation in diagnosis
rates by 39% and variation in miss rates by 78%. On the other
hand, eliminating variation in preferences reduces variation in
diagnosis rates by 29% and has no significant effect on variation
in miss rates.36 These decomposition results suggest that varia-
tion in skill can have first-order effects on variation in decisions,
something the standard model of preference-based selection rules
out by assumption.

36. Online Appendix Table A.8, Panel B shows these baseline results and
standard errors, as well as corresponding results under alternative specifications
described in Section V.D. Online Appendix Figure A.17 shows implications for vari-
ation in diagnosis rates and for variation in miss rates under a range of reductions
in variation in skill or reductions in variation in preferences.
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VI.B. Policy Counterfactuals

We evaluate the welfare implications of policies aimed at ob-
served variation in decisions or at underlying skill. Welfare de-
pends on the overall false positive FP and the overall false nega-
tive FN. We denote these objects under the status quo as FP0 and
FN0, respectively. We then define an index of welfare relative to
the status quo:

(10) W = 1 − FP + βsFN

FP0 + βsFN0 ,

where βs is the social planner’s relative welfare loss due to false
negatives compared to false positives. This index ranges from W
= 0 at the status quo to W = 1 at the first best of FP = FN = 0.
It is also possible that W < 0 under a counterfactual policy that
reduces welfare relative to the status quo.

We estimate FP0 and FN0 based on our model estimates as

FP0 = 1∑
j nj

∑
j

njFP(α j, τ
∗(α j, β j ; ν̄); ν);

FN0 = 1∑
j nj

∑
j

njFN(α j, τ
∗(α j, β j ; ν̄); ν).

Here, τ ∗(α, β; ν̄) denotes the optimal threshold given the evalu-
ation skill α, the preference β, and the disease prevalence ν̄. We
simulate a set of 10,000 radiologists, each characterized by (αj, β j),
from the estimated hyperparameters. We then consider welfare
under counterfactual policies that eliminate diagnostic variation
by imposing diagnostic thresholds on radiologists.

In Table II, we evaluate outcomes under two sets of counter-
factual policies. Counterfactuals 1 and 2 focus on thresholds, and
Counterfactuals 3–6 aim to improve skill.

Counterfactual 1 imposes a fixed diagnostic threshold to max-
imize welfare:

τ (βs)

= arg max
τ

⎧⎨
⎩1 −

1∑
j nj

∑
j nj(FP(α j, τ ; ν) + βsFN(α j, τ ; ν))

FP0 + βsFN0

⎫⎬
⎭ ,
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where ν and the simulated set of αj are derived from our baseline
model in Section V. Despite the objective to maximize welfare, a
fixed diagnostic threshold may actually reduce welfare relative to
the status quo by imposing this constraint. On the other hand,
Counterfactual 2 allows diagnostic thresholds as a function of
αj, implementing τ j(βs) = τ ∗(α j, β

s; ν̄). This policy should weakly
increase welfare and outperform Counterfactual 1.

In Counterfactuals 3–6, we consider alternative policies that
improve diagnostic skill—for example, by training radiologists,
selecting radiologists with higher skill, or aggregating signals—
so that decisions use better information. In Counterfactuals 3–5,
we allow radiologists to choose their own diagnostic thresholds
but improve the skill αj of all radiologists at the bottom of the
distribution to a minimum level. For example, in Counterfactual
3, we improve skill to the 25th percentile α25, setting αj = α25 for
any radiologist below this level. The optimal thresholds are then
τ j = τ ∗(max(α j, α

25), β j ; ν̄). Counterfactual 6 forms random two-
radiologist teams and aggregates signals of each team member
under the assumption that the two signals are drawn indepen-
dently.37

Table II shows outcomes and welfare under βs = 6.71, match-
ing the mean radiologist preference β j. We find that imposing a
fixed diagnostic threshold (Counterfactual 1) would actually re-
duce welfare. Although this policy reduces aggregate false pos-
itives, it increases aggregate false negatives, which are costlier.
Imposing a threshold that varies optimally with skill (Counter-
factual 2) must improve welfare, but we find that the magnitude
of this gain is small. In contrast, improving diagnostic skill re-
duces false negatives and false positives and substantially out-
performs threshold-based policies. Combining two radiologist sig-
nals (Counterfactual 6) improves welfare by 35% of the difference
between status quo and first best. Counterfactual policies that im-
prove radiologist skill naturally reclassify a much higher number
of cases than policies that simply change diagnostic thresholds.
This is because improving skill will reorder signals while chang-
ing thresholds leaves signals unchanged.

Table II also shows aggregate rates of diagnosis and “reclas-
sification,” counting changes in classification (i.e., diagnosed or

37. In practice, the signals of radiologists working in the same location may be
subject to correlated noise. In this sense, we view this counterfactual as an upper
bound of information from combining signals.
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not) between the status quo and the counterfactual policy. Under
all of the policies we consider, the numbers of reclassified cases
are greater, sometimes dramatically so, than net changes in the
numbers of diagnosed cases.

Online Appendix Figure A.18 shows welfare changes as a
function of the social planner’s preferences βs. In this figure we
consider Counterfactuals 1 and 3 from Table II. We also show the
welfare gain a planner would expect if she set a fixed threshold
under the incorrect assumption that radiologists have uniform
diagnostic skill. In this calculation, we assume that the planner
assumes a common diagnostic skill parameter α that rationalizes
FP0 and FN0 with some estimate of disease prevalence ν ′.

In this “mistaken policy counterfactual,” the planner would
conclude that a fixed threshold would modestly increase welfare.
In the range of βs spanning radiologist preferences from the 10th
to 90th percentiles (Table I and Online Appendix Figure A.13),
the skill policy outperforms the threshold policy, regardless of the
policy maker’s belief on the heterogeneity of skill. The threshold
policy only outperforms the skill policy when βs diverges signif-
icantly from radiologist preferences. For example, if βs = 0, the
optimal policy is trivial: no patient should be diagnosed with pneu-
monia. In this case, there is no gain to improving skill, but there
is a large gain to imposing a fixed threshold since radiologists’
preferences deviate widely from the social planner’s preferences.

VI.C. Discussion

We show that dimensions of “skill” and “preferences” have
different implications for welfare and policy. Each of these di-
mensions likely captures a range of underlying factors. In our
framework, “skill” captures the relationship between a patient’s
underlying state and a radiologist’s signals about the state. We
attribute this mapping to the radiologist because quasi-random
assignment to radiologists implies that we are isolating the causal
effect of radiologists. As suggested by the evidence in Section V.E,
“skill” may reflect not only underlying ability but also effort. Fur-
thermore, in this setting, radiologists may form their judgments
with the aid of other clinicians (e.g., residents, fellows, nonradiol-
ogist clinicians) and must communicate their judgments to other
physicians. Skill may reflect not only the quality of signals that
the radiologist observes directly but also the quality of signals
that she (or her team) passes on to other clinicians.

D
ow

nloaded from
 https://academ

ic.oup.com
/qje/article/137/2/729/6513421 by Prom

edica H
ealth System

 user on 22 April 2022

file:qje.oxfordjournals.org
file:qje.oxfordjournals.org


778 THE QUARTERLY JOURNAL OF ECONOMICS

What we call “preferences” encompass any distortion from
the optimal threshold implied by (i) the social planner’s relative
disutility of false negatives, or βs, and (ii) each radiologist’s skill,
or αj. These distortions may arise from intrinsic preferences or
external incentives that cause radiologist β j to differ from βs.
Alternatively, as we elaborate in Online Appendix G.2, equivalent
distortions may arise from radiologists having incorrect beliefs
about their own skill αj.

For purposes of welfare analysis, the mechanisms under-
lying “preferences” or “skill” do not matter insofar as they
map to an optimal diagnostic threshold and deviations from it.
However, practical policy implications (e.g., whether we train
radiologists to read chest X-rays, collaborate with others, or
communicate with others) will depend on institution-specific
mechanisms.

VII. CONCLUSION

In this article, we decompose the roots of practice variation
in decisions across radiologists into dimensions of skill and pref-
erences. The standard view in much of the literature is to assume
that such practice variation in many settings results from varia-
tion in preferences. We first show descriptive evidence that runs
counter to this view: radiologists who diagnose more cases with a
disease are also the ones who miss more cases that actually have
the disease. We apply a framework of classification and a model of
decisions that depend on diagnostic skill and preferences. Using
this framework, we demonstrate that the source of variation in
decisions can have important implications for how policy makers
should view the efficiency of variation and for the ideal policies
to address such variation. In our case, variation in skill accounts
for 39% of the variation in diagnostic decisions, and policies that
improve skill result in potentially large welfare improvements,
whereas policies to impose uniform diagnosis rates may reduce
welfare.

Our approach may be applied to settings with the following
conditions: (i) quasi-random assignment of cases to decision mak-
ers, (ii) an objective to match decisions to underlying states, and
(iii) signals of a case’s underlying state may be observable to the
analyst under at least one of the decisions. Many settings of inter-
est may meet these criteria. For example, physicians aim to match
diagnostic and treatment decisions to each patient’s underlying
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disease state (Abaluck et al. 2016; Mullainathan and Obermeyer
2022). Judges aim to match bail decisions to whether a defendant
will recidivate (Kleinberg et al. 2018). Under these conditions,
this framework can be used to decompose observed variation in
decisions and outcomes into policy-relevant measures of skill and
preferences.

Our framework also contributes to an active and growing
judges design literature that uses variation across decision mak-
ers to estimate the effect of a decision on outcomes (e.g., Kling
2006). In this setting, we demonstrate a practical test of mono-
tonicity revealed by miss rates (i.e., � ∈ [−1, 0]), drawing on
intuition delineated previously in the case of binary instruments
(Balke and Pearl 1997; Kitagawa 2015). This generalizes to test-
ing whether cases that suggest an underlying state relevant for
classification—for example, subsequent diagnoses, appellate court
decisions (Norris 2019), or discovery of contraband (Feigenberg
and Miller 2022)—have proper density (i.e., Pr(si = 1) ∈ [0, 1])
among compliers. We show that, although such tests may be
stronger than those typically used in the judges design literature,
they nevertheless correspond to a weaker monotonicity assump-
tion that intuitively relates treatment propensities to skill and
implies the “average monotonicity” concept of Frandsen, Lefgren,
and Leslie (2019).

The behavioral foundation of our empirical framework also
provides a way to think about when the validity of the judges de-
sign may be at risk because of monotonicity violations. Diagnostic
skill may be particularly important to account for when agents
require expertise to match decisions to underlying states, when
this expertise likely varies across agents, and when costs between
false negatives and false positives are highly asymmetric. When
all three of these conditions are met, we may have a priori reason
to expect correlations between diagnostic skill and propensities,
potentially casting doubt on the validity of the standard judges
design. Our work suggests further testing to address this doubt.
Finally, because the judges design relies on comparisons between
agents of the same skill, our approach to measuring skill may pro-
vide a path for future research designs that correct for bias due
to monotonicity violations by conditioning on skill. In Online Ap-
pendix G.4, we run a Monte Carlo simulation as a proof of concept
for this possibility.
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