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1 Introduction

In medicine, law, science, and many other settings, expert decision-makers frequently deviate from

guideline recommendations (Arrowsmith et al., 2015; Grimshaw and Russell, 1993; Prior et al., 2008;

Stevenson and Doleac, 2019). Experts may deviate because they lack awareness of guidelines. In this

case, guideline dissemination may reduce deviations and improve outcomes as long as guidelines are

well-crafted. If experts are aware of guidelines but continue to deviate, promoting stricter adherence

may worsen or improve outcomes, depending on whether experts have additional information not

encoded in guidelines.

Understanding deviations from guidelines is especially urgent in healthcare, where research doc-

uments large inefficiencies in care allocation.1 Clinical guidelines have been the principal strategy

used to encourage evidence-based care, with approximately 250,000 peer-reviewed papers about clin-

ical scoring systems published over the past 50 years (Challener et al., 2019). Efforts to encourage

greater guideline adherence have been criticized because they discount the role of physician exper-

tise in tailoring individualized treatments (Basu et al., 2014; Costantini et al., 1999; Woolf et al.,

1999). Important questions in health economics and policy center around whether greater guideline

awareness or adherence would correct or exacerbate care misallocation.

In this paper, we study how physicians employ an existing clinical guideline and then evaluate

their treatment choices using novel machine learning (ML) estimates of treatment effects that incor-

porate many patient characteristics absent from current guidelines. This approach allows us to test

whether physician treatment choices depend on information about treatment effects not encoded in

guidelines and to investigate how guideline awareness affects this dependence. We assess the impact

on patient outcomes of both guideline “awareness,” the change in decision-making when physicians

begin to note a guideline in the clinical records, and stricter “adherence,” the degree to which a physi-

cian follows guideline recommendations.

We focus on the clinical setting of atrial fibrillation, a common condition afflicting more than 5

million people in the US (Colilla et al., 2013). The principal risk in atrial fibrillation is debilitating or

deadly ischemic stroke (hereafter, stroke); untreated patients have a 5% risk of stroke per year (Atrial

Fibrillation Investigators, 1995). Anticoagulation (blood thinning) has been shown in clinical trials

1Abaluck et al. (2016) and Ribers and Ullrich (2019) show that physicians allocate testing inefficiently across patients.
Mullainathan and Obermeyer (2019) and Chandra and Staiger (2020) show evidence of misallocation in heart attack testing
and treatments. Similar misallocations have been shown in the setting of C-sections (Currie and MacLeod, 2017), depres-
sion (Currie and MacLeod, 2020), pneumonia (Chan et al., 2019), and emergency department care (Gowrisankaran et al.,
2017).
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to reduce stroke risk. However, anticoagulation also increases the risk of life-threatening hemorrhage

(hereafter, bleed), including intracranial bleeding (Atrial Fibrillation Investigators, 1995). Therefore,

the consequences of misallocating anticoagulation can be serious. In response to these stakes, re-

searchers have developed the CHADS2 score: a simple predictive score of stroke risk for patients

with atrial fibrillation (Gage et al., 2001). Clinical guidelines recommend tailoring treatment deci-

sions on the basis of patients’ CHADS2 scores (Fuster et al., 2006; Hirsh et al., 2008). The CHADS2

score is among the most well known and widely used risk scores used for any clinical condition.2

We study guideline awareness and treatment decisions of nearly 5,800 physicians treating 113,000

newly diagnosed atrial fibrillation patients in the Veterans Health Administration (VHA) from 2002-

2013. For each physician, we measure the date that the physician first incorporates the CHADS2

guideline into their decision-making, by identifying the earliest mention of the CHADS2 score in the

physician’s clinical notes. Following the publication of CHADS2-based treatment guidelines in 2006,

we see steady growth in physicians becoming aware of the guideline. Prior to awareness, physicians

treat roughly 50% of patients with atrial fibrillation, and treatment probability is largely invariant

to the CHADS2 score. After the first CHADS2 mention, practice patterns pivot towards CHADS2-

based recommendations: prescriptions to patients with low risk scores fall by 4.9 percentage points,

while prescriptions to patients with high risk scores increase by 1.6 percentage points. Despite these

changes, physicians who are aware of the CHADS2 score still fail to adhere to guidelines in more

than 40% of cases. Most non-adherence is not explained by a lack of guideline awareness.

To assess the benefits of guideline awareness as well as the possible benefits of stricter adher-

ence, we need to understand how treatment effects vary across patients. To this end, we generate

novel ML estimates of heterogeneous treatment effects from randomized control trial (RCT) micro-

data. To estimate heterogeneous treatment effects, we use detailed patient characteristics, clinical

outcomes, and randomized treatment status of each patient from eight RCTs in the Atrial Fibrillation

Investigators database (hereafter, AFI database) (van Walraven et al., 2009). Using a causal-forest

model (Wager and Athey, 2017; Asher et al., 2016), we obtain estimates of conditional average treat-

ment effects (CATEs) on strokes and bleeds that vary both with patient characteristics included in the

CHADS2 score and with other characteristics. We further compute best linear predictions (BLPs) of

the underlying CATEs using a method described by Chernozhukov et al. (2018), which we use in our

2Researchers affiliated with the Mayo Clinic report that the CHADS2 and its successor the CHA2DS2-VASc were the
most common search queries in their internal clinical decision support tool (Challener et al., 2019). MDCalc.com, the
popular website for calculating risk scores, currently lists CHA2DS2-VASc as second-highest in popularity and CHADS2
as sixth-highest in popularity.
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subsequent analysis.

We find substantial heterogeneity in stroke treatment effects. At the 90th percentile, warfarin re-

duces strokes by 10 percentage points, while at the 10th percentile, it reduces strokes by 4 percentage

points. In contrast, we cannot detect conclusive evidence of heterogeneity in bleed treatment effects

in the AFI database. The CHADS2 score explains a substantial share of our estimated variation in

stroke treatment effects ('2 = 0.67). The median CATE for patients with the lowest CHADS2 score is

−0.03, while the median CATE for patients with the top highest three scores is −0.10. Nonetheless,

there remains meaningful residual variation that we can validate across RCTs in the AFI database.

Exporting the ML-estimated treatment effects to the VHA, we estimate a model of clinician treat-

ment decisions. Our goal is to understand the extent to which treatment deviations from CHADS2

recommendations may be motivated by residual variation in stroke treatment effects that are not cod-

ified in the guideline. Our first finding is that new awareness of the CHADS2 score (proxied by first

mention of the score in a doctor’s clinical notes) leads doctors to place greater decision weight on

CHADS2-related variation in stroke treatment effects. However, consistent with the reduced-form

evidence above, responsiveness to variation in CHADS2-related treatment effects remains low in ab-

solute terms. Our second finding is that residual variation in stroke treatment effects (i.e., orthogonal

to the CHADS2 score) explains even less variation in treatment decisions.

These results suggest that departures from guidelines in this important setting generally worsen

patient outcomes, but this interpretation relies on two key assumptions. First, our estimates of treat-

ment effects in the AFI data must be externally valid in the VHA data. To assess the external validity

of our estimates across trials, we demonstrate that treatment effects estimated on subsets of our trial

database predict treatment effects in “out-of-bag” trials not used in estimation. Mean patient charac-

teristics in the VHA data are “in the support” of mean patient characteristics across trials in the AFI

data. Further, we show that treatment effects estimated from the AFI database are consistent with key

patterns in our observational data: observational differences between treated and untreated patients

are strongly correlated with RCT-estimated CATEs, and stroke outcomes for untreated patients are

more frequent for patients with larger RCT-estimated CATEs.

Our second major assumption is that doctors are not making treatment decisions based on vari-

ation in treatment effects that cannot be predicted by the covariates in the AFI data. The attributes

in the AFI data were included precisely because physicians plausibly believed they might impact the

benefits and costs of anticoagulant treatment. Nonetheless, other attributes may also be relevant. To

investigate this, we add to the model detailed patient characteristics that may relate to the benefits
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of treatment despite not being available in the RCT data; these include variables that predict patient

medication adherence, bleed risk, and fall risk. These characteristics explain very little of the variance

in treatment choices given estimated treatment effects and do not impact the other coefficients in the

model. This suggests that deviations from guidelines are not easily reconciled by other considerations

raised by the clinical literature but not measured in the AFI database.

We consider a variety of counterfactual scenarios, using the model to simulate the impact of

broader awareness or stricter adherence to the existing guideline. Our findings suggest that physi-

cians allocate treatments to patients with atrial fibrillation about as well as a random decision rule.

Extending awareness of the CHADS2 score to all physicians would slightly improve treatment allo-

cation, leading to a 1% improvement in strokes prevented per bleed induced. The benefits of strict

adherence to current guidelines are much larger than the benefits of universal guideline awareness.

Reallocating the same number of treatments in the observed allocation to patients with the highest

CHADS2 scores would prevent 18% more strokes per bleed induced than the status quo. Strict ad-

herence to a guideline which incorporates all validated ML information about heterogeneity in stroke

treatment effects would prevent 24% more strokes per bleed induced than the status quo. These re-

sults suggest that policies that aim to increase adherence may produce much larger improvements in

patient outcomes than policies that only broaden guideline use by increasing awareness.

Our research relates to several strands of literature. First, we contribute to an active literature

in economics studying the potential for machine-based algorithms to improve decision-making. Ev-

idence from judge bail decisions (Kleinberg et al., 2018) and clinical care (Abaluck et al., 2016;

Mullainathan and Obermeyer, 2019) suggests that human experts make frequent mistakes that could

be corrected by optimal guidelines, but do not analyze how guidelines impact behavior in practice.

Finkelstein et al. (2021) suggest that experts deviate from guidelines even for themselves and close

relatives, but they do not directly link adherence to health outcomes. Hoffman et al. (2018) finds that

managers in their hiring decisions frequently overrule a technology-driven hiring recommendation,

but that doing so worsens outcomes. We build on this research by studying highly skilled experts

making an important clinical decision. We analyze how new awareness of a guideline changes be-

havior and outcomes, in addition to simulating the effects of stricter adherence to existing and novel

guidelines using estimates of heterogeneous treatment effects.

Prior papers comparing machine decisions to human discretion have typically relied on observa-

tional data and quasi-experimental assumptions to reach conclusions about misallocation.3 A recent

3Many of these papers compare treatments and outcomes across decision-makers, usually assuming a common ranking
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econometric literature has pointed out that many quasi-experiments recovering treatment effects av-

eraged across subgroups of data may nevertheless fail to meet the stricter assumptions required for

identifying heterogeneous treatment effects, estimated from within each subgroup of data (e.g., Kole-

sar et al., 2015; de Chaisemartin, 2017; Frandsen et al., 2019). We circumvent these concerns by

using RCTs to develop measures of treatment effect heterogeneity. In our application of this method,

we also propose methods to investigate the external validity of results from RCTs in observational

data, addressing some of the concerns about extrapolation raised by (Manski, 2017).

Einav et al. (2019) and Oster (2020) both report that healthier patients are more likely to take up

recommended health screenings and diets. This selection can bias observational estimates and may

imply that those treated as a result of guidelines have smaller treatment effects than inframarginal

patients. We contribute to this investigation of selection under evidence-based recommendations. In

our setting, we study guidelines for physician decisions, rather than patient health behaviors. We find

that the marginal treated patients due to the introduction of the CHADS2 score have larger treatment

effects, but physician decisions nevertheless achieve worse outcomes relative to strict adherence.

In the medical literature, research has focused on how treatment decisions relate to clinical guide-

lines. The literature has shown widespread lack of adherence, not only in the case of the CHADS2

score, but also across many clinical risk scores and guidelines.4 Our paper builds on this literature

by documenting that even adopting physicians who are aware of the guideline continue to deviate

frequently. The crucial difficulty in interpreting non-adherence is the lack of evidence on whether

counterfactual treatment decisions promoted by guidelines will improve health outcomes. For ex-

ample, Mehta et al. (2015) report that physicians who adhere more closely to guidelines have better

outcomes but do not separate the impact of guidelines from other differences across physicians. We

address this difficulty by combining evidence on guideline adherence with causal estimates of treat-

ment effects.

The remainder of this paper is organized as follows. Section 2 provides clinical background.

Section 3 describes our data. Section 4 provides reduced form evidence of the impact of CHADS2

awareness on treatment. Section 5 presents our estimates of causal-forest treatment effects. Section 6

of cases across decision-makers (e.g., Abaluck et al., 2016; Kleinberg et al., 2018; Chandra and Staiger, 2020). Newer
approaches in Chan et al. (2019) and Arnold et al. (2020) relax this assumption but restrict the direction of treatment
effects. In another vein, recent papers have applied ML techniques to predict outcomes using observational data, again
with necessary quasi-experimental assumptions because outcomes are selectively observed (e.g., Ribers and Ullrich, 2019;
Mullainathan and Obermeyer, 2019).

4An older review article estimated that 40% of patients were not receiving guideline-recommended care for chronic
conditions (Schuster et al., 1998). More recent research suggests non-adherence to guidelines continues to be widespread
across a variety of clinical contexts (Lasser et al., 2016; Valle et al., 2015; Chen et al., 2015; Rosenberg et al., 2015). For
the CHADS2 score specifically, Chapman et al. (2017) find evidence of substantial non-adherence to the guideline.
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models how guideline awareness impacts the relationship between treatment behavior and treatment

effects. Section 7 considers counterfactual policies. Section 8 concludes with a discussion of policy

implications.

2 Atrial Fibrillation and the CHADS2 Score

Atrial fibrillation is the most common cardiac arrhythmia. It afflicts over 5 million Americans; for

adults older than 40 years, one in four will develop the condition (Hsu et al., 2016). Atrial fibrillation

increases stroke risk by five-fold and is responsible for 40% of strokes among patients older than

80 years (Piccini and Fonarow, 2016). The main treatment to reduce stroke risk among patients with

atrial fibrillation is anticoagulation by warfarin.5 While anticoagulation is effective in reducing stroke

risk, by 68% on average, it has also been shown to increase the risk of major bleeding by more than

twofold (Atrial Fibrillation Investigators, 1995; Kearon et al., 2012). Given the large potential benefits

and risks of anticoagulation, an important task for clinicians evaluating patients with atrial fibrillation

is to decide which patients to treat with anticoagulation.

Efforts to improve anticoagulation targeting have largely focused on predicting stroke risk, with

the intuition that the benefits of anticoagulation are likely increasing in baseline stroke risk. Earlier

studies re-analyzed data from the control arms of randomized trials of patients with atrial fibrillation

to find hypertension and prior stroke as important risk factors of stroke (Atrial Fibrillation Investiga-

tors, 1995; Stroke Prevention in Atrial Fibrillation Investigators, 1995). Building on this work, the

CHADS2 score was first formulated by Gage et al. (2001), using registry data comprising 1,733 Medi-

care patients, and later validated for clinical practice by Gage et al. (2004). In 2006, the American

College of Cardiology (ACC) became the first specialty society to issue a guideline recommending

treatment decisions based on the CHADS2 score (Fuster et al., 2006). Other professional societies

followed, with the American College of Chest Physicians (ACCP) recommending CHADS2-based

treatment decisions in 2008 (Hirsh et al., 2008).

Designed to be easy to use, the CHADS2 score is an index of five patient characteristics: “C” for

congestive heart failure (1 point), “H” for hypertension (1 point), “A” for age ≥ 75 years (1 point), “D”

for diabetes (1 point), and “S” for stroke (2 points) (Table 1). Since its introduction, the CHADS2

5In our sample, fewer than 2% of patients are prescribed alternative anticoagulants. Novel oral anticoagulants (NOACs)
were introduced near the end of our sample, with the FDA approval of dabigatran in 2010, rivaroxaban in 2011, and
apixaban in 2012. Based on non-inferiority trials, they are similarly effective in preventing stroke with possibly lower risks
of bleeding (Lane and Lip, 2012). Guideline recommendations for their use (vs. no anticoagulation) rely on the same stroke
risk scores. Warfarin continues to be the mainstay drug for anticoagulation in atrial fibrillation (Hsu et al., 2016).
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score has become one of the most widely recognized risk scores in clinical practice.6 However,

despite its widespread recognition, studies in a variety of settings have shown that adherence to the

CHADS2 score has been low, typically with only half of recommended patients being prescribed

anticoagulation (Hsu et al., 2016; Piccini and Fonarow, 2016).

While poor adherence to CHADS2-based treatment recommendations has been linked to many

factors, physicians’ concerns of increased bleeding risk due to frailty and multi-morbidity are com-

monly cited. Frailty and multi-morbidity often coexist with atrial fibrillation, since both conditions

increase in prevalence with age. Less evidence has existed to guide physicians to assess bleeding

risk. The first formal risk score for bleeding (HAS-BLED) was published toward the end of our study

period (Lane and Lip, 2012). However, it remains unvalidated in the population of atrial fibrillation

patients and is not as widely used in clinical practice. In recent years, more evidence has emerged

to support the use of anticoagulation in frail and multi-morbid patients; nevertheless, the uptake of

anticoagulation among patients who are frail and have a high-risk of stroke remains low (Fawzy et

al., 2019).

3 Data

Our approach combines data from two main sources. We study treatment decisions in the context of

guideline awareness using data from the Veterans Health Administration (VHA). We estimate hetero-

geneous treatment effects using RCT data from the Atrial Fibrillation Investigators (AFI) database.

3.1 Veterans Health Administration Data

Defining the atrial fibrillation cohort. To study initial treatment decisions, we identify patients

with a new diagnosis of atrial fibrillation using electronic medical records from the Veterans Health

Administration (VHA) from October 2002 to December 2013. Following a protocol developed in

previous work, we err on the side of defining a narrower cohort of patients who are more likely both

to have a new, confirmed atrial fibrillation diagnosis and to receive care at the VHA (Turakhia et al.,

2013; Perino et al., 2017).

6In 2010, a modification of the CHADS2 score, the CHA2DS2-VASc score, was introduced (Lip et al., 2010). The
CHA2DS2-VASc score changes the weighting of age and introduces vascular disease as an additional risk factor. Due to
the time period covered by our data, from 2003-2013, our analysis focuses principally on the original CHADS2 score.
We observe comparatively little use of the CHA2DS2-VASc score: while 23% of patient encounters in our data are by
physicians who have previously mentioned the CHADS2 score, fewer than 2% of patient encounters are by physicians who
have previously mentioned the CHA2DS2-VASc in their notes. We do consider vascular disease in our causal-forest model
of treatment effects, and in some simulations, we contrast the CHADS2 and CHA2DS2-VASc scores.
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We first identify potentially new diagnoses of atrial fibrillation (ICD9 code beginning with 427.3)

among patients with no previous such diagnosis within three years, extending our data back to Oc-

tober 1999 to perform this exclusion. We also require an electrocardiogram (the primary means to

diagnose atrial fibrillation) near the time of initial diagnosis and no anticoagulation prior to the initial

diagnosis. After a diagnosis of atrial fibrillation, the anticoagulation decision is typically made by a

physician who provides longitudinal care and makes prescription decisions for the patient. Therefore,

to attribute patients to physicians who are likely responsible for anticoagulation decisions, we require

each patient to have a visit with a VHA cardiologist or primary care physician (PCP) within 90 days

after the initial diagnosis (to decide on treatment). Further, the patient must have received at least one

drug (other than warfarin) prescribed by the attributed physician within one year before or after the

atrial fibrillation diagnosis. We also require each attributed physician to have at least 30 other patients

with atrial fibrillation and to have prescribed warfarin for another patient. Our sample restrictions

result in an analytic cohort of 113,270 patients (see Table 2 for details).

For each patient in this cohort, we capture a broad array of characteristics that may influence the

anticoagulation decision following an initial diagnosis. These characteristics include demographic

information, comorbidities, laboratory test results, body measurements, and blood pressure readings.

We use these characteristics to construct the CHADS2 score, match the other clinical characteristics

recorded in the RCT data, and proxy for other concerns not fully captured in the RCT data (e.g.,

bleed risk, fall risk, frailty, multi-morbidity).7 To capture the anticoagulation decision, we rely on

VHA records of prescriptions for warfarin or a novel oral anticoagulants (e.g., dabigatran, rivaroxa-

ban, apixaban, edoxaban).8 Summary statistics on the VHA atrial fibrillation cohort are reported in

Table 3, Column 1.

Defining guideline awareness. We measure awareness of the CHADS2 score guideline at the physi-

cian level by searching physician visit notes for mentions of the CHADS2 score.9 We proxy the tim-

7For further details on the additional patient comorbidities and risk factors we extracted from the VHA sample, see
Appendix Section A.2.

8The VHA records include prescriptions that are dispensed by the VHA as well as prescriptions that are paid for by
the VHA. Recall that the vast majority of prescriptions in our sample are for warfarin. Fewer than 2% of patients in our
sample are prescribed a novel oral anticoagulant (NOAC). Among patients prescribed an anticoagulant, 4% are prescribed
a NOAC.

9Recall that physicians in our analytic sample are cardiologists and PCPs who have each treated at least 30 atrial
fibrillation patients. We increase our detection of CHADS2 mentions for these physicians by using visit notes within 6
months of initial diagnosis in our broad cohort of 844,312 atrial fibrillation patients, who may be patients with previously
established diagnoses (see Table 2), and search for non-case-sensitive occurrences of the string chads. We settled on this
string after spot-checking several variants for false positives. Consistent with our spot-checking results, we find no positive
mentions of this string in the first two years of our data, prior to diffusion of the CHADS2 score. This suggests that false
positives are very rare.
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ing of a physician’s first awareness of the guideline by her first clinical note mentioning the CHADS2

score, and we define her as guideline-aware if she has previously mentioned the CHADS2 score in

a note. Our use of the term “awareness” here is an imperfect shorthand: physicians may be literally

aware of a guideline without it ever impacting their practice; our goal is to understand how physicians

change their behavior when they decide to incorporate the guideline into their decision-making.10

In Figure 2, we show that almost no physician mentioned the CHADS2 score in the period prior

to the ACC guideline in 2006, despite the fact that the CHADS2 score was introduced in 2001 and

validated in 2004. After 2006, we find a steady rise in the proportion of physicians who have previ-

ously mentioned the CHADS2 score at least once, approaching 70% near the end of our study period

in 2013. We note that this represents a lower bound to awareness of the CHADS2 score, as physicians

may be aware of the score yet not mention it in their notes.

As we will show in Section 4, for physicians who eventually mention the CHADS2 score, treat-

ment decisions become more guideline-concordant at the time of their first mention in clinical notes.

We categorize physicians without any note mentioning the CHADS2 score as never being aware of

the guideline. As an important caveat, it is likely that many physicians whom we label as “never

aware” have actually heard of the guideline, but do not meet the stringent definition of “awareness”

that we impose here. Empirically, we will document that these “never aware” physicians deviate more

frequently from guideline-based care. Thus, although ‘never aware” physicians may have heard of the

guideline, they are unlikely to be making explicit use of its recommendations to drive their clinical

decision-making.

3.2 Atrial Fibrillation Investigators Database

To estimate heterogeneous treatment effects—which we use to assess physician decision-making and

to evaluate the likely effects of counterfactual anticoagulation decisions on patient outcomes—we

rely on the Atrial Fibrillation Investigators database (hereafter, AFI database). The AFI database con-

tains patient-level observations from eight trials in which patients were randomized to anticoagulants

versus a placebo or control.11 Details of the AFI database have been documented elsewhere (e.g., van

10An earlier draft of the paper referred to this note-mentioning as “adoption” which is also imperfect. Our analysis below
quantifies whether “awareness” in the sense above leads to behavior change.

11There are a total of ten trials in the original AFI database. For our analysis, we define patients who were treated with
aspirin alone as being untreated with anticoagulation. We drop observations for patients on low Warfarin or low Warfarin
plus aspirin therapy. After these modifications, eight trials remain with both treatment and control arms. In three of the eight
trials, patients are divided into eligible versus ineligible groups for anticoagulation and then randomized among eligible
patients. We treat the ineligible patients as separate trials (with only one treatment arm) and use data from all trials in the
causal-forest implementation to increase power.
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Walraven et al., 2009).

The AFI database was previously compiled by investigators to explore heterogeneity in risk and

in treatment effects. Previous analyses using the database have selected patient characteristics heuris-

tically (van Walraven et al., 2002, 2009). For each patient in the AFI database, we observe randomiza-

tion status and subsequent stroke and bleeding events. In harmonizing data across the clinical trials,

the investigators consistently recorded several important patient characteristics at the time of random-

ization, including all variables underlying the CHADS2 score, as well as several additional variables,

including further detail on demographics, height, weight, blood pressure, hemoglobin, smoking sta-

tus, comorbidities, and history of transient ischemic attack (TIA), stroke, anginal symptoms, and

myocardial infarction. In Appendix Table A.1, we list the full set of characteristics that we use from

the AFI database. In Appendix Table A.3, we report the results of balance tests, which suggest suc-

cessful randomization in these clinical trials.

4 CHADS2 Guideline Awareness and Adherence

The 2006 ACC and 2008 ACCP guidelines recommended treating patients with a CHADS2 score

of 0 or 1 potentially with aspirin alone and treating patients with a CHADS2 score of 2 or above

with anticoagulation (Hirsh et al., 2008; Fuster et al., 2006).12 We therefore begin our analysis by

describing trends in prescribing behavior for groups of patients defined by their CHADS2 score.

Figure 1 displays trends in anticoagulation rates for patients with low risk of stroke (CHADS2

score of 0 or 1), patients with moderate risk of stroke (CHADS2 score of 2 or 3), and patients with

high risk of stroke (CHADS2 score of 4 or greater). Prior to the 2006 guideline, patients with lower

CHADS2 scores were remarkably more likely to be treated with anticoagulation. This relationship

held both between patients with low vs. moderate stroke risk and between patients with moderate

vs. high stroke risk. We will later show that this pattern can be explained in part by physicians’

reluctance to treat multimorbid patients with high mortality risk. In the years after 2006, we observe

a gradual reduction in anticoagulation rates for low-risk patients for whom the guideline allowed for

management without anticoagulation. There appears to be a small increase in treatment rates for pa-

tients at moderate or high risk. However, even among groups where anticoagulation is recommended,

prescription rates remain below 55% for our sample period. Patients with high stroke risk (CHADS2

12In the 2006 and 2008 guidelines, patients with a CHADS2 score of 0 were recommended aspirin, while patients with a
CHADS2 score of 1 could be treated with either aspirin or anticoagulation. Later guidelines suggested anticoagulation for
patients with a CHADS2 score of 1 and some patients with a CHADS2 score of 0 but a CHA2DS2-VASc score of 1 (Lip et
al., 2010). This clinical consensus applied mostly to after our study period.
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score of 4 or greater) remain slightly less likely to be treated than patients with moderate stroke risk

(CHADS2 of 2 or 3).

It is evident from Figure 1 that physicians had only weak adherence to recommendations to treat

patients with high CHADS2 risk scores and to leave patients with low CHADS2 risk scores untreated.

We proceed by estimating the causal impact of guideline awareness on prescription choice and inves-

tigating how guideline adherence changes after a physician incorporates the guideline into her clinical

practice. In the Panel A of Figure 3, we first plot how anticoagulation rates among high- and low-

score patients change following an adopting physician’s first note mentioning the CHADS2 score.

Following this event, the anticoagulation rate for low-scoring patients drops by several percentage

points, while the anticoagulation rate for higher-scoring patients increases slightly.

We further assess the effect of awareness on adherence by an event-study regression separately

for the two guideline-relevant groups of patients:

,8 =

5∑
A=−5

1 (A (8) = A) \A +[3 (8) + bC (8) + Y8 . (1)

,8 ∈ {0,1} indicates whether patient 8 was anticoagulated, and A (8) is a function that returns the

year of 8’s visit relative to the prescribing physician’s becoming aware of the CHADS2 score. The

regression includes fixed effects for the prescribing physician, 3 (8), and for the year, C (8). We estimate

Equation (1) separately for patients with CHADS2 scores of 0 and 1 and for those with CHADS2

scores 2 and higher. Panel B of Figure 3 displays estimation results of the \A coefficients and is

broadly consistent with the raw treatment rates shown in Panel A. Treatment rates for low-score

patients decline by 4.7 percentage points (standard error of 1.6 percentage points), while they increase

by 1.7-percentage points (standard error of 1.1 percentage points) for higher-score patients.13

Taken together, these results suggest that although the CHADS2 score was becoming widely

known, adherence to anticoagulation recommendations increased only modestly with physician aware-

ness. Prior to the 2006 guideline, almost no physician appeared to be using the CHADS2 score in

documented clinical decision-making, yet by the end of 2013, the vast majority had explicitly men-

tioned it in their notes. While our event-study results suggest a clear behavioral shift in prescribing at

the time of becoming aware of the CHADS2 score, most of this response is from avoiding treatment

for low-risk patients, not increasing treatment for high-risk patients. In Figure A.1, we further show

that, while adherence varied substantively across physicians, few physicians reached an adherence

13This estimate of changes in treatment rates comes from aggregating the results shown in Figure 3. Specifically, we
calculate the difference between the average level in years 0 through 4 minus the average level in years −5 through −1.

11



rate of 80%.

Guideline awareness is more difficult to measure than adherence. However, two features of our

setting lend greater confidence to our results on the effect of awareness and allow us to understand

patterns of adherence in the context of guideline awareness. First, the lack of pre-trends in our event-

study results in Figure 3 and the timing of the effect suggest that our measure based on clinical

documentation coincides with a discrete change in physicians’ consideration of the guideline. Second,

we witness a dramatic shift in the pace of guideline awareness—from nearly no mentions of the

CHADS2 score prior to the ACCP guideline publication, growing to 70% of doctors having mentioned

the score by the end of our study. Falsely classifying physicians who have adopted the guideline but

have not mentioned the CHADS2 score is thus less of a concern, and we can reconcile our event-study

results with the overall shifts in adherence, shown in Figure 1, among all physicians.

These findings are consistent with a clinical literature that emphasizes the importance of reducing

stroke risk by anticoagulation and documents widespread awareness of the CHADS2 score among

physicians, more than a decade after the 2006 ACC guideline (Ashburner et al., 2018; Amroze et al.,

2019). Yet in numerous settings, only about half of patients with the highest stroke risks are treated

with anticoagulation (Hsu et al., 2016). Our results further show that there is low adherence even

among physicians who discuss the CHADS2 score in their decision-making. Evidence suggests that

reluctance to initiate anticoagulation mostly stems from physician decisions rather than patient pref-

erences (Bungard et al., 2000); in one study, 93% of atrial fibrillation patients offered warfarin elected

to take the treatment (Gottlieb and Salem-Schatz, 1994). In surveys, physicians report hesitance to

anticoagulate patients who are elderly, frail, and multi-morbid, out of concern that anticoagulation

may result in severe bleeding for these patients (Fawzy et al., 2019). The literature suggests that this

hesitation may be in part driven by a mistaken assessment of bleeding risks and an overemphasis

on avoiding adverse events of commission (i.e., due to initiating treatment) as opposed to those of

omission (i.e., due to withholding treatment) (Gross et al., 2003).14

5 The Effects of Anticoagulation

The results in the previous section show a gap between CHADS2 guideline awareness and full ad-

herence to the CHADS2-based recommendations. Our interpretation of this gap, as well as policy

14Specifically, physicians’ estimates of rates of warfarin-associated intracerebral hemmorrhage were more than 10 times
larger than research-based estimates (Gross et al., 2003). Further, Choudhry et al. (2006) show that physicians respond
idiosyncratically to individual events, such as whether one of the physicians’ other anticoagulated patients has recently
experienced an adverse bleeding event.
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recommendations for incorporating evidence from clinical trials into practice, will depend on the

relative value of physician discretion versus guideline adherence for patient health outcomes.

In the case of atrial fibrillation, physicians may depart from CHADS2-based recommendations

for good reasons. The CHADS2 score predicts stroke risk, while treatment decisions should be based

on stroke treatment effects. Further, clinicians have access to more patient information than has been

encoded in simple risk scores. Tailoring their treatment decisions to this additional information could

lead to departures from CHADS2-based guidelines.

Nevertheless, an emerging literature has documented widespread decision errors among physi-

cians (Abaluck et al., 2016; Mullainathan and Obermeyer, 2019). Even with private information

that is not encoded in guidelines, perfect recall of outcomes, and random variation, physicians will

typically not have access to the numbers of patients needed to form their own reliable estimates of

heterogeneous treatment effects from personal experience (Chandra et al., 2021).

5.1 Setup and Design

To evaluate treatment decisions and departures from guidelines, we need to characterize counterfac-

tual patient stroke and bleeding outcomes. Let . B
8
(F) ∈ {0,1} denote whether patient 8 will have a

stroke within one year, depending on anticoagulation F ∈ {0,1}, and let.1
8
(F) ∈ {0,1} denote a simi-

lar object for bleeding within one year. We then define conditional average treatment effects (CATEs)

that are a function of patient characteristics, both those that are included in the CHADS2 score and

others that are omitted from it. Specifically, for one-year stroke and bleeding, respectively,

gB (G) ≡ �
[
. B8 (1) −. B8 (0)

��-8 = G] ; (2)

g1 (G) ≡ �
[
.18 (1) −.18 (0)

��-8 = G] , (3)

where -8 is a set characteristics belonging to patient 8.

We set about estimating these objects by applying “causal forest” ML techniques, as described

in Wager and Athey (2017), to RCT-generated data in the AFI database (van Walraven et al., 2002).

While many applications of machine learning methods use very large data sets, new work on causal

forests apply related methods to estimate CATEs in sample sizes more typical of RCTs in medicine

and social science; similar-scale RCT applications of causal-forest estimation have been previously

demonstrated (Athey and Wager, 2019; Chernozhukov et al., 2018). We adapt the insights from these

applications to our setting.
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The experimental design of RCTs is well suited for estimating treatment effect heterogeneity,

in contrast to many quasi-experimental designs commonly used in the economics literature. First,

random assignment of treatment within each cell of patient characteristics G, a crucial requirement to

estimate CATEs, is more plausible in RCTs. Second, many quasi-experiments involve monotonicity

and exclusion-restriction violations within cells of the data, even if these violations “average out” in

the entire sample (e.g., Kolesar et al., 2015; Frandsen et al., 2019). Third, RCTs carefully collect

information on infrequent yet important outcomes (e.g., stroke and bleeding) for the disease and

treatment being studied. Capturing these events, particularly their timing relative to initiation of

treatment, may be challenging in even the most detailed of observational data, as we will note later.

5.2 Causal-Forest Implementation

We use the algorithm developed in Athey and Wager (2019) for estimating causal forests with condi-

tional random assignment. The causal forest uses all the variables that overlap between the AFI and

VHA data to predict treatment effect heterogeneity in the AFI RCTs (Appendix Table A.1).

The first step of the causal-forest procedure estimates risk among control-group patients as a func-

tion of patient characteristics G using regression forests. Specifically, the regression forests predict

.> (G) = � [.>8 (0) |-8 = G], > ∈ {B, 1}. (4)

.> (G) is formed using observations in the control arm of each trial by estimating an “honest” regres-

sion forest.

Next, we estimate the causal forest to generate predictions of stroke and bleeding CATEs, gB (G)

and g1 (G) respectively, capturing heterogeneity in treatment effects along patient characteristics ob-

servable in the AFI database. The estimation procedure includes the regression forest predicted risk as

one covariate along with the variables identified in Appendix Table A.1. Before fitting the causal for-

est, we first recenter both outcome and treatment variable (a formally justified procedure for removing

trial fixed effects).15 For more details on our implementation of causal forest, see Appendix A.3.

To provide insight into sources of treatment-effect heterogeneity, we summarize the “variable im-

portance” of patient characteristics in predicting treatment effect heterogeneity.16 Appendix Table A.2

15The “recentering” procedure is justified in Section 6.1.1 of Athey et al. (2019). Formally, we estimate these regression
forests: .> (G; 9) = � [.>

8
(0) |-8 = G, 9 (8) = 9], > ∈ {B, 1} and, (G; 9) = � [,8 |-8 = G, 9 (8) = 9] where 9 (8) indicates the RCT

trial for individual 8. This procedure resembles the construction of our risk measures, but includes trial fixed effects and
uses all observations (not just control group observations).

16There are several methods to compute variable importance, and there is no clear consensus yet on the best method (Wei
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lists variables ranked by importance in the stroke and bleed causal forests, as well as regression forests

estimated to predict risk in the control groups. We also report the sign of each variable in a linear

regression of treatment effects on the ten most important variables. The most important predictor of

treatment effects in the stroke models is the regression-forest model of stroke risk. The variables in

the CHADS2 score generally rank highly in both the causal-forest and regression-forest models, but

several variables not in the CHADS2 score also matter: e.g., body weight, hemoglobin, and smoking

behavior all predict stroke treatment effects.

5.3 Validation and Best Linear Predictors

In this section, we validate the estimated heterogeneity to assess concerns about potential over-fitting

and external validity across trials. Following Athey and Wager (2019), we project outcomes onto

leave-out-trial CATE predictions of treatment effects. Specifically, for observations in each trial in

the AFI database, we make out-of-bag CATE predictions from causal forests grown exclusively from

data in the other trials. Denote these leave-out-trial CATE predictions for stroke and bleeding as

ĝ>− 9 (8) (G), > ∈ {B, 1}, for individual 8 in trial 9 (8) with characteristics -8 = G (we hereafter suppress the

8 in 9 (8) to simplify notation). Using regression forests, we also construct and potentially control for

predictions of .> (G), based on other trials: .̂>− 9 (G), using only control group data.

Following Chernozhukov et al. (2018), we assess external validity across trials by a “best linear

predictor” regression of realized outcomes .>
8

on treatment ,8 interacted with demeaned out-of-bag

CATE predictions, controlling for trial fixed effects Z>
9

and treatment probability within each trial

% 9 ≡ Pr(,8 | 9 (8) = 9) similarly interacted with demeaned out-of-bag CATE predictions:

.>8 =

[
X>0 + X

>
1

(
ĝ>− 9 (-8) − g

>
)]
,8 +

W>1

(
ĝ>− 9 (-8) − g

>
)
% 9 +W>2 .̂

>
− 9 (-8) + Z>9 + Y8 , (5)

where g> ≡ ∑
8 ĝ
>
− 9 (-8) is the mean CATE prediction.17 The coefficient X>1 quantifies the predictive

power of heterogeneous CATEs that are estimated in other trials; a coefficient value of X>1 = 1 would

et al., 2015). We use a measure from Athey et al. (2019) which ranks variables more highly in importance if the algorithm
chooses to split trees in the forest earlier on those variables.

17The regression includes trial fixed effects to address a mechanical negative relationship between CATEs across trials
when trials are few. To see this, consider the following decomposition: g> (G | 9) = g>G +g>9 +g>∗G, 9 , where g>∗

G, 9
is by construc-

tion uncorrelated with g>G and g>9 . The heterogeneity of interest in the out-of-bag CATEs, ĝ>− 9 (8) (G), is driven by variation
in g>G . If there are relatively few trials, then variation in g>9 will bias downward the relationship between outcomes and
CATEs, due to the small-sample negative correlation between ĝ>− 9 (8) (G) and ĝ> (G | 9).
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suggest that the causal-forest estimates are well calibrated and that outcomes for a patient with char-

acteristics G would increase one-for-one with treatment status,,8 , and the relevant CATE, ĝ>− 9 (G).

For strokes, we also consider a modified procedure where we decompose treatment effects into

two dimensions: stroke treatment effects that vary with the CHADS2 score, and stroke treatment

effects that are orthogonal to the CHADS2 score. Specifically, we first use a regression to project

leave-out-trial stroke CATEs, ĝB− 9 (G), onto indicators of the CHADS2 score. We call the CHADS2-

projected component ĝB (2)− 9 (G) and the residual component ĝB (A )− 9 (G), noting that ĝB− 9 (G) = ĝ
B (2)
− 9 (G) +

ĝ
B (A )
− 9 (G). We use these components to perform the following BLP projection:

. B8 = XB0,8 +
∑

>̃∈{B (2) ,B (A ) }

[
X>̃1

(
ĝ>̃− 9 (-8) − g

>̃
)
,8 +W>̃1

(
ĝ>̃− 9 (-8) − g

>̃
)
% 9

]
+

W2.̂
B
− 9 (-8) + Z B9 + Y8 . (6)

Using Equation (6), we construct BLP-based adjustments to the stroke CATEs as follows:

ĝB�!% (G) = X̂
B
0 + X̂

B (2)
1 ĝB (2) (G) + X̂B (A )1 ĝB (A ) (G) . (7)

The BLP estimation validates the performance of our causal-forest procedure on held-out trials.

Results of the BLP procedure are reported in Appendix Table A.4. All of our BLP coefficients on

the recovered stroke causal-forest treatment effects are significantly different from 0, and we cannot

reject the null that each coefficient equals 1. For stroke CATEs, using Equation (5), we estimate

X̂B1 = 0.823 (standard error of 0.230). Using Equation (6), we estimate the CHADS2 component as

X̂
B (2)
1 = 1.329 (standard error of 0.408); for the residual component in this equation, we estimate

X̂
B (A )
1 = 0.645 (standard error of 0.265). In other words, both components predict stroke treatment

effect variation in held-out trials, with coefficients not statistically distinguishable from 1.

By contrast, the BLP regression suggests that there is little reliably estimated variation in bleed

CATEs across observable covariates. The BLP coefficient is close to zero (X̂11 = −0.37) and not

statistically significant. In our subsequent analyses, we will adjust CATEs predicted in Section 5.2

for stroke by using Equation (7) for ĝB
�!%

. Because both of the stroke BLP coefficients are close

to 1, the BLP adjustment makes very little difference in practice. For bleeds, the BLP regression

indicates that we cannot validate heterogeneity in bleed treatment effects. In our subsequent analysis,

we assume bleed treatment effects are constant at the estimated average treatment effect. This echoes

the approach taken by current practice guidelines which focus on allocating treatment to patients with
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large expected benefits from stroke risk reduction.

We use the BLP framework to investigate one additional aspect of the causal-forest estimates.

Limited sample size may lead the causal forest to pool subgroups that in truth have different treat-

ment effects because there is limited statistical power to detect treatment effect differences in small

subsamples. Treatment effect heterogeneity that is observed by physicians but not reflected in the

CATEs is of particular concern for our later counterfactual analyses. To further test whether physi-

cians observe treatment effect heterogeneity predicted by observable covariates but not reflected in

the estimated CATEs, we estimate an index of treatment propensity in the observational VHA data.18

We then test whether this treatment propensity index predicts treatment effects in the AFI data, be-

yond the variation predicted by the causal-forest CATE estimates. Results are reported in Appendix

Table A.4, Column 3. The coefficient on the treatment propensity index is small at −0.038 and not

statistically distinguishable zero, suggesting that physicians’ decisions based on observable patient

characteristics in the VHA data do not reveal any additional signal of treatment effect heterogeneity.

Of course, this cannot rule out the possibility that physicians have private information about treatment

effect heterogeneity that is predicted by variables that are not covered in the AFI data. We discuss

this possibility at length in Section 6.4.

5.4 Implied Treatment Effects in the VHA Data

In our main analysis, we take causal-forest prediction rules trained and validated in the AFI database,

in the form of causal-forest splits and leaf values, and apply these rules to patients in the VHA data.

For the remainder of the paper, we use BLP-adjusted CATEs, with weights defined by our validation

exercise in Section 5.3, Equations (6) and (7). For brevity, we will hereafter sometimes refer to these

objects as “treatment effects” or “CATEs.”

Figure 4, Panel A, shows variability in the distribution of estimated stroke (BLP-adjusted) CATEs

when applied to the VHA data. The 10th percentile stroke treatment effect (corresponding to the

largest reductions in stroke risk) is −0.101, while the 90th percentile is −0.040. Given that the best

linear predictor regression found no statistically significant relationship between predicted CATEs

and treatment effects in holdout trials, we assume constant bleed treatment effects of 0.019 for the

rest of our analysis.

We additionally relate our CATE estimates with the CHADS2 score. Figure 4, Panel B, shows that

stroke treatment effects increase roughly monotonically with the CHADS2 score. The median value

18Thanks to David Molitor for this suggestion.
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of ĝB
�!%

for patients with a CHADS2 of 0 is −0.027, while the median value of ĝB
�!%

for patients with

a CHADS2 of 4 to 6 is −0.101. Although stroke treatment effects and the CHADS2 score are highly

correlated, we find substantial residual variation in stroke treatment effects after conditioning on the

CHADS2 score. The '2 from regressing BLP-adjusted stroke treatment effects, ĝB
�!%

on CHADS2

score indicators is 0.67.

5.5 External Validity

While the BLP validation exercise suggests that our causal forest predictions are externally valid

across trials within the AFI database, we ultimately seek to use treatment effects estimated in the

AFI database to evaluate counterfactuals in the VHA data. To assess whether this extrapolation is

reasonable, we conduct three additional analyses that map patient characteristics and implied CATEs

to key features in the VHA data.

First, we compare mean observable attributes of patients in each trial in the AFI database to those

in the VHA data to assess whether, at least with respect to mean characteristics, the VHA data lies

roughly within the support of mean characteristics across the AFI trials. Table 3 compares summary

statistics in the VHA and AFI data. The clearest difference in average patient characteristics is in

the share of male patients. We estimate CATEs for both male and female patients from the AFI

database, allowing the causal forest to use gender to predict treatment effect heterogeneity. Our anal-

ysis of variable importance, shown in Appendix Table A.2, finds that patient gender is unimportant

in predicting CATEs. Among other patient characteristics, the AFI database has a larger share of the

population over 65, a lower incidence of hypertension and diabetes, and a higher rate of congestive

heart failure than the VHA data on average. However, in Appendix Table A.5, we can see that for all

patient characteristics (including gender), the characteristic mean in the VHA data is within the range

of characteristic means across AFI trials. This mitigates concerns that the types of patients seen in

the VHA are not represented in the AFI database.

Second, we compare our estimated AFI stroke CATEs with observational stroke “treatment ef-

fects” in the VHA data, or regression-adjusted differences in stroke outcomes between treated and

untreated VHA patients.19 In this process, we noted a major limitation of observational data with

respect to recording the timing of events. Specifically, in contrast to the AFI RCT data generated with

19OLS estimates interact anticoagulation treatment with each of the patient characteristics that are covered in both the
AFI and VHA data (see Appendix Table A.1 for the complete list). In addition to controlling for this variable set, the OLS
specification also controls for a complete set of Elixhauser comorbidities, history of hemorrhage, family history of stroke,
and a 3-knot spline in the predicted mortality index. For more details on construction of the predicted mortality index see
Appendix A.3.
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the express purpose of measuring predefined events, ex post measures of stroke diagnosis in observa-

tional data—both those generated by insurance claims and those from electronic health records—can

indicate either a history of stroke or a new event of stroke.20 Thus, to reliably capture the outcome

of stroke, we restricted estimation of observational stroke treatment effects to patients in the VHA

data who had no prior history of stroke. In Figure 5, Panel A, we show that CATEs imputed for these

patients from the AFI database are quite predictive of observational treatment effect estimates in the

VHA data. The correlation coefficient between these two measures of treatment effects, estimated

from different data sets, is 0.68. We also note that OLS treatment effects are on average slightly

positive, which suggests selection bias in the VHA data: physicians tend to treat patients with higher

stroke risk.

Finally, in Figure 5, Panel B, we investigate stroke outcomes among untreated patients in the

VHA. Due to the difficulty distinguishing current from past strokes, we again exclude patients with

stroke history from this analysis. VHA patients with large predicted CATEs who nevertheless go

untreated suffer much higher rates of stroke within one year, compared to patients with smaller pre-

dicted CATEs. Along similar reasoning in Mullainathan and Obermeyer (2019), this observational

pattern is consistent with the possibility that patients with large estimated stroke CATEs likely suffer

considerable harm from under-treatment, while patients with small stroke CATEs have low stroke

incidence and thus small potential benefits from anticoagulation.

6 Assessing Physician Decisions in the VHA

With ML predictions of treatment effects in hand, we turn to assessing how physician treatment

decisions in the VHA relate to treatment effects. We introduce a model to characterize how treatment

decisions respond to treatment effect variation, separately considering variation that is and is not

captured by guidelines. This model allows us to consider the relative effects of guidelines awareness

and adherence on patient outcomes. In particular, we will evaluate whether guidelines may lead

physicians to neglect information relevant for health outcomes but not incorporated into a guideline.

Finally, we use the model to simulate the counterfactual impact of adopting guidelines that incorporate

more information about how treatment effects vary across patients.

20This concern is not hypothetical—in our audit of the VHA data at the Palo Alto VA, we found that 40% of patients
recorded in diagnosis codes to be experiencing a current stroke were revealed on detailed chart review to have only a history
of stroke but no recurrence.
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6.1 Stylized Model of Treatment Decisions

We model how treatment decisions depend on variation in treatment effects as well as the physi-

cian’s guideline awareness status. Guideline awareness status is denoted 6 ∈ {never,pre,post}, cor-

responding to decisions made by physicians who never adopt the CHADS2 score, decisions made by

physicians before adopting the CHADS2 score, and decisions made by physicians after adopting the

CHADS2 score. With respect to guideline awareness, we focus on perceived stroke treatment effects

rather than bleed treatment effects for two reasons: First, we detect no meaningful variation in bleed

treatment effects in Section 5, and second, the CHADS2 score relates to stroke treatment effects.

Anticoagulation decisions,8 in state 6 are made as follows:

,8 = 1
{
Vg̃B8,6 + 56 (-8) + E8,6 > 0

}
. (8)

This model includes two components. First, physicians consider beliefs about patient-specific stroke

treatment effects, g̃B
8,6

, with preference weight V. Guideline awareness may improve physicians’ infor-

mation about treatment effects, giving them more accurate posterior beliefs. The second component

consists of other factors—including both observable characteristics (to the econometrician) 56 (-8)

and otherwise unobservable factors E8,6—which may impact treatment decisions. This component

may capture beliefs about bleed treatment effects that we cannot detect in our AFI data or other

concerns, such as frailty, that have been discussed in the literature (Fawzy et al., 2019).

For the first component—beliefs about stroke treatment effects—we consider a simple Bayesian

model in Appendix A.1. The model implies that posterior beliefs are a linear function of true treatment

effects and prior beliefs:21

g̃B8,6 = _
B (2)
6 g

B (2)
8
+_B (A )6 g

B (A )
8
+ `6 +h8,6 . (9)

True stroke treatment effects, gB
8

, are decomposed into a CHADS2-related component gB (2)
8

and a

residual component gB (A )
8

, such that gB
8
= g

B (2)
8
+gB (A )

8
. The parameter _>̃, >̃ ∈ {B(2), B(A)}, correspond

to the signal-to-noise ratio of posterior beliefs g̃B
8,6

with respect to gB (2)
8

and gB (A )
8

. Physicians may

have more precise signals for gB (2)
8

than for gB (A )
8

, and the precision of their signals may change

with guideline awareness status 6. In the model, CHADS2 awareness increases the precision of the

21This linear projection can be exactly microfounded by a standard Bayesian model with normal true treatment effects
and normal noise, which we detail in Appendix A.1. However, absent a joint-normal model of signals and noise, Equation
(9) is a linear approximation of Bayesian updating, common in empirical Bayes applications (e.g., Chetty et al., 2014).
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doctor’s signal of gB (2)
8

, the CHADS2-related variation in stroke treatment effects. `6 is a constant

within 6 (which depend on physician’s priors), and h8,6 is a noise term with variance that depend on

the precision of the signals that physicians receive.

Our framework also allows for the possibility of “distraction effects,” whereby guideline aware-

ness leads physicians to place less weight on other decision-relevant factors. In the Bayesian language

of the model, distraction effects correspond to physicians forming less precise beliefs about gB (A )
8

. By

the same token, however, guidelines may also lead physicians to place less weight on any considera-

tion, including those in 56 (-8) and E8,6 that may not strictly align with reducing strokes or bleeds.

6.2 Estimating Equation

To take our behavioral model in Equation (8) to the data, we estimate the following probit model:

,8 = 1
{

1
fY,6

(
U
B (2)
6 gB (2) (-8) +UB (A )6 gB (A ) (-8) + 56 (-8) + \6 + Y8,6

)
> 0

}
, (10)

where Y8,6 = VBh8,6 + E8,6 is normally distributed with variance f2
Y,6. Because we allow all compo-

nents in this model to vary by 6, f2
Y,6 is not identified, and we specify for estimation an error term of

Y8,6/fY,6 with a normalized variance of 1 by construction.

In Equations (8) and (9), the coefficient U>̃6 , for treatment effect >̃ ∈ {B(2), B(A)} measures the

responsiveness of decisions to treatment effect variation and can be interpreted as U>̃6 = V
B_>̃6. Recall

that VB is the preference weight that physicians place on preventing strokes, and _>̃6 is the signal-to-

noise ratio describing how well-informed the physician is about variation in treatment effect >̃.

The term 56 (-8) includes controls for time trends and a three-knot spline index of patient mortal-

ity risk, all interacted with guideline adoption status. We include predicted mortality risk to capture

physicians’ reluctance to treat older and frailer patients (Fawzy et al., 2019). For more details on the

construction of our mortality risk index in an external sample of VA patients without diagnosed atrial

fibrillation see Appendix A.3. \6 are fixed effects indicating a doctor’s guideline adoption status.

Guideline awareness may change the relative responsiveness to treatment effects in three ways.

First, CHADS2 awareness may give physicians more precise information about CHADS2-related

variation in stroke treatment effects. This effect increases the responsiveness to treatment effects UB (2)

by increasing the doctor’s signal-to-noise ratio for the CHADS2-related variation in stroke treatment

effects, i.e. increasing _B (2) . Second, CHADS2 awareness may lead physicians to place less weight on

residual variation in stroke treatment effects (_B (A ) ), thereby leading to a smaller estimated coefficient
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UB (A ) . Third, guideline awareness may change the variance of Y8,6, either by reducing the noisiness

of assessment incorporated into h8,6 or by reducing the emphasis on other concerns in E8,6.22 A

reduction in the variance of Y8,6 will increase the relative responsiveness to stroke treatment effects.

To recover and interpret these objects, we require the following assumptions, which we will assess

in our results below. First, to recover unbiased (and correctly signed) estimates of coefficients U>̃6 , we

require that Y8,6 is uncorrelated with g>̃ (-8). Second, in order to interpret deviations from treating

according to treatment effects as worsening strokes or bleeds, we assume that E8 does not include

unmeasured variation in treatment effects. We will examine these assumptions further in Section 6.4.

In estimating Equation (10), we use ML predictions of treatment effects, ĝB (2)
�!%
(G) and ĝB (A )

�!%
(G),

in place of true treatment effects, gB (2) (G), gB (A ) (G). These estimates are measured with error in the

sense that they differ from the treatment effects we could obtain with infinite data. One concern

is that differential measurement error of ĝB (2) (G) and ĝB (A ) (G) may differentially attenuate UB (2)6 and

U
B (A )
6 . However, our BLP-adjustment in Section 5.3 of CHADS2-related and residual stroke treatment

effects provides a means to ensure that UB (2)6 and UB (A )6 can be interpreted on the same scale. This

approach follows a “regression calibration” literature that addresses measurement error (George and

Foster, 2000) and also resembles the first stage of “split-sample” instrumental variables approaches

in economics (Angrist and Krueger, 1995).

6.3 Results

Table 4 reports estimates of average marginal effects, from Equation (10). To facilitate statistical com-

parisons across awareness states, the estimation takes U>̃pre as the baseline, and uses interaction terms

to report differences between U>̃post or U>̃never and this baseline. Since stroke events are undesirable, we

expect the marginal effects of stroke treatment effects to be negative. In other words, all else equal,

physicians should be more likely to treat patients with larger reductions in stroke risk. Our baseline

specification controls for year fixed effects and cubic splines in patient age. Column 1 shows these

results. Column 2 allows for differential time trends in the sensitivity to treatment effects. Column 3

allows for controls, in particular the splines of predicted mortality, 56 (-8) and year fixed effects, to

differ by awareness status.

The main finding from this analysis is that CHADS2 awareness substantially increases physi-

22If guideline awareness sufficiently increases the precision of physician signals, then the variance of h8,6 may decrease.
However, because h8,6 includes both noisy assessments and the weight that physicians’ place on them, it is possible that
variance of h8,6 may increase if better information causes physicians to place more weight on their signals, including the
noisy component of them. This point follows formally from the microfoundation in Appendix A.1.
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cians’ sensitivity to CHADS2 variables in their treatment decisions. Conditional on patient’s mor-

tality risk index, physicians are more likely to treat patients with larger treatment effects predicted

by the CHADS2 score (ĝB (2)
�!%

). This is true for both 6 = never and 6 = pre.23 Prior to awareness,

physicians are about 4 percentage points more likely to treat a patient for whom treatment effects

are one percentage point larger in magnitude, and physicians who never adopt are slightly less sensi-

tive. Following awareness of the CHADS2 score, physicians become about twice as sensitive to these

treatment effects.

In addition, this analysis reveals that physicians are much less sensitive to the residual component

of treatment effects than to the CHADS2 score prior to adoption. Following adoption, physicians if

anything become slightly more sensitive to the residual component of treatment effects, rather than

being distracted.

6.4 Interpreting the Model

Effects of guidelines on physician information and decisions. Under the lens of our model, these

findings suggest that the CHADS2 score improves physicians’ responsiveness to CHADS2-related

stroke treatment effects. In contrast, physicians appear to have much less knowledge of residual stroke

treatment effects, and adopting the CHADS2 score if anything makes them more likely to attend to

these residual factors. Regardless of guideline awareness, it appears that the precision of physicians’

information about CHADS2-related stroke treatment effects is much greater than the precision of

their information about other sources of treatment effect variation, i.e. _B (2)6 � _
B (A )
6 . These estimates

imply that doctors make relatively little use of variation in stroke treatment effects that is not captured

by the CHADS2 score to improve treatment allocation.

While guideline awareness may provide important informational benefits, these results also sug-

gest the limits of increasing guideline awareness without encouraging stricter adherence. Although

we see a large relative increase in physicians’ responsiveness to CHADS2-related treatment effects,

much of the variation in treatment choice remains unexplained by the model. These deviations from

guideline-based care are largely unexplained by the substantial variation in residual stroke treatment

effects that we can detect and validate across trials.
23As noted in Figure 3, doctors do not treat patients with low CHADS2 scores less than high score patients, prior to

becoming aware of the guideline. However, once we condition on the patient mortality risk index to capture physician’s
distaste for treating frail patients, we find that even in the pre-awareness period, physicians are considering the CHADS2
variables.
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Considering the role of physicians’ private information. We now consider the possibility that

physicians may deviate from treatment decisions based on estimated CATEs because they might have

private information about treatment effect heterogeneity. The model we have estimated cannot di-

rectly test whether physicians are responding to other sources of heterogeneity using characteristics

that are unmeasured in the AFI data. However, three patterns in the data suggest that physicians may

not be effectively using information beyond that encoded in the CHADS2 score to improve treatment

allocations.

First, physician are only slightly more likely to treat patients with large residual stroke treatment

effects. By design, the AFI studies record many clinical characteristics (beyond those explicitly in-

corporated into the CHADS2 score) that expert clinicians believe might drive variation in risk and

treatment effects. We demonstrate that these factors indeed predict wide variation in stroke treat-

ment effects. Nevertheless, treatment decisions by VHA physicians are largely unresponsive to this

variation in stroke treatment effects, beyond those factors codified into the CHADS2.

Second, as discussed in Section 5.3 and reported in Appendix Table A.4, we similarly find that

physician treatment propensity does not predict any heterogeneity in treatment effects beyond the

variation predicted by the estimated CATEs. In an infinitely large sample, this would follow by con-

struction because we could nonparametrically estimate CATEs for every set of observables. However,

in a finite sample, this is a substantive test of whether physician decisions have information about how

treatment effects vary with observables not recovered by the causal forest. We find that they do not.

Third, we consider the possibility that physician decisions are responding to other variables that

might predict treatment effect heterogeneity but are not available in the AFI data. We can use the

rich set of covariates in the VHA data to assess this possibility. Recall that our baseline model

already accounts for the role of many variables covered in the AFI that predict treatment effect het-

erogeneity and may enter physician decision-making, including salient biomarkers (blood pressure,

hemoglobin), patient history (stroke, heart attack, angina), key comorbidities and demographic vari-

ables. In Appendix A.2, we describe many additional patient characteristics from the VHA electronic

health record that may influence anticoagulation decisions, which we now add to our analysis. These

variables extensively cover the factors suggested by clinicians and prior researchers to influence treat-

ment decisions. Importantly, these include many variables related to frailty and fall risk, including

past reports of dizziness, muscle weakness, prior injuries (fractures, head injuries), and other con-

ditions (Parkinson’s Disease, neuropathy, arthritis, vision problems). We also include variables that

were later included into the HAS-BLED guideline to assess bleeding risk (liver disease, renal failure,
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alcohol abuse, prior bleeds). Other variables include a full set of Elixhauser comorbidities, physician

specialization, and variables that predict patients’ ability to comply with warfarin monitoring.

In Panel A of Figure A.3, we investigate the robustness of our findings to these additional con-

trol variables. Enriching the control variables does not substantively change the estimated effect of

CHADS2 awareness on treatment decisions. Specifically, the change in physicians’ responsiveness

to CHADS2-related variation in stroke treatment effects after guideline awareness, UB (2)pre /UB (2)post , does

not vary much as we progressively add these additional covariates to the model.

In Panel B of Figure A.3, we explore whether the residual variation in treatment decisions (con-

ditional on estimated treatment effects) can be explained by the variables described above that might

predict treatment decisions but are available only in the observational VHA data and not in the RCT

data from AFI. These additional variables do not explain a large fraction of treatment decisions and

therefore cannot explain the high rates guideline non-adherence.24 Even as we control for detailed

patient characteristics, we find little increase in the explained share of variance in treatment decisions.

Taken together, these three pieces of evidence suggest that departures from treating according to

measured treatment effects is unlikely to be explained by unmeasured variation in treatment effects.

Instead, these deviations might represent practice style variation across physicians or idiosyncratic

decision-making within each physician.25 These findings are broadly consistent with earlier analysis

of physician survey responses to clinical vignettes by Gross et al. (2003). The survey found that there

was no relationship between physicians’ perceived benefits of warfarin and their clinical decisions to

recommend its use. Although perception of bleeding risk was an important determinant of prescrip-

tion choice in the survey, physicians had quantitatively large mistakes in their perceptions of bleeding

risk.

7 Counterfactual Awareness and Adherence

Based on our ML-predicted treatment effects in Section 5 and our analysis of physician decision-

making in Section 6, we simulate outcomes under counterfactual scenarios of guideline awareness

24To the degree that one interprets the results in Panel A as a nonlinear analogue of the test in Altonji et al. (2008),
one might argue that Panel B suggests that this test has limited power in the sense of Oster (2019). The test in Panel A
is of direct interest because the covariates we include account for specific normative justifications that physicians give for
non-adherence, but it is not especially informative about other unobservable characteristics in the Oster (2019) sense.

25Finally, note that selection on unobservable determinants of treatment effects is immaterial for our counterfactual
analyses comparing strict adherence with random treatment decisions. These analyses consider treatment rules based only
on observable characteristics, for which CATEs are the relevant objects. If doctors did have private information about
treatment effects, our counterfactuals will understate the benefits of the status quo, but still correctly assess the impact of
guideline adherence relative to random treatment.
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and adherence. When discussing counterfactual outcomes, it is useful to compare outcomes to a few

benchmarks. Treating all patients with newly diagnosed atrial fibrillation in the VHA would prevent

745 strokes (hereafter, “preventable strokes”) and induce 186 bleeding events (hereafter, “inducible

bleeds”) per 10,000 patients after one year.

In Figure 6 and Table 5, we show key results on prevented strokes and induced bleeds under coun-

terfactual scenarios. We first show that status quo physician decisions are approximately equivalent to

random anticoagulation of atrial fibrillation patients: physicians prescribe anticoagulation to 49.8%

of patients and prevent 49.8% of preventable strokes.

Universal guideline awareness. Next, we consider counterfactual outcomes under scenarios vary-

ing the extensive margin of guideline awareness. Awareness of the CHADS2 score had relatively

muted effects on outcomes. Under the counterfactual scenario of no CHADS2 awareness, 51.7% of

patients would be treated, preventing 51.4% of preventable strokes. Universal CHADS2 awareness

reduces the treatment rate to 48.0%, slightly reducing the rate of induced bleeds accordingly, and

averting 48.8% of preventable strokes; this is a 1% improvement in the number of strokes prevented

per bleed induced, relative to the status quo.

Strict guideline adherence. We then turn to scenarios involving strict adherence to a guideline.

Treatment decisions under these scenarios strictly follow an ordering according to guideline recom-

mendations. Each guideline implies a “score” that we use to order patients; patients with the same

score (e.g., patients with the same CHADS2 score for the CHADS2 guideline) are randomly ordered.

We evaluate the performance of adhering to each guideline-implied ordering by a set of counterfactual

outcomes, moving from no patients treated to all patients treated. Under the assumption that the costs

of treatment and monitoring are negligible relative to the clinical benefits,26 two guideline orderings

can be welfare-ranked if one guideline prevents more strokes than the other guideline, for any fixed

number of induced bleeds.

Compared to expanding awareness of guidelines, policies that achieve strict adherence to guide-

lines produce much better outcomes. Holding treatment rates fixed at the status quo level, strict

adherence to the CHADS2 score prevents 59% of preventable strokes, which is 18% more than were

prevented under the status quo. Adherence to a score based on full stroke treatment effects performs

better still, preventing 62% of preventable strokes, or 24% more strokes than those prevented under

26This assumption is standard in the existing medical literature on anticoagulation, e.g. Singer et al. (2009).
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the status quo. Thus, strict adherence to an optimal guideline can yield 24 times greater improvement

in the number of strokes prevented per bleed induced, relative to universal CHADS2 awareness.

Guideline revisions. In recent years, the CHADS2 score has been replaced with the enriched

CHA2DS2-VASc score as the basis for anticoagulation recommendations. In Appendix Figure A.4,

we show that adherence to the CHA2DS2-VASc guideline prevents slightly fewer strokes at any given

number of bleeds than strict adherence to the CHADS2 score: i.e. it performs slightly worse than

CHADS2 score. Although our causal-forest estimates corroborate that vascular disease is an impor-

tant predictor of stroke treatment effects, the CHA2DS2-VASc guideline gives vascular disease too

much weight relative to other variables.27 Thus, more comprehensive guidelines are not always better.

More comprehensive guidelines can improve outcomes, but only if the relevant factors are weighted

appropriately given treatment effects.

The role of patient frailty. We confirm previous reports that physicians are reluctant to treat older

and more frail patients (Fawzy et al., 2019).28 In Appendix Figure A.5 and Appendix Table A.6, we

explore the extent to which these treatment patterns can account for the large returns of treatment re-

allocation. In these counterfactual analyses, we reallocate treatment only within ventiles of predicted

mortality risk. We find that status quo decisions slightly outperform a random benchmark within ven-

tiles of predicted mortality, preventing 1% more strokes per bleed induced. Notably, the benefits of

guideline adherence within mortality risk bins are only slightly attenuated compared to what we find

in the unconstrained counterfactuals. Adherence to an optimal guideline within mortality risk bins

could still prevent 19% more strokes per bleed than in the status quo.

8 Conclusion

Our findings suggest that evidence-based clinical guidelines have the potential to improve patient

health outcomes. The CHADS2 score shifted physician behavior and likely prevented a small number

of additional strokes while inducing an even smaller number of additional bleeds. Awareness of more

comprehensive guidelines that incorporates all of the variables that predict stroke treatment effects

27In the interest of simplicity, most of the existing CHADS2 weights were unchanged in the CHA2DS2-VASc score (all
variables other than age), but additional variables were added. Vascular disease was given a weight of “1”, the lowest
weight available in the score. This weight was still too large and reduced the performance of the score.

28A similar pattern has been documented in the setting of heart attack care by (Currie et al., 2016): physicians avoid
treating older patients, even when they would benefit from treatment.
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would have larger benefits. Stricter adherence to existing or novel treatment rules produces much

larger gains than awareness with discretionary adherence. Strict adherence to an optimal treatment

rule that minimizes strokes can prevent 24% more strokes without increasing the number of induced

bleeds.

Our results suggest important lessons for the use of guidelines in clinical care. First, the extensive

margin of guideline awareness, in which physicians are aware of the guideline but exercise discretion

in how to use it, achieves only a fraction of the benefits of greater intensive margin adherence. Second,

incorporating more variables into guidelines can improve outcomes, but only if they are weighted

properly. The CHA2DS2-VASc score provides a cautionary tale of a more complex score that does

not outperform the simpler CHADS2 score due to misweighting.

Many policy instruments are available to promote adherence. On the less invasive side, in-person

campaigns to educate and persuade physicians to adhere to guidelines, as well as order sets and elec-

tronic reminders can make more salient the costs of departing from guidelines (Piccini et al., 2019).

Alerting physicians if their adherence rates are low relative to peers could also shift behavior (Sacarny

et al., 2018). More directly, pay for performance incentives could reward physicians whose treatment

behavior accords with guidelines (Werner et al., 2011), and insurers could impose hassle costs on

physicians to justify treatment decisions which do not comply with guidelines (e.g. failing to treat

patients with higher stroke to bleed ratios than other treated patients) (Dillender, 2018). Best prac-

tices for implementing guidelines in clinical decision support (CDS) IT systems call for generating

evidence for their external validity (Bates et al., 2020). An alternative way to increase adherence to

new and existing guidelines may be to generate better evidence for their validity as we seek to do

here, increasing the strength of the signal that guidelines provide.

Our results incorporate more information to estimate treatment effects than has been previously

considered, but they only scratch the surface of what is possible. Machine-based algorithms could

continue to learn both from additional trials and from observational data, in order to create more

powerful predictors of treatment effects. While there remain logistical challenges to the widespread

integration of machine-based algorithms into health IT systems (Kawamoto and McDonald, 2020),

these are likely to be lessened as data integration and methods of validation in healthcare becomes

more commonplace. Important avenues for future research include refining techniques used to build

and validate clinical decision rules, as well as identifying best practices for encouraging effective

guideline use.
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Figure 1: Anticoagulation Trends by CHADS2 Score
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Notes: This figure shows the fraction of atrial fibrillation patients treated with anticoagulation over time, for
three groups of patients by CHADS2 score. The sample reflect patients with newly diagnosed atrial fibrillation
in the VHA, and anticoagulation treatments are defined as prescriptions within 90 days of initial diagnosis.
Table 2 provides further details about the sample selection.
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Figure 2: Diffusion of the CHADS2 Score
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Notes: This figure shows the fraction of patients in a given year with physicians who either mention the
CHADS2 score in the note for the index patient or have mentioned the CHADS2 score in either the note for the
index patient or in a previous note. We identify mentions by searching the note text for the phrase chads (not
case-sensitive). We consider any physician who has mentioned the the CHADS2 score in the current note or in
a previous note as being aware of the CHADS2 guideline, shown in the solid line. The dashed line reflects the
rate of mentions in the index patient’s note. The sample reflect patients with newly diagnosed atrial fibrillation
in the VHA. Table 2 provides further details about the sample selection.
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Figure 3: Treatment Decisions and CHADS2 Awareness

A. Trends Relative to CHADS2 Awareness
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B. Event Study Estimates
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Notes: Panel A displays the fraction of atrial fibrillation patients treated with anticoagulation in each year rela-
tive to CHADS2 awareness for physicians who eventually adopt the CHADS2 score. Panel B shows regression
coefficients and 95% confidence intervals from Equation (1), run separately for patients with CHADS2 ∈ {0,1}
and for patients with CHADS2 ≥ 2. The 12-month period prior to the physician’s first CHADS2 mention is
normalized to 0. The regression sample includes 104,585 VHA patients who either are treated within 5 years
of their physician’s observed CHADS2 awareness or are treated by a never-aware physician.
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Figure 4: Distribution of Stroke Treatment Effects Across VHA Patients

A. Histogram of Stroke Treatment Effects
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Notes: Panel A displays a histogram of stroke treatment effects in the VHA sample. Panel B shows a box plot
for the distribution of treatment effects by CHADS2 score in the VHA data. Bounds on the box plot are at the
25th and 75th percentile, with the median marked with a horizontal line. Whiskers extend to the 5th and 95th
percentiles. For both panels, conditional average treatment effect (CATE) predictions are trained and validated
by using causal-forest methods, described in Section 5, applied to RCT data in the AFI database. We use the
causal-forest rules to calculate CATEs as a function of patient characteristics for each patient in the VHA data.
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Figure 5: Evidence on the External Validity of AFI CATEs

A. AFI CATEs and Observational Treatment Effects
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B. Stroke Outcomes Among Untreated Patients and AFI CATEs

.0
2

.0
4

.0
6

.0
8

.1
St

ro
ke

 ra
te

 a
m

on
g 

un
tre

at
ed

 p
at

ie
nt

s 
(fr

om
 V

H
A)

-.1 -.08 -.06 -.04 -.02
Causal forest CATE (from AFI)

Notes: Panel A displays a binned scatterplot of the relationship between z-standardized stroke treatment effects
estimated by causal forest in the AFI RCT data and z-standardized stroke treatment effects estimated by OLS
in the VHA observational data. The correlation coefficient is 0.68. OLS estimates interact anticoagulation
treatment with each of the patient characteristics that are covered in both the AFI and VHA data (see Appendix
Table A.1 for the complete list). In addition to controlling for this variable set, the OLS specification also
controls for a complete set of Elixhauser comorbidities, history of hemorrhage, family history of stroke, and
a 3-knot spline in the predicted mortality index. In Panel B, we show a binned scatterplot of the relationship
between 1-year stroke incidence for untreated patients in the VHA data and CATE estimates from the AFI RCT
data. Due to data limitations that prevent us from differentiating new stroke events from repeated coding of a
prior stroke, both panels are estimated in a restricted sample of 91,797 patients with no stroke history at the
time of atrial fibrillation diagnosis.
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Figure 6: Counterfactual Outcomes
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Notes: This figure shows strokes prevented and bleeds induced by anticoagulation in counterfactual scenarios.
Strokes prevented per 10,000 patients are shown on the y-axis, and bleeds induced per 10,000 patients are
shown on the x-axis. Both panels display outcomes under a random treatment allocation, ranging from 0%
of patients treated (top-left corner of Panel A) to 100% of patients treated (bottom-right corner of Panel A).
Panel A shows outcomes under counterfactual strict adherence to various guideline rules. Each rule implies a
patient sorting, and the curves indicate counterfactual outcomes ranging from treating 0% to 100% of patients.
Patients with the same score or treatment effect are randomly sorted into treatment. Panel B shows an inset
area and plots outcomes for counterfactual awareness (i.e., imperfect adherence) scenarios.
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Table 1: CHADS2 Score and Treatment Recommendations

CHADS2 Components Points

History of congestive heart failure 1
History of hypertension 1
History of diabetes mellitus 1
Aged 75 or older 1
Previous stroke or transient ischemic attack 2

Treatment Recommendation

Score of 2 or greater: high risk of stroke;
oral anticoagulant recommended
Score of 1: moderate risk of stroke;
oral anticoagulant considered
Score of 0: low risk of stroke;
oral anticoagulant not recommended

Notes: This table describes the CHADS2 score used to assess stroke risk among patients with atrial fibrillation.
The score is based on evidence developed by Gage et al. (2001, 2004). In the bottom panel, the table also
summarizes the 2006 ACC and 2008 ACCP guideline treatment recommendations based on the CHADS2
score, published in Fuster et al. (2006) and Hirsh et al. (2008).

44



Ta
bl

e
2:

V
H

A
Sa

m
pl

e
Se

le
ct

io
n

O
bs

er
va

tio
ns

Sa
m

pl
e

st
ep

D
es

cr
ip

tio
n

D
ro

pp
ed

R
em

ai
ni

ng
1.

Id
en

tif
y

po
te

nt
ia

lly
ne

w
at

ri
al

fib
ri

lla
tio

n
pa

tie
nt

s
Id

en
tif

y
ca

nd
id

at
e

pa
tie

nt
s

w
ith

a
di

ag
no

si
s

of
at

ri
al

fib
ri

lla
tio

n
no

tp
re

vi
ou

sl
y

di
ag

no
se

d
in

th
e

la
st

th
re

e
ye

ar
s.

84
4,

31
2

2.
Pr

es
cr

ip
tio

n
re

st
ri

ct
io

n
K

ee
p

pa
tie

nt
s

w
ho

ha
d

a
pr

es
cr

ip
tio

n
fil

le
d

at
th

e
VA

w
ith

in
th

e
la

st
ye

ar
.D

ro
p

pa
tie

nt
s

w
ho

ha
d

a
pr

io
ra

nt
ic

oa
gu

la
tio

n
pr

es
cr

ip
tio

n.

29
0,

21
4

55
4,

09
8

3.
C

on
fir

m
ed

at
ri

al
fib

ri
lla

tio
n

di
ag

no
si

s
K

ee
p

pa
tie

nt
s

w
ho

ha
d

an
E

K
G

w
ith

in
30

da
ys

be
fo

re
or

af
te

ri
ni

tia
ld

ia
gn

os
is

an
d

a
se

co
nd

at
ri

al
fib

ri
lla

tio
n

di
ag

no
si

s
re

co
rd

ed
30

-3
65

da
ys

af
te

ri
nd

ex
vi

si
t.

25
4,

16
4

29
9,

93
4

4.
PC

P
or

ca
rd

io
lo

gi
st

vi
si

t
K

ee
p

pa
tie

nt
s

w
ho

ha
d

a
PC

P
or

ca
rd

io
lo

gi
st

vi
si

tu
p

to
90

da
ys

af
te

rt
he

in
de

x
vi

si
t.

T
he

ea
rl

ie
st

su
ch

vi
si

ti
de

nt
ifi

es
th

e
at

tr
ib

ut
ed

ph
ys

ic
ia

n.
R

eq
ui

re
th

at
th

e
at

tr
ib

ut
ed

ph
ys

ic
ia

n
w

ro
te

at
le

as
to

ne
no

n-
w

ar
fa

ri
n

pr
es

cr
ip

tio
n

fo
r

th
e

pa
tie

nt
w

ith
in

on
e

ye
ar

(b
ef

or
e

or
af

te
r)

.

13
5,

39
5

16
4,

53
9

5.
Ph

ys
ic

ia
ns

w
ith

su
ffi

ci
en

ts
am

pl
e

K
ee

p
pa

tie
nt

s
at

tr
ib

ut
ed

to
a

ph
ys

ic
ia

n
w

ith
at

le
as

t3
0

at
ri

al
fib

ri
lla

tio
n

pa
tie

nt
s

an
d

ha
s

w
ri

tte
n

at
le

as
to

ne
w

ar
fa

ri
n

pr
es

cr
ip

tio
n

in
th

e
un

re
st

ri
ct

ed
sa

m
pl

e
de

fin
ed

in
st

ep
#1

.

32
,8

68
13

1,
67

1

6.
D

ro
p

ob
se

rv
at

io
ns

w
ith

m
is

si
ng

va
ri

ab
le

s
K

ee
p

pa
tie

nt
s

w
ith

no
n-

m
is

si
ng

de
m

og
ra

ph
ic

s,
co

m
or

bi
di

tie
s,

an
d

cl
in

ic
al

in
fo

rm
at

io
n.

18
,4

01
11

3,
27

0

N
ot

e:
T

hi
s

ta
bl

e
de

sc
ri

be
s

ke
y

V
H

A
sa

m
pl

e
se

le
ct

io
n

st
ep

s,
th

e
ob

se
rv

at
io

ns
dr

op
pe

d,
an

d
th

e
ob

se
rv

at
io

ns
re

m
ai

ni
ng

af
te

re
ac

h
st

ep
.

45



Table 3: Summary Statistics

VHA Data AFI Database
Mean Overall Smallest

Trial Mean
Largest Trial

Mean
Characteristic (1) (2) (3) (4)

Treated with anticoagulation 0.50 0.44 0.34 0.50
Male 0.99 0.67 0.46 1.00
Age 74.05 70.37 67.75 73.67
Stroke treatment effect −0.07 −0.04 −0.02 −0.07
Bleed treatment effect 0.02 0.02 0.02 0.02
CHADS2 components:

Congestive heart failure 0.15 0.30 0.00 0.70
Hypertension 0.84 0.45 0.32 0.59
Age ≥ 65 0.52 0.76 0.63 0.90
Diabetes 0.36 0.14 0.08 0.19
Previous stroke 0.15 0.11 0.00 0.76

Number of physicians 5,752
Number of patients 113,270 4,720

Notes: This table reports mean and standard deviations of characteristics of patients in the VHA data and in the
AFI database. Column 1 shows characteristics of patients in the VHA data, specifically in the sample created
by the steps described in Table 2. Column 2 shows characteristics of patients in the overall AFI database.
Columns 3 and 4 show the smallest and largest trial means, respectively, for the patient characteristics.

46



Table 4: Average Marginal Effects of Probit Model

Dependent Variable: Anticoagulant Prescription
(1) (2) (3)

CHADS2-related stroke treatment effect, ĝB (2)
�!%
(G)

Pre-awareness baseline, UB (2)pre −3.952*** −4.035*** −4.685***
(0.361) (0.367) (0.416)

Post-awareness difference, UB (2)post −U
B (2)
pre −4.488*** −4.410*** −3.173***

(0.539) (0.543) (0.621)
Never-aware difference, UB (2)never−UB (2)pre 0.807* 0.841* 1.363**

(0.477) (0.479) (0.546)
Residual stroke treatment effect, ĝB (A )

�!%
(G)

Pre-awareness baseline, UB (A )pre −0.815 −1.001* −1.391**
(0.498) (0.535) (0.547)

Post-awareness difference, UB (A )post −U
B (A )
pre −1.687** −1.509* −0.428

(0.767) (0.794) (0.823)
Never-aware difference, UB (A )never−UB (A )pre 0.580 0.833 1.153

(0.662) (0.690) (0.711)

Year fixed effects, predicted mortality spline controls Yes Yes Yes
Differential trends on treatment effects No Yes Yes
Controls interacted with CHADS2 awareness status No No Yes
Number of observations 113,270 113,270 113,270

Notes: This table reports average marginal effects from probit regressions of anticoagulation treatment de-
cisions, as specified in Equation (10). Key regressors of interest are causal-forest predictions of CATEs:
CHADS2-related stroke treatment effects, or ĝB (2)

�!%
(G); residual stroke treatment effects, or ĝB (A )

�!%
(G); and bleed

treatment effects, or ĝ1
�!%
(G). All specifications include calendar year fixed effects and a 3-knot spline in

predicted mortality. Column 2 includes linear trends interacted with each of these treatment effects. Column
3 includes interactions of CHADS2 awareness status with both year fixed effects and the predicted mortality
spline variables. Standard errors are clustered at the physician level. *** ? < 0.01, ** ? < 0.05, * ? < 0.1.
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Table 5: Counterfactual Treatment Decisions and Outcomes

Strokes prevented Bleeds induced
Percent of
patients
treated

Per 10K
patients

Percent of
maximum

Per 10K
patients

Percent of
maximum

A: Benchmarks
Status quo 49.8% 371 49.8% 93 49.8%
Randomly assigned treatment 49.8% 371 49.8% 93 49.8%
All patients treated 100% 745 100% 187 100%

B: Guideline Awareness
No CHADS2 awareness 51.7% 383 51.4% 96 51.7%
Universal CHADS2 awareness 48.0% 363 48.8% 90 48.0%

C: Strict Guideline Adherence
CHADS2 guideline 49.8% 439 59.0% 93 49.8%
Stroke TE guideline 49.8% 460 61.7% 93 49.8%

Notes: This table reports treatment rates and patient outcomes in counterfactual awareness and adherence
scenarios for patients in the VHA data. Outcomes of strokes prevented and bleeds induced are reported per
10,000 patients and as a percent of the maximum number of preventable strokes or inducible bleeds. Panel
A reports treatment rates and outcomes under the status quo, which we observe in our data, and in a coun-
terfactual assignment of the same number of treatments to random patients. Panel B reports treatment rates
and outcomes under counterfactual awareness scenarios, assuming adherence implied by our structural model
in Equation (10). Panel C reports treatment rates and outcomes under patient orderings according to scores
implied by counterfactual strict adherence to different guidelines. Patients with the same score are randomly
ranked. “CHADS2 guideline” orders patients by their CHADS2 score. “Stroke TE guideline” orders patients
by ĝB

�!%
(G).
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A.1 Bayesian Model of Decision-Making

In this appendix, we describe in greater detail the Bayesian model of decision-making specified in

Equation (8), which we restate here:

,8 = 1
{
Vg̃B8,6 + 56 (-8) + E8,6 > 0

}
,

focusing on the Bayesian posterior beliefs about stroke treatment effects: g̃B
8,6

. Recall that 6 denotes

the awareness status of the physician. Awareness status may change the informativeness of physician

beliefs about treatment effects.

A.1.1 Component Treatment Effects, Signals, and Beliefs

Treatment effects and physician beliefs depend on patient characteristics, which we may orthogonal-

ize into components : ∈ K. We can conceptualize each principal component as implying additional

(orthogonal) information about treatment effects. Specifically, assume that stroke treatment effects

are normally distributed and comprise component treatment effects that are also normally distributed:

gB8,: ∼ #
(
gB: ,f

2
g (B) ,:

)
, (A.1)

for each : ∈ K. We assume that physicians know the moments of each component treatment effect(
gB: ,f

2
g (B) ,:

) 
:=1

.1

For each component : , physicians receive a noisy signal of the underlying treatment effect, ¤gB
8,:

:

¤gB8,6,: = g
B
8,: + n

B
8,6,: , (A.2)

where n B
8,6,:

is a normally distributed noise term with variance f2
n (B) ,6,: , or n B

8,6,:
∼ #

(
0,f2

n (B) ,6,:

)
.

Note the dependence of signals on 6. This models the possibility that awareness status may change

the quality of information that physicians receive about treatment effects.

Given prior beliefs and the noisy signals, physicians form posterior beliefs, g̃B
8,:

. Specifically,

g̃B8,6,: = _
B
6,: ¤g

B
8,6,: + (1−_

B
6,:)g

B
: , (A.3)

where _B
6,:

=
f2

g (B) ,:
f2

g (B) ,:+f
2
n (B) ,6,:

is the signal-to-noise ratio of the :th component.

A.1.2 Regression Interpretation

The relationship between posterior beliefs and signals in Equation (A.3) can be interpreted as a re-

gression of posterior beliefs on signals. This relationship may also be interpreted as a regression

1Our model in Equation (8) allows for potentially non-Bayesian beliefs that can shift decision-making via 56 (-8) and
E8,6. In order to study the effect of information in a Bayesian framework, we compartmentalize the two components of the
model and consider the first component, described in this appendix, as Bayesian.
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of posterior beliefs on true treatment effects, since the noise component of signals is orthogonal to

treatment effects:

g̃B8,6,: = _B6,: ¤g
B
8,6,: + (1−_

B
6,:)g

B
:

= _B6,:g
B
8,: + (1−_

B
6,:)g

B
: +_

B
6,:n

B
8,6,: ,

where the second line uses the definition of the signal in Equation (A.2). In other words, a unit

increase in the treatment effect gB
8,:

should increase posterior beliefs by _B
6,:

.

We may use this framework to consider the relationship between overall treatment effects, overall

signals, and overall posterior beliefs, aggregated across components : ∈ K. These overall objects are,

respectively, gB
8
≡∑

:∈K g
B
8,:

; ¤gB
8,6

=
∑
:∈K ¤gB8,6,: ; and g̃B

8,6
=

∑
:∈K g̃

B
8,6,:

. Substituting the definition of

the component signals from Equation (A.3), we may also state the overall posterior belief as

g̃B8,6 =
∑
:∈K

(
_B6,: ¤g

B
8,6,: + (1−_

B
6,:)g

B
:

)
. (A.4)

We now consider the overall signal-to-noise ratio in a regression predicting the overall posterior

belief using the signal:

g̃B8,6 = _
B
6 ¤gB8,6 + (1−_B6)g

B . (A.5)

Using Equation (A.4) for g̃B
8,6

and the definition of the overall signal for ¤gB
8,6

, the coefficient _B6 in this

regression is

_B6 =

Cov
(
g̃B
8,6
, ¤gB
8,6

)
Var

(
¤gB
8,6

) =

∑
:∈K _

B
6,:

Var
(
¤gB
8,6,:

)
∑
:∈KVar

(
¤gB
8,6,:

) (A.6)

=

∑
:∈K f

2
g (B) ,6,:∑

:∈K

(
f2
g (B) ,6,: +f

2
n (B) ,6,:

) . (A.7)

Equation (A.6) reveals that the overall signal-to-noise ratio, _B6, can be thought of as a variance-

weighted average of the component signal-to-noise ratios, _B
6,:

. Equation (A.7) shows that a posterior

belief formed directly from the aggregate signal, as in Equation (A.5), will have the same signal-to-

noise ratio as a posterior belief aggregated from component posterior beliefs, as in Equation (A.4).

A.1.3 CHADS2 and Residual Treatment Effects

We are now in a position to state posterior beliefs as in Equations (9). For strokes, we can separate

the set of components K2 that predict CHADS2-related treatment effects and K \K2 components

that predict residual treatment effects. We expect that the component posterior beliefs related to the

CHADS2 score should increase in informativeness. That is, we expect that _B
6,:

should increase

with 6 = post, for : ∈ K2 . We first define the two components of stroke treatment effects: gB (2)
8
≡
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∑
:∈K2

gB
8,:

, and gB (A )
8
≡∑

:∉K2
gB
8,:

. Restating Equation (9) as

g̃B8,6 = _
B (2)
6 g

B (2)
8
+_B (A )6 g

B (A )
8
+ `B6 +hB8,6,

we can then interpret the signal-to-noise coefficients in the equation as follows:

_
B (2)
6 =

∑
:∈K2

f2
g (B) ,6,:∑

:∈K2

(
f2
g (B) ,6,: +f

2
n (B) ,6,:

) ;

_
B (A )
6 =

∑
:∉K2

f2
g (B) ,6,:∑

:∉K2

(
f2
g (B) ,6,: +f

2
n (B) ,6,:

) .
If we conceptualize the posterior belief as directly formed from ¤gB (2)

8
≡ gB (2)

8
+∑

:∈K2
n B
8,6,:

and

¤gB (A )
8
≡ gB (A )

8
+∑:∉K2

n B
8,6,:

, then we can interpret the constant, `B6, and error term, hB
8,6

as

`B6 =
∑
:∈K

(
1−1 (: ∈ K2)_B (2)6 −1 (: ∉K2)_B (A )6

)
gB: ;

hB8,6 =
∑
:∈K

(
1 (: ∈ K2)_B (2)6 +1 (: ∉K2)_B (A )6

)
n B8,6,: .

Unlike _B (2)6 and _B (A )6 , `B6 and Var
(
hB
8,6

)
are not exactly invariant to the level of aggregation with

which posterior beliefs are formed.2 Nevertheless, regardless of this level of aggregation, qualitative

interpretations are unchanged: `B6 is a function of the signal-to-noise ratio and prior beliefs, and hB
8,6

is a function of signal-to-noise ratio and noise. If _B
6,:

= 1 for all : ∈ K, there is no noise, and hB
8,6

= 0.

At the other extreme, if _B
6,:

= 0 for all : ∈ K, there is no meaningful signal. In this case, physicians

will ignore all ¤gB
6,:

, and we will also have hB
8,6

= 0.

A.2 Predicting Physician Treatment Decisions

Observable variation in treatment effects, patient age, and time trends explain a relatively small frac-

tion of the total variation in treatment decisions. In this section, we explore other factors that might

drive physician treatment decisions. Specifically, we consider the following additional variables,

which may influence physicians’ treatment decisions. None of these variables are available in the

AFI database, and so estimated treatment effects are not a direct function of these variables.

1. Variables related to frailty and fall risk. We include indicators for neurologic disorder (in-

cluding Parkinson’s Disease), fall risk (neuropathy, muscle weakness, dizziness), vision prob-

lems, arthritis, head injury, fracture. Frailty and fall risk are frequently cited clinical explana-

2For `B6 to be invariant, we require _B6 to be a different weighted average of _B
6,:

, with weights proportional to gB
:

rather than Var
(
¤gB
8,6,:

)
. For Var

(
hB
8,6

)
to be invariant, we require (_B6)2 to be a weighted average of (_B

6,:
)2, with weights

proportional to Var
(
nB
8,6,:

)
rather than Var

(
¤gB
8,6,:

)
.
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tions for not prescribing warfarin to patients with high CHADS2 scores. Patients with high fall

risk may be more likely to suffer intracranial bleeds if they are taking warfarin.

2. Elixhauser comorbidities that are not in the AFI database. We include indicators for

HIV/AIDS, deficiency anemia, hypothyroidism, tumor, metastasis, lymphoma, obesity, weight

loss, paralysis, pulmonary circulation disorders, ulcer, valvular disease. These are additional

patient characteristics that have been shown to predict health care spending and mortality.

3. Variables included in the HAS-BLED score to predict bleeding risk if anticoagulated.
We include indicators for liver disease, renal failure, alcohol abuse, history of bleeds. These

variables are included in the HAS-BLED score, which is a predictive risk score that aims to

inform physicians of the risk of induced bleed, if the patient is anticoagulated. The HAS-

BLED score incorporates three variables that we have already included into our predictions of

bleed treatment effect heterogeneity, including age, hypertension, and stroke history; we do

not consider these variables separately here, since included bleed treatment effects may already

depend on these variables. The HAS-BLED also includes a measure of a measure of unstable or

high INRs among treated patients, which is not observed prior to treatment, and so not included

here. Finally, HAS-BLED score also includes medication usage that predisposes patients to

bleeding, such as aspirin or NSAIDS. Unfortunately, we do not consistently observe the use of

these medications because they are widely available over the counter, without a prescription.

4. Variables related to patient’s ability to comply with warfarin monitoring. We include indi-

cators for drug abuse, depression, psychoses, number of years of military service. Appropriate

management of patients on warfarin requires blood work repeated at regular intervals (typically

every 2-4 weeks) to ensure the dosing is appropriate. Optimal dosing can depend on a patient’s

diet and other medications, and may need to be adjusted from time to time as those factors

change. If the warfarin dosage is too low, the patient will not reap the benefits of anticoagula-

tion for stroke reduction; if the dosage is too high, the patient will be at elevated risk of bleeds.

These variables included here are related to the likelihood that the patient can comply with the

monitoring regimen.

5. Physician characteristics. We include indicators for the physician’s specialty code, specifi-

cally for cardiology, internal medicine, and primary care. This specialty coding variable indi-

cates the physician’s training and role at the VHA.

Controlling for these variables in our model estimation does not materially change the conclusions

of our analysis. Figure A.3 reports the results of regressions that permute the control variable sets

to cover every possible combination of the above list. In Panel A, we find a similar increase in

sensitivity to the CHADS2-component of stroke treatment effects after guideline awareness in each

model, regardless of the set of included controls. In Panel B, we show that the unexplained variance

in treatment propensity does not change substantially, even after we control for these detailed patient

and physician characteristics.
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A.3 Construction and Prediction Details

In this appendix, we provide further details of various constructed objects and predictions.

Predicted Mortality. We construct a measure of predicted mortality based on patient characteris-

tics, using mortality outcomes among patients in the VHA who do not have atrial fibrillation. To select

this sample, we first take all patients at the VHA who are administratively linked to a primary care

physician in 2010 for the first time. We exclude patients who are administratively linked in a primary

care relationship to nurse practitioners or physician assistants; we also exclude patients linked to pri-

mary care doctors whose service section falls under the following categories: psychiatry, geriatrics,

orthopedics, surgery, infectious diseases, rheumatology, neurology, renal failure, spinal conditions,

cardiology, oncology, sleep, and behavioral health. We exclude patients whose age is below 18 years

or above 100 years. Importantly, we exclude patients with a history of atrial fibrillation. This leaves us

with 833,298 patients. We construct an OLS prediction of 3-year mortality using patient age, weight,

height, vital signs, hemoglobin, gender, the indicator for whether a patient is white, and indicators for

Elixhauser comorbidities.

Treatment Propensity. We construct the propensity of treatment as a function of patient character-

istics in the VHA data and denote this object as PrVHA (,8 | -8). This treatment propensity model is

constructed as the OLS linear probability of being treated with anticoagulants given patient charac-

teristics from the VHA data using patient covariates that also exist in the AFI database, as reported in

Table A.1. We then take this model to calculate PrVHA (,8 | -8) for each patient in the AFI database,

in order to test whether physician treatment decisions in the VHA reveal additional signal about treat-

ment effects heterogeneity in the AFI database, in Section 5.3 and Appendix Table A.4.

Causal- and Regression-Forest Predictions. We use the grf package developed by Tibshirani

et al. (2020) to run causal and regression forests. Details about the algorithm can be found at

https://github.com/grf-labs/grf. In brief, both causal and regression forests form predic-

tions by creating a number of decision trees, each trained on a random sample of observations. In

each tree, nodes are split recursively by a random subset of characteristics. This process occurs until

no node can be split any further, as determined by parameters of the algorithm that we discuss below.

Causal forests split nodes with the objective of maximizing differences in treatment effects—the dif-

ference between average outcomes among treated and untreated observations—between child nodes.

Regression forests split nodes with the objective of maximizing differences in average outcomes be-

tween child nodes. After a decision tree is formed, predicted treatment effects (or outcomes) for a

given vector of characteristic values are determined by the average treatment effect (or outcome) in

the terminal node that contains those characteristic values. The prediction of the forest is the average

prediction over each tree in the forest.

In training both causal and regression forests, we use the default honesty option. This ensures
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that separate random samples of the data are used to determine splits and to compute average treat-

ment effects or outcomes in the nodes (Athey and Wager, 2019).

We use the following parameter values in our algorithm. In the causal forest, we set minimum

node size (min.node.size) such that all nodes must contain at least 150 treated observations and 150

untreated observations. In the regression forest, we set this parameter so that each node must have

at least 300 observations. We set these constraints so that each node will have a sufficient number

of realized strokes, as the outcome of stroke is relatively uncommon, at 6.5%, as shown in Appendix

Table A.4. We set the parameter alpha to 0.2, which restricts imbalance of splits so that each child

node required to be greater than 20% of the size of its parent node. We set the number of trees grown

in the forest (num.trees) at 800. We set sample.fraction, or the fraction of the data used to build

each tree, at 0.75, within the default range. We set honesty.fraction, or the fraction of the training

sample used for determining splits, at 0.75, also within the default range. We left the number of

variables considered in each split (mtry) at the default value, which implied that all variables were

considered in each split.
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Figure A.1: Distribution of Physician Treatment Decisions

A. Treatment
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Notes: These figures show the distribution of treatment rates and CHADS2 adherence rates across physicians.
They cover the subsample of 1,146 physicians treating at least 30 patients in our final analysis sample. This
covers 50,426 patients treated by the higher volume doctors, or a little less than half of the VHA sample defined
in Table 2. Panel A shows the distribution of treatment rates. Panel B shows the distribution of CHADS2
adherence rates. We define CHADS2-adherent anticoagulation decisions as follows: No anticoagulation for
patients with a CHADS2 of 0 and anticoagulation for patients with a CHADS2 score greater than or equal 2;
we omit patients with a CHADS2 score of 1 from this calculation, since the ACC and ACCP guideline allowed
for either anticoagulation or aspirin for these patients.
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Figure A.2: Treatment Probability by Predicted Mortality Risk
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Notes: This figure shows the probability of anticoagulation as a function of predicted mortality risk in the VHA
sample. The statistical model predicting mortality risk is calculated in a separate sample of patients receiving
primary care at the VHA who have no diagnosis of atrial fibrillation. The curve fits the observed data with a
kernel weighted local polynomial. The shaded area represents the 95% confidence interval.
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Figure A.3: Stability of the Structural Results
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Notes: These graphs illustrate how key results of our structural model vary as we include various sets of control
variables in its estimation. Panel A examines the increased decision weight physicians place on CHADS2-
related stroke treatment effects with CHADS2 awareness, or UB (2)pre /UB (2)post . Panel B examines the proportion
of variance in the latent variable that we can explain with observable characteristics (i.e., the complement of
the share explained by f2

Y,6). In each panel, we include varying sets of patient characteristics in 5 (-8) in our
structural model stated in Equation (10). We estimate the baseline specification, shown in Column 1 of Table 4.
The solid line shows the mean value of the statistic among specifications with the indicated number of control
sets; the top (bottom) dashed line shows the maximum (minimum) of the statistic. The control variables are
detailed in Appendix Section A.2.
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Figure A.4: Counterfactual Outcomes with CHA2DS2-VASc Guideline

A. Strict Guideline Adherence
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Notes: Relative to Figure 6, this figure includes an additional set of counterfactual outcomes under strict
adherence to the CHA2DS2-VASc guideline. Like other counterfactuals of strict adherence, strict adherence to
this guideline implies ranking patients by their CHA2DS2-VASc score. The CHA2DS2-VASc score assigns one
point for congestive heart failure, hypertension, age 65-74 years, female sex, vascular disease, and diabetes; it
assigns two points for age 75 years or older, and for stroke, transient ischemic attack, or thromboembolism.
Details for this figure are otherwise described in the notes for Figure 6.
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Figure A.5: Counterfactual Outcomes, Fixed Predicted Mortality Distribution

A. Strict Guideline Adherence
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Notes: Relative to Figure 6, this figure shows counterfactual outcomes for patient rankings that hold fixed the
predicted mortality distribution of treated patients at every point along the curve. The fraction of treated patients
in each 5-year age bin matches the fraction observed treated in our sample. Within each predicted mortality
group, patients are ranked according to scores in each guideline. In order to maintain a predicted mortality
distribution of treated patients, it is not possible to treat 100% of patients. This is reflected by curves for
counterfactual outcomes not reaching the same bottom-right corner of Figure 6. Only counterfactual outcomes
for strict adherence and for random sorting are changed in this figure; outcomes for awareness scenarios are
unchanged from Figure 6. For more details, see notes to Figure 6.
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Table A.3: Balance Table

Patient Characteristics
Control Group

Mean
Treatment

Group Mean
Coefficient

Age 70.4 70.3 0.18
(0.47)

Congestive Heart Failure 0.30 0.29 -0.006
(0.012)

Age above 65 0.77 0.76 0.003
(0.012)

History of Hypertension 0.45 0.46 -0.008
(0.015)

History of Stroke 0.17 0.12 -0.006
(0.008)

History of Diabetes 0.14 0.14 -0.006
(0.010)

Male 0.67 0.68 -0.016
(0.013)

Notes: This table shows the unadjusted means of each patient characteristics in the treatment and control group.
The last column shows results of a regression of each patient characteristics on trial fixed effects and treatment
indicator in AFI database. Standard errors are shown in parentheses.
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Table A.4: Causal-Forest BLP Validation Regressions

Stroke Bleed
(1) (2) (3) (4)

Treatment,,8 −0.043*** −0.042*** −0.043*** 0.019***
(0.007) (0.007) (0.007) (0.005)

Treatment effect interactions

,8 ×
(
ĝ>− 9 (-8) − g

>
)

0.823*** 0.843*** −0.374

(0.230) (0.230) (0.691)

,8 ×
(
ĝ
B (2)
− 9 (-8) − ḡB (2)

)
1.329***

(0.408)

,8 ×
(
ĝ
B (A )
− 9 (-8) − ḡB (A )

)
0.645**

(0.265)

,8 ×
(
PrVHA (,8 | -8) −PrVHA (,8)

)
−0.038

(0.088)
Outcome mean 0.065 0.065 0.065 0.030
Observations 4,720 4,720 4,720 4,720

Trial fixed effects Yes Yes Yes Yes
Predicted outcome controls
.̂>− 9 (-8) Yes Yes Yes Yes

% 9 ×
(
ĝ>− 9 (-8) − g

>
)

Yes Yes Yes

% 9 ×
(
ĝ
B (2)
− 9 (-8) − g

B (2)
)

Yes

% 9 ×
(
ĝ
B (A )
− 9 (-8) − g

B (A )
)

Yes

PrVHA (,8 | -8) Yes

Notes: This table reports the coefficients of best linear predictor (BLP) validation regressions of stroke
and bleed outcomes. Columns 1 and 4 corresponds to Equation (5), which interacts treatment with the
demeaned full treatment effect

(
ĝ>− 9 (-8) − g

>
)

for stroke and bleed, respectively. Column 2 corresponds
to Equation (6), which interacts treatment with the demeaned CHADS2 and residual components of the
stroke treatment effect, or

(
ĝ
B (2)
− 9 (-8) − ḡB (2)

)
and

(
ĝ
B (A )
− 9 (-8) − ḡB (A )

)
. Column 3 reports the specification

in Column 1 with the additional interaction between treatment and demeaned VHA propensity to treat, or(
PrVHA (,8 | -8) −PrVHA (,8)

)
. The VHA propensity to treat, PrVHA, is constructed as the OLS probability

of treatment in the VHA data given patient characteristics and exported to the AFI databse, detailed further
in Appendix A.3. All specifications control for trial fixed effects and regression forest predictions of the
outcome estimated in the control groups of leave-out trials, or .̂>− 9 (-8). Additionally, the specifications in
Column 1, 3 and 4 control for treatment probability in each trial interacted with demeaned treatment effect, or
% 9 ×

(
ĝ>− 9 (-8) − g

>
)
, where % 9 denotes the treatment probability in each trial. Analogously, the specification in

Column 2 controls for the treatment probability in each trial interacted with demeaned CHADS2 and residual
components of the stroke treatment effect, or % 9 ×

(
ĝ
B (2)
− 9 (-8) − g

B (2)
)

and % 9 ×
(
ĝ
B (A )
− 9 (-8) − g

B (A )
)
. The spec-

ification in Column 3 additionally controls for the treatment propensity main effect. The sample used in the
validation regression exclude patients ineligible for Warfarin, reducing the sample size to 4,720. *** ? < 0.01,
** ? < 0.05, * ? < 0.1
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Table A.6: Counterfactual Outcomes, Fixed Predicted Mortality Risk Distribution

Strokes prevented Bleeds induced

Percent of
patients
treated

Per 10K
patients

Percent of
maximum

Per 10K
patients

Percent of
maximum

A: Benchmarks (from Table 5)
Observed treatment choices 49.8% 371 49.8% 93 49.8%
Randomly assigned treatment 49.8% 371 49.8% 93 49.8%
All patients treated 100% 745 100% 187 100%

B: Assignment within Predicted Mortality Bins
Randomly assigned treatment 49.8% 366 49.2% 93 49.8%
Adherence to CHADS2 guideline 49.8% 419 56.3% 93 49.8%
Adherence to stroke TE guideline 49.8% 441 59.2% 93 49.8%

Notes: This table reports counterfactual outcomes that hold the fixed the predicted mortality risk distribution
of treated patients. For comparison, Panel A reproduces benchmark results from Table 5, in which treatment
probability is not held fixed within predicted mortality bins. In Panel B, the fraction of treated patients in
each ventile of predicted mortality bin matches the fraction observed treated in our sample. We also hold the
overall percentage of treated patients fixed at 49.8%. For adherence counterfactuals, within each predicted
mortality group, patients are treated according to rankings implied by the noted guideline. Figure A.5 shows
counterfactual outcomes varying the overall percentage of treated patients. For more details, see notes to
Table 5 and Figure A.5.
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