
AI Teaches the Art of Elegant Coding:
Timely, Fair, and Helpful Style Feedback in a Global Course

Juliette Woodrow
jwoodrow@stanford.edu

Stanford University
California, USA

Ali Malik
malikali@cs.stanford.edu

Stanford University
California, USA

Chris Piech
piech@cs.stanford.edu
Stanford University
California, USA

ABSTRACT
Teaching students how to write code that is elegant, reusable, and
comprehensible is a fundamental part of CS1 education. However,
providing this “style feedback” in a timely manner has proven diffi-
cult to scale. In this paper, we present our experience deploying a
novel, real-time style feedback tool in Code in Place, a large-scale
online CS1 course. Our tool is based on the latest breakthroughs in
large-language models (LLMs) and was carefully designed to be safe
and helpful for students. We used our Real-Time Style Feedback tool
(RTSF) in a class with over 8,000 diverse students from across the
globe and ran a randomized control trial to understand its benefits.
We show that students who received style feedback in real-time
were five times more likely to view and engage with their feedback
compared to students who received delayed feedback. Moreover,
those who viewed feedback were more likely to make significant
style-related edits to their code, with over 79% of these edits directly
incorporating their feedback. We also discuss the practicality and
dangers of LLM-based tools for feedback, investigating the quality
of the feedback generated, LLM limitations, and techniques for con-
sistency, standardization, and safeguarding against demographic
bias, all of which are crucial for a tool utilized by students.

CCS CONCEPTS
• Social and professional topics → CS1; • Human-centered
computing → User interface programming.

KEYWORDS
LLMs, GPT, Deployed at Scale, Real Time, Style Feedback, CS1
ACM Reference Format:
Juliette Woodrow, Ali Malik, and Chris Piech. 2024. AI Teaches the Art of
Elegant Coding: Timely, Fair, and Helpful Style Feedback in a Global Course.
In Proceedings of the 55th ACM Technical Symposium on Computer Science
Education V. 1 (SIGCSE 2024), March 20–23, 2024, Portland, OR, USA. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3626252.3630773

1 INTRODUCTION
Establishing style principles early in computer science education
teaches students to write code that is elegant, maintainable, and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE 2024, March 20–23, 2024, Portland, OR, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0423-9/24/03. . . $15.00
https://doi.org/10.1145/3626252.3630773

comprehensible. These are imperative skills for a computer scien-
tist as they enhance software quality, minimize debugging time,
and foster collaboration. However, providing individualized style
feedback to students is a difficult task. Traditional human-grading
methods are costly and slow, and do not scale to thousands of stu-
dents. While automated tools exist, they are complicated to set up,
can be inflexible, and often require a dataset of student solutions.

We introduce a real-time style feedback tool (RTSF) and our
experience deploying it to over 8,000 learners from all around the
globe. RTSF gives feedback along several key stylistic aspects such
as quality of identifier names, use of constants, comments and
documentation of code, and decomposition. Our tool uses cutting-
edge Large Language Model (LLM) analysis to provide students
with specific stylistic insights. Its main purpose is to serve as a
supportive scaffold for novice programmers in this CS1 course.

We ran a randomized control trial in Code in Place, a free online
course of over 8,000 students from across the globe [1, 24, 29]. We
explored the effect of timely feedback on student learning, the
quality, merits, and limitations of feedback produced by an LLM,
and delved into the necessary safeguards for deploying an LLM-
based tool to students.

We found that LLMs are effective at providing valuable style
feedback to students, leading to noticeable improvements in their
code’s style. However, we also found it crucial to maintain careful
control and rigorous evaluation of this process to ensure its quality
and reliability.

In summary, the main contributions of this work are:
(1) We created an LLM-based automated style feedback tool

designed to ensure student safety and effectiveness in pro-
viding high-quality feedback.

(2) We attempt to provide the full set of feedback that human
tutors would provide in a high resource classroom.

(3) We ran a large scale randomized control trial to more than
8,000 students around the world to understand how timing
and LLM generated style feedback impacts learning.

(4) We show that students who received feedback in real time
were five times more likely to view it than students who
received feedback a week later.

(5) We show that students who viewed style feedback had higher
style scores andweremore likely tomake a post-functionality
style edit, with 79% of these edits directly incorporating their
feedback.

(6) We investigated and found no gender bias in this particular
LLM generated feedback and explored other demographic
impacts of style feedback.

(7) We open-source all of our code and LLM prompts so that
anyone can implement this tool in their course.

1442

https://orcid.org/0009-0006-8097-093X
https://orcid.org/0009-0007-1201-5014
https://orcid.org/0000-0001-5140-0467
https://doi.org/10.1145/3626252.3630773
https://doi.org/10.1145/3626252.3630773
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626252.3630773&domain=pdf&date_stamp=2024-03-07

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Juliette Woodrow, Ali Malik, and Chris Piech

Figure 1: We employ LLM-based analysis to examine students’ code and provide suggestions regarding coding style in real-
time. Students can review these suggestions and make edits to improve the style of their code immediately after passing all
functionality tests.

1.1 Related Work
Timeliness of feedback. Our tool provides instant style feedback.

Prior work suggests that immediate feedback improves perfor-
mance by highlighting the gap between the current output and
the target goal [22]. Students are more successful in applying the
concepts they’ve learned when they receive feedback promptly,
for instance, within an hour [17, 22]. In fields where immediate
feedback is accessible, integrating this instantaneous formative
feedback with student revision leads to improved grades [8, 13].

Automated feedback tools. Over the past 50 years, a growing
volume of CS1 education research has centered on efficient and
prompt large-scale style feedback delivery. [14, 21, 25, 32]. One of
the reasons automatic feedback is so important is that it can be
delivered in real-time. Early prior work on automated style feedback
relied on static analysis or rules-based tools [3, 5, 10, 11, 16, 20, 23,
27, 31, 33].

Several modern tools have been developed using NLP algorithms
and clustering techniques. These techniques require datasets of
pre-existing student solutions, enabling them to compare a new
submission to any solution in the dataset that demonstrates better
code style [2, 6, 7, 12, 26]. Other miscellaneous tools focus on im-
proving style in young learners using Scratch [30], or tools that are
geared towards more advanced students and software engineers
[4, 9, 15].

Compared to these tools, our approach does not require a pre-
existing dataset of labeled solutions and instead leverages LLM-
based analysis that can dynamically offer rich feedback, unrestricted
by the rigidity of rule-based static analysis.

2 STYLE FEEDBACK TOOL
The style feedback tool uses LLMs and deterministic algorithms to
analyze students’ code and provide them with specific and individu-
alized style feedback in real time.We present an overview of the tool
in Figure 1. The source code and example LLMprompts can be found
at https://github.com/juliettewoodrow/realtimestylefeedbacktool.
git

The option to request style feedback is enabled only after stu-
dents have successfully passed all functionality tests. Once students
request style feedback, their code is sent to the LLM for analysis.
The LLM response is parsed into plain text, combined with static

analysis feedback, and displayed to the students. This entire pro-
cess takes 5 seconds, on average. We show an example of feedback
presented to students in Figure 3.

2.1 What is Style Feedback?
Good coding style usually denotes organized, well-documented
code with meaningful variable names, and easy maintainability
and debuggability. However, when teaching style in CS1, educators
have differing interpretations, each holding their own perspectives
on what elements are significant and what should be conveyed to
students.

We collaborated with course instructors to identify which style
aspects for this tool to emphasize. Note that these can easily be
updated by changing the prompts. The feedback in our tool targets
the following four categories:

• Identifier Names: Identifier names refer to the labels stu-
dents assign to variables and functions in their code. Clear
and meaningful identifier names enhance code readability
and understanding.

• Constants and Magic Numbers: Constants are values that
do not change throughout the program’s execution. In con-
trast, magic numbers are arbitrary numerical values em-
bedded directly in code. Using constants instead of magic
numbers makes code more maintainable and flexible.

• Comments:Comments are textual explanations addedwithin
the code to provide insights, explanations, and clarifications.
They offer guidance to other programmers (and to the stu-
dents themselves) about the code’s functionality, purpose,
and tricky aspects.

• Decomposition: Decomposition refers to the process of
breaking down a complex programming problem into smaller,
manageable subtasks and helper functions. It aids in tack-
ling complex problems by focusing on smaller components,
which are often easier to understand and test.

2.2 Feedback Generation
Each of the four feedback categories has a separate process for
generating feedback. Identifier Names and Comment feedback are
generated by an LLM while Constants and Magic Numbers and
Decomposition feedback are generated using only static analysis.

1443

https://github.com/juliettewoodrow/realtimestylefeedbacktool.git
https://github.com/juliettewoodrow/realtimestylefeedbacktool.git

AI Teaches the Art of Elegant Coding:
Timely, Fair, and Helpful Style Feedback in a Global Course SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

def main():
ask the user for a weight on earth
weight = input("Enter a weight on earth:")
weight_str = float(weight)

z = weight_str * 0.378
s = str(z)

print("The equivalent weight on Mars is " + s)

Figure 2: Example Student Program Before Style Feedback

For identifier feedback, we use LLM analysis to identify any
names that need improvement, suggest alternative variable names,
and share a short explanation for why the alternative name is better
than the one the student chose. For comments, the LLM analysis
generates one positive piece of feedback relating to comments
(if there were any comments in the student program) and two
additional places they could add comments (if necessary).

The feedback for static analysis of constants and magic numbers
displays a list of defined constants that are never used, numbers that
should be converted into constants, values defined as constants but
used as variables, and constants that should have been written in
uppercase. The decomposition feedback suggests students decom-
pose functions that have more than 15 lines of code. Additionally,
for any functions with more than four consecutive lines of code in
common, the static analysis suggests they decompose that repeated
code into a helper function.

We prevented students from seeking feedback on the same prob-
lem within 10 minutes, both to encourage critical thinking about
the feedback and to avert model overuse.

2.3 Prompt Design
Our first important insight in prompt engineering was to instruct
the LLM to produce output as a JSON conforming to the schema
detailed in the prompt. This insight guaranteed uniform feedback
by standardizing content generated and mitigating student expo-
sure to unconstrained LLM content. It also allowed for systematic
parsing and validation of generated feedback before sharing it with
students.

Each type of feedback has its own prompt outlining a unique
schema with specific keys. Some of these keys were designed to
be used in the output shown to students and some were uniquely
designed to enhance the model’s output quality. For instance, we
directed the LLM to calculate a score for every variable name and
include that in the JSON output. We did not show the score to
students, but requiring a score significantly improved the LLM’s
ability to distinguish between robust and weak variable names. We
also directed the LLM to determine if the variable name misleads
the type of information that it stores. Without including this in the
schema, the LLM would not recognize instances when the name
contradicted the type of value stored.

Our second key insight was preprocessing each student’s code
to send additional information to the LLM. Initially, when only
the code text and prompt were provided, issues arose with the
generated output, including incomplete consideration of identifier

Figure 3: Example Style Feedback Presentation for the pro-
gram in Figure 2.

names and inaccurate line number information. However, incorpo-
rating additional data notably improved the quality of the generated
output. For example, for identifier feedback we sent a dictionary
mapping each variable to its assigned values. For comment feedback
we sent a dictionary mapping line numbers to existing comments.

2.4 Model, Cost, Server Time Delays
We used OpenAI’s GPT-3.5-turbo model for all LLM analysis [28].
This model was fast, cost effective, and with sufficient prompt
engineering provided high quality feedback.

The total cost to use this model throughout our deployment was
$90. This was less than half a cent per student who used our tool.
Model cost depends on the number of tokens in the input and in
the generated output, which varies by each request. Throughout
the five weeks, we had just under 56,000 requests sent to the LLM.
Each request to the LLM took on average 5 seconds to complete.
Variations in internet access speeds and the model usage can occa-
sionally result in longer processing times, but we did not experience
any noticeable delays throughout the course.

1444

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Juliette Woodrow, Ali Malik, and Chris Piech

Group Delay Real
Time

Real Time With
Nudge

Number of Students 850 3265 4195
Group Use Percentage 7.27% 6.56% 44.69%

Table 1: Experiment Group Details

Figure 4: Students who were nudged and had timely feedback
were much more likely to to view style-feedback compared
to students in the other experiment groups.

3 EXPERIMENT DESIGN
Wedeployed our tool in Code in Place, a large-scale, open-access, on-
line CS1 course. The tool was integrated into the students’ IDE [19].
Leveraging the tool’s near-instant feedback generation, we investi-
gated if feedback timing impacted student engagement. In our ran-
domized control trial (RCT), we divided students into groups: Group
Real Time With Nudge, with real-time feedback and prompting
upon passing functionality tests; Group Real Time, with real-time
feedback but no prompts; and Group Delay, with the previous
week’s feedback available every Monday.

At the start of the course, groups were randomly assigned, with
45% of students placed in group A, another 45% in group B, and the
remaining 10% in group C. These group assignments did not change
throughout the course. See Table 1 for student group numbers.

Our tool was available for 5 weeks of the 6 week course. The
course had a total of 15 assignments and our tool was available for
12. The course did not have any grades and the only mechanism
for offering style feedback was through our tool.

4 RESULTS
4.1 Timeliness of Feedback
We found that if the feedback is not timely, almost nobody views it.
We also found that nudging people to view feedback in real time
has the highest chance of getting students to look at their feedback.
We show these results in Figure 4.

The real time group was much more likely to provide a rating for
the feedback. About 30% of students in that group provided a rating
with 97% rating it helpful. The delay group almost never gave a
rating (<3%). Although definitive conclusions cannot be drawn due
to the delay group’s negligible ratings, it does suggest that real-time
feedback viewers are more likely to value the feedback.

Figure 5: Feedback viewers improved their style scores more
so than non feedback viewers. Z-scores of style score on three
assignments throughout the course.

4.2 Impact on Student Style
We know that students who receive feedback in real time look
at the feedback. Now we investigate how they engage with and
incorporate this feedback after viewing.

Instructors of the course chose three assignments representative
of the overall course work, and they hand graded a style score for
a sample of students. While grading, they had no knowledge of the
students’ experiment groups or whether they viewed style feedback
for any of the assignments. The first assignment was given and
completed by students before the tool was released. The second
and third assignments were spread out throughout the course after
the tool was released to students. In this section, we only evaluate
students who had real-time style access and were prompted to view
it, as low interaction rates among other groups prevented extensive
comparative analysis between them.

On the latter two assignments, we noticed an increase in style
scores for students who viewed their feedback compared to non-
viewers. Figure 5 shows the Z-score of style distributions between
these two groups per assignment. A slight difference was noted
pre-tool release among future feedback viewers. However, these
viewers exceeded the original distribution in the next two assign-
ments, suggesting the tool’s feedback contributed to their style
score improvement.

We examined student engagement with style feedback on the
latter of the three assignments. We found that feedback viewers
were more likely to make edits to their code after achieving full
functionality than non feedback viewers. Figure 6 demonstrates
these findings, mapping the amount of significant edits from the
first code solution that clears all test cases across various time
periods for both feedback viewers and non-viewers.

It could be that students who are more engaged are likely to
revise their code after ensuring functionality, and these are the
same students who tend to view style feedback. To control for this,
we considered only the students who edited their code after they
passed all functionality test cases and explored the nature of their
edits. We found that of the students who made edits to their code
after passing all functionality test cases, those who viewed style
feedback were much more likely to make a style based edit or a

1445

AI Teaches the Art of Elegant Coding:
Timely, Fair, and Helpful Style Feedback in a Global Course SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

Figure 6: Students who viewed feedback made more post-
functionality code edits compared to those who did not.

Figure 7: Considering only students who made an edit post
full-functionality, a larger percentage of those who viewed
style feedback made a style-based edit compared to those
who did not view style feedback.

combined style and functionality edit than those who did not view
style feedback, shown in Figure 7.

Now considering only the students who viewed style feedback
and made a style based edit or a combined style and functionality
edit, we found that 79% of those students directly incorporated the
style insights shown in their feedback.

5 PRACTICALITY OF LLMS TO PROVIDE
FEEDBACK

In this section, we examine cases of both valuable and unhelpful
LLM-generated feedback to assess the practical use of LLMs in
generating feedback.

5.1 Positive LLM Feedback Examples
The LLM-generated feedback strengths included providing use-
ful explanations for name improvement suggestions, accurately
identifying misleading variable names, and suggesting thoughtful,
descriptive comments.

In Figure 2 we show an example student program before re-
questing any style feedback. Figure 3 shows the LLM generated
feedback for that code. The LLM feedback noted that the weight_str
variable misrepresented the type of value that variable stored and
recommended alternative names that were more accurate. It also
suggested names for z and s that are more accurate and descriptive
given the context of the program.

The LLM also provided helpful comment feedback for this pro-
gram with one positive aspect and two suggestions where the stu-
dent could place a comment. The first suggestion was, "Consider
adding a comment on line 4 to explain the purpose of converting
the user input to a float." The second suggestion for comments was,
"On line 7, you could add a comment to describe the calculation
being performed and why the value 0.378 is used. This would pro-
vide more clarity to the reader." The positive feedback was, "Great
job adding a comment on line 3 to describe what that code does."
These examples are indicative of the quality of most of the feedback
generated in our deployment.

5.2 Limitations of LLM Generated Feedback
During the instances where the feedback was unhelpful, potential
issues included: not highlighting all identifier names that needed
improvement, generating feedback about comments that did not
exist, and inconsistent variable name suggestions.

In certain cases, the model inaccurately gave some variable
names high scores even though they needed improvement, wrongly
implying they were good choices. For example, with the program
in Figure 2 as input, there may be instances where the model incor-
rectly assigns high scores to ’z’ or ’s’, suggesting they are descriptive
variable names when they are not suited for the given context.

An example illustrating hallucinated comments is when the LLM
praised a student’s program, which lacked any comments, with
"Great job adding comments to the program!" Or it would suggest
adding a comment that was not particularly helpful or necessary.

The alternative variable names suggested by the LLMwere incon-
sistent. The generated feedback sometimes offered more accurate
and descriptive names and sometimes the names were no better
than the existing one chosen by the student, or were overly descrip-
tive.

6 SAFETY AND BIAS
In this section, we first outline our strategies for ensuring fair and
safe LLM-generated feedback, then we analyze feedback utilization
among different demographic groups.

6.1 Ensuring Fairness and Safety in LLM
Generated Feedback

A valid and significant concern when using LLMs to generate text
for students is the potential bias in the output, which could nega-
tively affect specific groups. We were highly conscious of this issue,
as we aimed to avoid perpetuating any biases that might hinder
certain groups from feeling welcome in programming. To address
this concern, we put in place several safeguards:

• We shared only the text of each student’s code, devoid of
any information about the student or their course progress.

• Students were limited to one round of LLM interaction at a
time.

• Students’ interactions with the LLM were solely via our
comprehensive parsing and validation system.

• To avoid unsupervised LLM generated plain text, the LLM
was set to deliver responses in JSON form.

1446

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Juliette Woodrow, Ali Malik, and Chris Piech

(a) The usage of the tool among men and
women is consistent.

(b) The fraction of students in an age group
who use the tool trends upwards with age.

(c) Usage of our tool is consistent across stu-
dentswith varying levels of prior experience.

Figure 8: Fraction of Students in Different Demographic Groups Who Viewed Style Feedback

We evaluated the safety of our generated feedback through rig-
orous checks of thousands of responses, finding no instances of
inappropriate or demographically biased content. Using a senti-
ment analysis classifier on a subset of feedback provided to men
and women, we found that the model did not provide differential
feedback based on gender [18]. A manual examination of sampled
feedback given to male, female, and non-binary students confirmed
no discrepancies.

6.2 Demographic analysis
Gender Distribution and Tool Usage. Our study demonstrated an

equitable usage of our tool by both men and women, with 11%
of men and 10.4% of women utilizing it, indicating its universal
appeal and accessibility, as detailed in Figure 8. However, usage
was less among non-binary students at only 4.1%. A comprehensive
analysis of the tool and feedback generated showed no differences
in feedback across genders, but the lower usage by non-binary
students calls for further investigation.

Age and Tool Adoption. A notable trend emerged in the analysis
of tool usage across age groups, displayed in Figure 9. The fraction
of students using the tool displayed an upward trajectory with in-
creasing age. This observation might represent students’ changing
needs and preferences throughout their education. It underscores
the need to customize tool interfaces and functions for different
age groups.

Prior Programming Experience and Tool Engagement. We inves-
tigated tool usage across varying prior programming experience
levels, revealing consistent engagement between 9% to 13% for all
groups. This indicates our tool’s versatility, benefiting beginners
and experienced programmers alike. Further research is needed
to determine if there is an upper limit on experience level beyond
which the tool’s ability to provide effective style feedback decreases.

7 LIMITATIONS OF THE TOOL
Section 5.2 discussed the constraints of LLM-generated feedback.
This section focuses on key factors to consider in the broader ap-
plication of the tool.

The feedback quality from the LLM is inherently connected to
its training data. In the case of the model we used, the training data
is non-public and non-adjustable. This limits flexibility, as the tool
cannot adapt to diverse style preferences. Feedback from this tool

mainly serves as formative rather than summative. As described
in Section 5, the LLM generated output varies, leading to potential
application restrictions outside of formative feedback provision.

The tool’s static analysis may overlook some errors due to its
strict structure, indicating a need for more context-sensitive strate-
gies to ensure thorough feedback. Additionally, although the tool
offered feedback on four main style categories, it cannot generate
high-quality feedback in other important areas such as indentation
and major code restructuring.

8 FURTHER RESEARCH
Our tool facilitates further exploration into LLM feedback genera-
tion, its effect on various demographics, fairness, bias, and the cre-
ation of LLM-based resources for learners. Future research should
conduct a more thorough investigation into the potential biases of
LLM-based tools than was accomplished in this report. It is also
crucial to examine in greater depth how the usage of these tools,
as well as the nature of the responses they produce, vary among
different demographic groups.

Future research should explore open-source models. The inves-
tigation of open-source LLM models can promote transparency,
accessibility, and collaborative advancements. This would allow
instructors to tailor these models to their specific style guidelines,
diminishing costs and reliance on external platforms.

9 CONCLUSION
In this experience report, we investigate the influence of timely
and practical LLM-generated feedback on a large group of students
worldwide. We found timeliness of feedback to be crucial. Students
who received real-time feedback were five times more likely to view
it than those with delayed feedback. Furthermore, students viewing
the LLM-generated feedback achieved higher style scores and were
more likely to make style-based edits. We also analyzed and summa-
rized the advantages and limitations of using a cutting-edge LLM
to generate feedback. Our demographic analysis demonstrates the
tool’s versatility, highlighting its wide applicability across various
demographics. We invite you to use and build upon this novel tool
to provide real-time style feedback in your CS1 courses.

ACKNOWLEDGMENTS
We would like to sincerely thank the Carina Foundation and the
Code in Place team for making this research possible.

1447

AI Teaches the Art of Elegant Coding:
Timely, Fair, and Helpful Style Feedback in a Global Course SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

REFERENCES
[1] 2023. Code in Place. https://codeinplace.stanford.edu/ [Online; accessed August-

2023].
[2] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton. 2015. Sug-

gesting accurate method and class names. Proceedings of the 2015 10th Joint Meet-
ing on Foundations of Software Engineering (2015). https://api.semanticscholar.
org/CorpusID:9279336

[3] R E. Berry and B A.E. Meekings. 1985. A Style Analysis of C Programs. Commun.
ACM 28, 1 (jan 1985), 80–88. https://doi.org/10.1145/2465.2469

[4] Anastasiia Birillo, Ilya Vlasov, Artyom Burylov, Vitalii Selishchev, Artyom Gon-
charov, Elena Tikhomirova, Nikolay Vyahhi, and Timofey Bryksin. 2022. Hy-
perstyle: A Tool for Assessing the Code Quality of Solutions to Programming
Assignments. In Proceedings of the 53rd ACM Technical Symposium on Com-
puter Science Education - Volume 1 (Providence, RI, USA) (SIGCSE 2022). As-
sociation for Computing Machinery, New York, NY, USA, 307–313. https:
//doi.org/10.1145/3478431.3499294

[5] Dennis M. Breuker, Jan Derriks, and Jacob Brunekreef. 2011. Measuring Static
Quality of Student Code. In Proceedings of the 16th Annual Joint Conference on
Innovation and Technology in Computer Science Education (Darmstadt, Germany)
(ITiCSE ’11). Association for Computing Machinery, New York, NY, USA, 13–17.
https://doi.org/10.1145/1999747.1999754

[6] Charis Charitsis, Chris Piech, and John C. Mitchell. 2022. Function Names:
Quantifying the Relationship Between Identifiers and Their Functionality to
Improve Them. In Proceedings of the Ninth ACM Conference on Learning @ Scale
(New York City, NY, USA) (L@S ’22). Association for Computing Machinery, New
York, NY, USA, 93–101. https://doi.org/10.1145/3491140.3528269

[7] Charis Charitsis, Chris Piech, and John C. Mitchell. 2022. Using NLP to Quantify
Program Decomposition in CS1. In Proceedings of the Ninth ACM Conference on
Learning @ Scale (New York City, NY, USA) (L@S ’22). Association for Comput-
ing Machinery, New York, NY, USA, 113–120. https://doi.org/10.1145/3491140.
3528272

[8] John C. Chen, Dexter C. Whittinghill, and Jennifer A. Kadlowec. 2006. Using
Rapid Feedback to Enhance Student Learning and Satisfaction. In Proceedings.
Frontiers in Education. 36th Annual Conference. 13–18. https://doi.org/10.1109/
FIE.2006.322306

[9] Pedro Henrique de Andrade Gomes, Rogério Eduardo Garcia, Gabriel Spadon,
Danilo Medeiros Eler, Celso Olivete, and Ronaldo Celso Messias Correia. 2017.
Teaching Software Quality via Source Code Inspection Tool. In 2017 IEEE Frontiers
in Education Conference (FIE) (Indianapolis, IN, USA). IEEE Press, 1–8. https:
//doi.org/10.1109/FIE.2017.8190658

[10] Tomche Delev and Dejan Gjorgjevikj. 2017. Static analysis of source code written
by novice programmers. In 2017 IEEE Global Engineering Education Conference
(EDUCON). 825–830. https://doi.org/10.1109/EDUCON.2017.7942942

[11] Nupur Garg and Aaron W. Keen. 2018. Earthworm: Automated Decomposition
Suggestions. In Proceedings of the 18th Koli Calling International Conference on
Computing Education Research (Koli, Finland) (Koli Calling ’18). Association
for Computing Machinery, New York, NY, USA, Article 16, 5 pages. https:
//doi.org/10.1145/3279720.3279736

[12] Elena L. Glassman, Lyla Fischer, Jeremy Scott, and Robert C. Miller. 2015. Foobaz:
Variable Name Feedback for Student Code at Scale. In Proceedings of the 28th
Annual ACM Symposium on User Interface Software & Technology (Charlotte, NC,
USA) (UIST ’15). Association for Computing Machinery, New York, NY, USA,
609–617. https://doi.org/10.1145/2807442.2807495

[13] D.S. Goldstein, J.W. Pellegrino, S.R. Goldman, T.M. Stoelinga, N.T. Heffernan, and
C. Heffernan. 2016. Improving mathematical learning outcomes through applying
principles of spaced practice and assessment with feedback. Poster presented at
the Annual Meeting of the American Educational Research Association.

[14] Robert Green and Henry Ledgard. 2011. Coding guidelines: Finding the art in
the science. Commun. ACM 54, 12 (2011), 57–63.

[15] Thorsten Haendler, Gustaf Neumann, and Fiodor Smirnov. 2020. RefacTutor: An
Interactive Tutoring System for Software Refactoring. In Computer Supported
Education, H. Chad Lane, Susan Zvacek, and James Uhomoibhi (Eds.). Springer
International Publishing, Cham, 236–261.

[16] Rowan Hart, Brian Hays, Connor McMillin, El Kindi Rezig, Gustavo Rodriguez-
Rivera, and Jeffrey A. Turkstra. 2023. Eastwood-Tidy: C Linting for Automated

Code Style Assessment in Programming Courses. In Proceedings of the 54th
ACM Technical Symposium on Computer Science Education V. 1 (Toronto ON,
Canada) (SIGCSE 2023). Association for Computing Machinery, New York, NY,
USA, 799–805. https://doi.org/10.1145/3545945.3569817

[17] Kathryn Haughney, Shawnee Wakeman, and Laura Hart. 2020. Quality of Feed-
back in Higher Education: A Review of Literature. Education Sciences 10, 3 (2020).
https://doi.org/10.3390/educsci10030060

[18] HF Canonical Model Maintainers. 2022. distilbert-base-uncased-finetuned-sst-2-
english (Revision bfdd146). https://doi.org/10.57967/hf/0181

[19] Thomas Jefferson, Chris Gregg, and Chris Piech. 2024. PyodideU: Unlocking
Python Entirely in a Browser for CS1. In Proceedings of the 55th acm technical
symposium on computer science education. in press.

[20] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2021. A Tutoring System to
Learn Code Refactoring. In Proceedings of the 52nd ACM Technical Symposium on
Computer Science Education (Virtual Event, USA) (SIGCSE ’21). Association for
Computing Machinery, New York, NY, USA, 562–568. https://doi.org/10.1145/
3408877.3432526

[21] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2023. A Systematic
Mapping Study of Code Quality in Education – with Complete Bibliography.
arXiv:2304.13451 [cs.SE]

[22] James A. Kulik and Chen-Lin C. Kulik. 1988. Timing of Feedback and Ver-
bal Learning. Review of Educational Research 58 (1988), 79 – 97. https:
//api.semanticscholar.org/CorpusID:145572756

[23] David Liu and Andrew Petersen. 2019. Static Analyses in Python Programming
Courses. In Proceedings of the 50th ACM Technical Symposium on Computer Science
Education (Minneapolis, MN, USA) (SIGCSE ’19). Association for Computing Ma-
chinery, New York, NY, USA, 666–671. https://doi.org/10.1145/3287324.3287503

[24] Ali Malik, Juliette Woodrow, Brahm Capoor, Thomas Jefferson, Miranda Li,
Sierra Wang, Patricia Wei, Dora Demszky, Jennifer Langer-Osuna, Julie Ze-
lenski, Mehran Sahami, and Chris Piech. 2023. Code in Place 2023: Under-
standing learning and teaching at scale through a massive global classroom.
https://piechlab.stanford.edu/assets/papers/codeinplace2023.pdf.

[25] Susan A. Mengel and Vinay Yerramilli. 1999. A Case Study of the Static Analysis
of the Quality of Novice Student Programs. SIGCSE Bull. 31, 1 (mar 1999), 78–82.
https://doi.org/10.1145/384266.299689

[26] Joseph Bahman Moghadam, Rohan Roy Choudhury, HeZheng Yin, and Armando
Fox. 2015. AutoStyle: Toward Coding Style Feedback at Scale. In Proceedings of
the Second (2015) ACM Conference on Learning @ Scale (Vancouver, BC, Canada)
(L@S ’15). Association for Computing Machinery, New York, NY, USA, 261–266.
https://doi.org/10.1145/2724660.2728672

[27] Stephen Nutbrown and Colin Higgins. 2016. Static analysis of programming
exercises: Fairness, usefulness and a method for application. Computer Science
Education 26, 2-3 (2016), 104–128.

[28] OpenAI. 2022. GPT-3.5-turbo. Available at: https://platform.openai.com/docs/
models/gpt-3-5.

[29] Christopher Piech, Ali Malik, Kylie Jue, and Mehran Sahami. 2021. Code in place:
Online section leading for scalable human-centered learning. In Proceedings of
the 52nd acm technical symposium on computer science education. 973–979.

[30] Simon P Rose, MP Jacob Habgood, and Tim Jay. 2019. Using Pirate Plunder to
develop children’s abstraction skills in Scratch. In Extended abstracts of the 2019
CHI conference on human factors in computing systems. 1–6.

[31] Leo C Ureel II and Charles Wallace. 2019. Automated critique of early pro-
gramming antipatterns. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education. 738–744.

[32] Eliane S. Wiese, Michael Yen, Antares Chen, Lucas A. Santos, and Armando Fox.
2017. Teaching Students to Recognize and Implement Good Coding Style. In
Proceedings of the Fourth (2017) ACM Conference on Learning @ Scale (Cambridge,
Massachusetts, USA) (L@S ’17). Association for Computing Machinery, New York,
NY, USA, 41–50. https://doi.org/10.1145/3051457.3051469

[33] Imre Zsigmond., Maria Iuliana Bocicor., and Arthur-JozsefMolnar. 2020. Gamifica-
tion based Learning Environment for Computer Science Students. In Proceedings
of the 15th International Conference on Evaluation of Novel Approaches to Software
Engineering - ENASE. INSTICC, SciTePress, 556–563. https://doi.org/10.5220/
0009579305560563

1448

https://codeinplace.stanford.edu/
https://api.semanticscholar.org/CorpusID:9279336
https://api.semanticscholar.org/CorpusID:9279336
https://doi.org/10.1145/2465.2469
https://doi.org/10.1145/3478431.3499294
https://doi.org/10.1145/3478431.3499294
https://doi.org/10.1145/1999747.1999754
https://doi.org/10.1145/3491140.3528269
https://doi.org/10.1145/3491140.3528272
https://doi.org/10.1145/3491140.3528272
https://doi.org/10.1109/FIE.2006.322306
https://doi.org/10.1109/FIE.2006.322306
https://doi.org/10.1109/FIE.2017.8190658
https://doi.org/10.1109/FIE.2017.8190658
https://doi.org/10.1109/EDUCON.2017.7942942
https://doi.org/10.1145/3279720.3279736
https://doi.org/10.1145/3279720.3279736
https://doi.org/10.1145/2807442.2807495
https://doi.org/10.1145/3545945.3569817
https://doi.org/10.3390/educsci10030060
https://doi.org/10.57967/hf/0181
https://doi.org/10.1145/3408877.3432526
https://doi.org/10.1145/3408877.3432526
https://arxiv.org/abs/2304.13451
https://api.semanticscholar.org/CorpusID:145572756
https://api.semanticscholar.org/CorpusID:145572756
https://doi.org/10.1145/3287324.3287503
https://piechlab.stanford.edu/assets/papers/codeinplace2023.pdf
https://doi.org/10.1145/384266.299689
https://doi.org/10.1145/2724660.2728672
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://doi.org/10.1145/3051457.3051469
https://doi.org/10.5220/0009579305560563
https://doi.org/10.5220/0009579305560563

	Abstract
	1 Introduction
	1.1 Related Work

	2 Style Feedback Tool
	2.1 What is Style Feedback?
	2.2 Feedback Generation
	2.3 Prompt Design
	2.4 Model, Cost, Server Time Delays

	3 Experiment Design
	4 Results
	4.1 Timeliness of Feedback
	4.2 Impact on Student Style

	5 Practicality of LLMs to Provide feedback
	5.1 Positive LLM Feedback Examples
	5.2 Limitations of LLM Generated Feedback

	6 Safety and Bias
	6.1 Ensuring Fairness and Safety in LLM Generated Feedback
	6.2 Demographic analysis

	7 Limitations of the Tool
	8 Further Research
	9 Conclusion
	Acknowledgments
	References

