The PyramidSnapshot Challenge: Understanding student
process from visual output of programs

Lisa Yan Nick McKeown Chris Piech
Stanford University Stanford University Stanford University
yanlisa@stanford.edu nickm@stanford.edu piech@cs.stanford.edu

ABSTRACT

In the ideal CS1 classroom, we should understand programming
process—how student code evolves over time. However, for graphics-
based programming assignments, the task of understanding and
grading final solutions, let alone thousands of intermediate steps,
is incredibly labor-intensive. In this work, we present a challenge,
a dataset, and a promising first solution to autonomously use im-
age output to identify functional, intermediate stages of a student
solution. By using computer vision techniques to associate visual
output of intermediate student code with functional progress, we
supplement a lot of the teacher labor associated with understanding
graphics-based, open-ended assignments. We hope our publication
of the dataset used in our case study sparks discussion in the com-
munity on how to analyze programs with visual program output.

CCS CONCEPTS

« Social and professional topics — Computing education; «
Computing methodologies — Computer vision;

KEYWORDS

Programming courses; student process; teaching at scale; under-
graduate courses; computer vision

ACM Reference Format:

Lisa Yan, Nick McKeown, and Chris Piech. 2019. The PyramidSnapshot
Challenge: Understanding student process from visual output of programs.
In Proceedings of 50th ACM Technical Symposium on Computer Science Educa-
tion, Minneapolis, MN, USA, February 27-March 2, 2019 (SIGCSE’19), 7 pages.
https://doi.org/10.1145/3287324.3287386

1 INTRODUCTION

First-time CS students learn by programming—they must design an
approach, debug their code, and iteratively improve towards a final
solution. For a teacher, however, a single timestamped submission
per student at the end of this process is insufficient to capture
all the intermediate steps a student has taken towards a solution.
Even when such progress data is available, it is often intractable to
analyze this data in a meaningful way that maps student code to
milestones, or incremental attempts towards the assignment goal.
If teachers could characterize individual and aggregate progress

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCSE’19, February 27-March 2, 2019, Minneapolis, MN, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5890-3/19/02...$15.00
https://doi.org/10.1145/3287324.3287386

L

() (b)

(©

Figure 1: The Pyramid assignment. (a) A full-credit and (b)
an extra credit final submission. (c) A series of image outputs
of a typical student (top) and a student either tinkering or
taking an incorrect path (bottom).

through an assignment, they could better understand how their
students think about course concepts.

However, student process is highly variable. Unit testing and
other automated assessment tools are often only designed to test
functionality of the final submission, and teachers would have to
design and engineer additional tests for identifying intermediate
milestones. Existing tools are also difficult to tailor to graphics-based
programming assignments, which have recently gained popularity
in many CS1 courses. Due to their open-ended nature—enabling pro-
grammers of all levels to get quick, visual feedback in an exploratory
environment—the large solution spaces often render unit-testing
development or syntax-based code analysis insufficient for final
submissions, much less intermediate code snapshots.

Despite the up-front complexity of autonomously analyzing
functionality of graphics-based coding tasks, advances in computer
vision in other fields have matched [14] and, more recently, sur-
passed [36] human ability to detect objects from pixel input. In spite
of their effectiveness, contemporary vision classification techniques
have rarely been applied to student code, as many state-of-the-art
techniques are supervised—requiring well-labeled, plentiful data,
which student assignment data often lacks.

In this work, we marry the two fields of understanding students
and improving computer vision by presenting the community with
a computer vision challenge rooted in CS education: autonomously
characterize student progress on a graphics-based programming
task by looking at intermediate image output. The PyramidSnapshot
dataset! is a large, annotated set of images, each tagged with one

!Dataset available at http://stanford.edu/~cpiech/pyramidsnapshot/challenge.html.

https://doi.org/10.1145/3287324.3287386
https://doi.org/10.1145/3287324.3287386
http://stanford.edu/~cpiech/pyramidsnapshot/challenge.html

of 16 milestone labels mapping to functional progress towards the
assignment goals of Pyramid, a canonical CS1 graphics-based task
(Figure 1). The dataset contains timestamped, program image output
of 2633 students over 26 CS1 offerings from the same university,
corresponding to 101,636 images of intermediate work, of which
84,127 are annotated with milestones.

Our work is a first step towards a deeper understanding of how
students work through graphics-based assignments. We hope that
our publication of the PyramidSnapshot dataset is a useful case
study on how to prepare graphics-based student data for quan-
titative functional analysis, as well as how to glean pedagogical
insights from such fine-grained data. In this work we describe our
approach to labeling a complex dataset by hand, and we show that
a neural network-based classifier can extend human labeling effort
reasonably well. Finally, we share our insights into how to visualize
student process to identify different student work patterns.

2 RELATED WORK

There is a growing body of work on automated assessment tools,
which are designed to understand and give feedback to students.
Many courses also employ test-driven learning, where students use
a provided set of unit tests or write their own using a system like
Web-CAT [8, 13]. However, unit tests in general are often brittle,
time-consuming to develop, and hard to apply to graphics assign-
ments, which allow for variation among correct solutions. Thus,
most contemporary work aims to understand student programs
based on abstract syntax tree (AST) structure [10, 19, 21, 29, 32].
While these approaches work for short programs with low com-
plexity, Huang et al. found that implementing AST-based feedback
in general is as hard a task as autonomously understanding natural
language [11].

To make CS courses more accessible for a diverse set of learners,
classrooms should promote multiple paths for learning [31]. Some
programming languages inherently encourage exploration, such as
Scratch [27] and Alice [7]. For text-based programming languages,
on the other hand, creativity is pushed to the assignments, which
are often open-ended tasks that support visual output [15, 22, 28, 30].
Flexible assignments support not only planners, who strategically
plan their route to the answer, but also tinkerers, who make incre-
mental, exploratory steps towards the solution [3]. Assignment
work patterns are often strong indicators of student performance in
the course, from debugging behavior [17] and subgoal planning [20]
to likelihood for plagiarism [35] and amount of tinkering [5].

It is difficult to autonomously understand the final solution that
a student submits. It is even harder to derive insights from the
process of how a student solution evolves over time. Existing work
that characterizes student work patterns often use low-level indica-
tors of student progress, such as code diffs, completion times, or
errors [1, 2, 5, 6, 12]. While there have been studies on functional
progress of student solutions in variable-constrained or block-based
environments [24, 25, 33], our work is the first to identify program
functionality over the course of an open-ended graphics assignment.
We circumvent the difficulty of AST-based functionality analysis
by using pixel-based visual program output.

In 2013, a team of researchers from DeepMind demonstrated
that a convolutional neural network based algorithm could learn

to play Atari games as well as humans using only pixel output
[18]. Because the Atari games used in the DeepMind paper are
very similar in complexity to the outputs of assignments typical
in CS1 and CS2 classes—and some of the Atari games are in fact
classic homework assignments [22]—we have reason to believe that
modern computer vision algorithms should be able to understand
the output of our student’s graphical programs from the pixel level.
Despite this potential, to the best of our knowledge, the capacity for
understanding graphics prior to this paper has been used mostly to
play and rarely to educate. Open datasets have been integral to the
early evolution of computer vision techniques [9, 14, 16]; we hope
that our dataset will help the CS education community evolve.

3 DATA

The Pyramid assignment is a sub-problem in the second week of a
10-week CS1 course at Stanford. The assignment is scoped as the
students’ first exposure to variables, object manipulation, and for-
loop indexing. As part of their individual, take-home assignment,
students use Java’s ACM graphics library to draw bricks on the
screen and construct a pyramid shape (Figure 1a), and they are
awarded extra credit points if they can extend the correct pyramid
(Figure 1b). The solution requires nested loops and the computation
of several intermediate variables:

public void run() // draw a pyramid
for(int i = @; i < BRICKS_IN_BASE; i++)
// calculate row variables
int nBricks = BRICKS_IN_BASE - i;
int rowWidth = nBricks * BRICK_WIDTH;
double rowY = HEIGHT-(i+1)*BRICK_HEIGHT;
double rowX = (WIDTH - rowWidth)/2.0;
// draw a single row
for(int j = @; j < nBricks; j++)
// add a single brick
double x = rowX + j * BRICK_WIDTH;
rect(x, rowY, BRICK_WIDTH, BRICK_HEIGHT);

To collect intermediate student data, we modified the Eclipse
Integrated Development Environment (IDE) to support snapshotting
of student code as they work through the assignment. [25]. The
IDE manages a git repository that stores a snapshot of student code
whenever a student compiles and runs the assignment, meaning
that snapshot frequency could be on the order of minutes when a
student is actively working. Then, when the student submits their
final program for grading, the IDE automatically packages up the
repository and stores it on the course server.

In the CS1 course studied, the Pyramid assignment has been
used for many years, with little variation in assignment scope and
grading rubric. We analyzed 2,633 student submissions from as
far back as 2007 (where the bulk of data was collected between
2012 and 2014) by compiling and running all Pyramid code files in
git repositories to generate timestamped images. Figure 3 shows
the distributions of the number of snapshots (¢ = 52,0 = 59) and
hours spent (u = 1.7, 0 = 1.5) for each pyramid submission. Of the
138,531 snapshots in our dataset, we successfully generated 101,636
images; 36,895 snapshots had runtime or compile errors.

100000 r

(1) Hello world (2) Single row (3) Diagonal

(4) Two row

(5) Rectangle

(6) Parallelogram (7) Right triangle (8) Column structure

E N

9) Scalene triangle (10) Pyramid-like (11) Offset pyramid

(12) Offset EC

100
§ 10000 ?\<| 80
8 hN £
S 1000 Tz 60
£ 52
£ 100 E E 40
s z
@
* 10 - 20
1 0 L L n)
1 100 10000 1 0.75 0.5 025 0
Image popularity rank Fraction of assignmentlabeled, X
(b) ()

Snapshots Unique images Effort score

(13) Perfect (14) Perfect + EC (15) Off-track

(2)

(16) Brick wall

Total 138531 27220 5.1

Labeled 84127 12077 7.0

Unlabeled 17509 15143 1.2

Error 36895 - -
(d)

Figure 2: (a) Examples from the 16 milestone category labels in the PyramidSnapshot dataset; EC stands for Extra Credit. (b)
Zipf distribution of the dataset images. (c) CDF of the fraction of a repository labeled with the effort strategy in Section 3.2.

(d) Label coverage of the PyramidSnapshot dataset.
30 20
20

10

% students
% students

0

0 95 190 >284 0 25 55 >7
of pyramid snapshots Hours spent on Pyramid

(@ (b)
Figure 3: Pyramid work time analysis: (a) number of snap-
shots per student; (b) hours spent on the assignment.

3.1 Dataset complexity

For a graphics-based assignment like Pyramid, we claim that using
image output to represent the functionality of student work is less
complex—and therefore easier to work with—than using a text-
based representation like Abstract Syntax Trees (ASTs). Like many
other coding assignment datasets that have been analyzed in the
past, the frequency distributions of both the Pyramid assignment
code Abstract Syntax Trees (ASTs) and the image output files follow
Zipf’s law, the same distribution as natural language. One of the
implications of this insight is that the exponent s of the Zipf fit
can be used as a measure of the complexity of a programming
dataset, where a higher exponent means that a dataset has a higher
probability of observing the same solution more than once and is
thus less complex [23]. The frequency distribution of Pyramid ASTs
fits to a Zipf exponent s = 0.57, which is notably more complex
when compared to logistic regression implementations (s = 1.82)
and CS1 first week homeworks (s = 2.67) [26]. On the other hand,
the Pyramid image outputs have Zipf distribution with exponent
s = 0.78 (Figure 2b), suggesting that modern tools for understanding
images may be more effective than an AST-based approach for
understanding functionality of intermediate solutions.

3.2 Labeling milestones efficiently

The PyramidSnapshot dataset comes with milestone labels; that is,
each image is categorized into one of our 16 visual categories of
intermediate work. Figure 2a shows an example image for each of
these milestones. Our milestone labels are mutually exclusive by
design: an image must be either a scalene triangle or a pyramid-
like image object, for example. We understand that there could be
potential overlap in these milestones, but we chose exclusive labels
because separable labels enable easier, clearer analysis. It is worth
keeping in mind that there is a huge variation of images within
each category; for example, Milestone 15 (Off-track) was marked
for any image that was unable to be categorized by the other labels.

It would be an insurmountable task by a team of three researchers
to label over 101,000 images in our PyramidSnapshot dataset. How-
ever, we observe from the Zipf distribution of the data (Figure 2b
that only 27,220 (27%) of these are unique. Furthermore, the perfect
pyramid (Milestone 13) in our dataset is the most frequent and
occurs over 11,000 times across all student work, and the ten most
popular images cover 20,219 images (20%) in our 101,636 image
dataset. Using the Zipf distribution, one can label unique images to
milestones in order of popularity in the dataset; a single researcher
labeled 12,077 unique images with corresponding milestones in 20
hours over three days, covering 84,127 images (83%) of the actual
dataset (Figure 2d). The effort score in Figure 2d characterizes the
gain of labeling a unique image as the frequency of that image
appearing in the overall dataset; the average effort score of unique
images labeled was about 7 repeated images. On the other hand,
each remaining unlabeled unique image appeared on average 1.2
times in the dataset, meaning that we would not have gained much
with this labeling strategy had we continued into the tail of the
distribution. Figure 2c shows that about 90% of students have at
least 75% of their repositories labeled after using this strategy of
labeling more popular images first.

Convolve pipeline

32 filters .
(4x4 kernel) 64 filters 64 filters .
(4x4 kernel 154"4] 32 filters FC
128filters D @xt 3pfiers 012
(4x4 kernel) kernel) (4x4
kernel
NN)
=] & ®
N FC
\ 512 softmax
FC pc output
‘ 256 64 16
\ I Convolve pipeline | |:| o

Figure 4: The neural network for milestone classification.

4 METHOD

We realize that assigning intermediate images to milestones presents
a scalability issue for other assignments, even if we use image fre-
quency to reduce labeling effort. We therefore explore how the
accuracy of a classification model works as we vary N, the number
of most popular images that we label, defined as our training set
size. In this section, we define potential models for classifying inter-
mediate snapshots by milestone, and we also outline an approach to
answering a secondary question—whether classifying image output
is sufficient for grading final submissions.

4.1 Classifying milestones

Given a training set of the N most popular images, we consider
three models for classifying our images with milestones. Our first
approach is based on the premise of unit testing: select one repre-
sentative image for each milestone, and for each test image, predict
a milestone only if the test image pixels exactly match that of the
reference; otherwise it predicts nothing. We keep N = 15 unit test-
ing images; we do not save a representative image for the Off-track
milestone (Milestone 15). The second approach, K-nearest neigh-
bors (KNN), is a common baseline used for computer vision [14];
for each test image, define the K nearest neighbors as the K images
from the reference training set that have minimum sum-squared-
difference (pixel-wise), and predict the most common milestone
out of the nearest neighbors. Our third approach is a deep learning
approach: train a convolutional neural network (Figure 4) to return
the most likely milestone label based on processing a grayscaled,
downsampled image of dimension 346 X 477 X 1 with a 1.2-million
parameter model. The model parameters are trained by optimizing
a softmax cross-entropy loss over the N most popular images.

4.2 Extending classification to final solutions

In parallel with our goal to capture functionality of intermediate
work, we also want to study whether an image-based, deep-learning
approach is effective for autograding final submissions. From anec-
dotal experience, graphics assignments tend to be more difficult and
time-consuming to grade than their command-line counterparts,
mainly because the set of possible correct graphical outputs is often
not well-defined. To grade our Pyramid assignment, a grader runs
student final submission code with five predetermined sets of pa-
rameters which vary the brick size and Pyramid dimensions, then
evaluates the student on a rubric set of 9 items, where for each item
the grader marks a binary pass/fail by looking at both the student’s

code and five test results. We compare two approaches; the first is
a unit-test-based model, where we have one counterexample image
per rubric and we compare pixel-wise for exact match of output
images. The second is a convolutional neural network approach
with a similar structure to the milestone predictor in Figure 4; we
train one pipeline for each of the five test output images and replace
the classification layer with a sigmoid binary predictor per rubric;
our model has 5.1 million parameters. We use a slightly different
(non-public) dataset of 4383 Pyramid final code submissions with
grades between 2009 and 2017.

5 RESULTS

To evaluate our three approaches to classifying milestones from
graphical image input, we trained each classifier with a varying
size of N on our training set of the most popular images, and we
evaluated its overall accuracy on two datasets: the validation set,
composed of the top 11,000 popular images (corresponding to 70%
of our image dataset), and the tail set, composed of the remaining
1,077 labeled images. We use the validation set to decide which
classifiers work for common snapshots; the tail set accuracy is an
indicator for whether our classifiers work on rarely seen snapshots.

We first discuss accuracy results on the validation set. The results
for each classifier with the best choice of training set size N is re-
ported as overall accuracy in classifying all 16 milestones in Figure
5a; we can immediately see that our neural network outperforms
the other two unit-test and KNN (K = 100) models. We also report
a higher-level statistic of overall accuracy over knowledge stages,
which reduces our 16-dimension milestone space into five meaning-
ful stages of knowledge, organized based on whether students are
working on a single loop (Stage 1), a nested loop (Stage 2), adjusting
brick offset within the nested loop (Stage 3), or completed with
the assignment and going beyond what is expected (Stage 4). The
remaining four stages are grouped as “Other/Off-track” We note
that higher-level abstracted knowledge stages are more meaningful
for a human grader as such stages will not differentiate between
two milestones associated with the same level of student cognitive
understanding. In Figure 5b we report our neural network accuracy
for predicting a milestone that is in the same knowledge stage as
the correct milestone label; the model reports at least 70% accu-
racy for Stages 1, 2, and 3, which are the most formative ones in
terms of determining student progress towards the assignment goal,
and therefore the low accuracy in identifying Stage 4 is acceptable.
However, we realize that there is room for accuracy improvement
across all knowledge stages for future work.

To understand how the model connects image to label, we use
the t-SNE algorithm to compress the model’s internal image repre-
sentation into a 2-D, clustered visualization. Figure 5c shows that
our image embeddings roughly cluster by their milestone; however,
there are some perfect pyramid images (Milestone 13, red) hidden
among the Hello world milestones (Milestone 1, blue). Upon check-
ing these incorrectly classified images, we found that some of them
depicted a very small pyramid, which could easily be misclassified
as a single block, but others were simply incorrectly placed in the
embedding space. Our hypothesis is that since unique images of
single bricks dominate our dataset, our model has a tendency to
predict Milestone 1 in the absence of any other strong indicators.

Overall Unit test KNN (K = 100, Neural network
accuracy (N =15) N = 11000) (N =11000)
By milestone

(16 milestones) 275 037 562

By knowledge 552 649

stage (5 stages)

- ’|:| Milestones
’ 9,10,11,12
b + |:| [m—]
Milestones R
13,14 " :|:| Milestones
— 5,6,7,8
Milestones
1,2,34

Milestones 15,16
not pictured

©

1.00 0.81 0.86

0.77 0.70
0.50 0.28
0.00
Other/ Stage 1: Stage 2: Stage 3: Stage 4:
Off-track single row nested loop adjusting adding final
(1,8,15,16) (234) (5.7) nested offset details
(69,1011) (12,13,14)
(b)
—_ 1 = = Unit test KNN Neural network
) —
£ 508 (N=13)
— 173 .
£y
s = 0.6
=2
5804
88 L el -
0.2
100 1000 10000
Teacher effort, N (# unique images in training set)

GV

Figure 5: Milestone classification results. (a) Accuracy of each model (with training set size N) by milestone and by knowledge
stage on the 11,000 most popular images. A closer analysis of the neural network model (N = 11000) shown by (b) Accuracy
breakdown by knowledge stage, and (c) t-SNE plot of model embeddings, color-coded by milestone. (d) Overall accuracy (by
knowledge stage) of KNN and neural network models with varying training set sizes N.

Unit test image Neural network
F1 Acc F1 Acc

Train 0.15 0.95 0.65 0.97
Test 0.15 0.95 0.50 0.96

Figure 6: Average accuracy and F1 scores when predicting
rubrics on final submissions.

We realize that it may seem intractable to extend our approach
to other graphics-based assignments due to the sheer effort required
to label the intermediate images for training data. We use the la-
beling scheme from Section 3.2 to create a training set consisting
of the N most popular images; we then evaluate the performance
of the KNN and neural network models with different training set
sizes N, and we evaluate their performance on the top 11,000 most
popular images (Figure 5d). Naturally, the KNN model performs
best with a huge dataset, but what is surprising is that the neural
network already outperforms the other two models even with only
N =100 items in the training set. There is a small peak at N = 800
for the neural network model; this artifact is because the model
correctly predicted the milestones of some high-rank images, there-
fore weighting the accuracy upwards; this trend goes away when
we compare accuracy across unique images only. In general, the
takeaway that we can get just over 60% accuracy with just N = 100
labeled data points is very promising.

We also evaluated our images solely on the tail images in the
distribution, the 1,077 least popular (labeled) images in the tail set.
All three models performed poorly: Unit test reported 0% accuracy
(due to its pixel-based exact match strategy), and both KNN and our
neural network model performed with less than 1% accuracy for
almost all choices of our training set. This is a huge area in which
future models can improve; the more reliable we are in predicting

the tail of our model, the more confident we can be in imputing
milestone labels on unlabeled images in our dataset.

Final submissions evaluation. We report in Figure 6 our results
of running our two final submission grading models. The average
F1 scores and accuracies are evaluated on a validation set of 438
submissions; the neural network was trained on a set of 3945 submis-
sions, and the unit-test model had 7 exact match reference images.
Both models have very high average accuracies; however, this is
because very few students get marked off for any of the 9 items in
the rubric (the average frequency of incorrect rubric items was 10%).
We therefore prioritize the F1 score metric, which is a harmonic
mean of the precision and recall scores (measuring false positive
and false negatives). We notice that the F1 scores for our neural
network model are low for two reasons: first, several rubric items
were code-based student misconceptions (e.g., incorrectly indexing
either the inner or outer loop of a two-level nested loop, leading to
indistinguishable final image outputs). Second, the rubrics marked
for two different students with the same set of five unit-test images
could vary widely. For example, for the 1485 student solutions that
had the correct image output for all five brick configurations, there
were at least 20 different rubric assignments, some with at most
three rubric items marked off. Our image output-based approaches
are not reliable enough to grade CS1 graphics assignments, but they
are useful for labeling intermediate milestone work.

6 DISCUSSION

By splitting our milestone classification task into two phases—
human labeling and deep-learning-facilitated labeling, we are able
to achieve modest success on predicting the correct milestone label
for any image. We use our milestone information to gauge how
much time a student spends on average in each of our knowledge
stages to decide which content to emphasize in classroom teaching.

0.40

0.20 0.14
0.07 |——| 0.08
0.00 [l*l
Other/ Stagel: Stage2: Stage3: Stage4: Compile/
Off-track single row nested adjusting adding Runtime

(1,81516) (2,34) loop nested final Error
(5,7) offset details
(6,9,10,11) (12,13,14)

0.30
0.24

0.17

Frac. assignment
spent in stage

Figure 7: Average amount of assignment (by number of com-
mits) that students spent in different knowledge stages.

Figure 8: Student work patterns during the Pyramid assign-
ment; a student’s work is displayed as a horizontal strip over
time, where each vertical slice is one snapshot. Three stu-
dents respectively scoring in the (a) 99th percentile, and (b)
3rd percentile or lower on the midterm exam; (c) three stu-
dents with long trajectories of work. Best viewed in color.

Figure 7 graphs the mean (+1 SE) fraction of commits spent in
each of the knowledge stages, where we use our neural network
predictor to impute the knowledge stages of the remaining 12% of
the dataset, and the number of commits student spends each stage
before moving on. We observe that on average, students spend
17% of their time in Stage 3, where they must manipulate the loop
index to correctly offset blocks in different rows of the Pyramid.
Understandably, students spend most of their time (30%) adding
final details and finishing up (Stage 4). Knowing this time distribu-
tion can inform which concepts students struggle with; after this
analysis, instructors devoted more time in class to discussing loop
index manipulation skills needed for Stage 3.

We can also use milestone information to get a holistic view
of students’ functional progress over the Pyramid assignment; we
show this via a case study of students based on their milestone tra-
versal behavior. In Figure 8, we impute labels and visualize student
work over time as a heatmap that indicates when students are in
Stage 1 or 2 (blue colors), Stage 3 (yellow and green), or Stage 4
(red). After imputing the milestones on the remaining unlabeled
snapshots, we found some very telling examples of how different

students work on the assignment over time. When we compare
high-performing students (Figure 8a) with low-performing (Figure
8b), we observe that these groups of students tend to concentrate
their work in different stages. All three high-performing students
have few snapshots in Stages 2 and 3, instead spending a significant
portion of their time working on the perfect pyramid (Milestone
13). In contrast, the low-performing students spend a large fraction
of time in Stage 3’s early milestones that emphasize brick offset
adjustments. One student also fails to reach the correct solution,
ending instead in the offset pyramid milestone (Milestone 11).
From our data, we can also visually discern between certain
students who were struggling to get anything working and those
who were tinkering [5, 31]—where a student spends a long time
at a particular knowledge stage not because they are stuck, but
because they are exploring the solution space. Figure 8c shows
three students that have used over 100 snapshots for the Pyramid
assignment. The first two students spend a large portion of their
time working in Stage 1. In contrast, the last student spends most
of their time in a late Stage 3 milestone, the offset pyramid (Mile-
stone 11), suggesting some sort of tinkering and adjustment. When
we connect these work patterns with their performance on the
midterm, the first two students score in the 19th and 21st percentile,
respectively, while the third student scores in the 73rd percentile.

7 FUTURE WORK AND CONCLUSION

Our anecdotal analysis of this dataset suggests there is merit to
observing snapshot histories with respect to milestone evolution.
Having functional labels for snapshotted student data can be used in
conjunction with existing indicators of progress, like error messages
and code length [4, 5, 12], to predict student performance. As future
work, we can cluster students and identify in aggregate which
work patterns are correlated with stronger student performance.
Future classrooms may evaluate student process in addition to final
submission correctness; the color-coded heat map characterizing
functionality over time provides a quick reference for instructors
to detect which snapshots are pivotal for student learning. Towards
this end, we have deployed the image label predictor as part of an
in-classroom tool that allows teachers to interact with students and
discuss the meta-process of how they program [34]. In this work,
we have only scratched the surface of pedagogical insights that
can be gleaned from more detailed analyses of student progress; by
publishing our dataset, we hope that other researchers can improve
upon our work to better understand how students code.

We realize that labeling intermediate snapshots is a human effort
that is time-intensive for teachers and researchers. To see whether
our approach was tractable for other assignments, we analyzed the
tradeoffs between human labeling the most popular images and
subsequent neural network-based labeling of remaining images. In
our study, a simple neural network model trained on the 100 most
popular images performs relatively well, suggesting that labeling
for functionality is not as daunting as it may seem. Yet our biggest
contribution is publishing the labeled PyramidSnapshot dataset
used in this work as a new, annotated benchmark with two benefits
to the community: to evaluate autonomous prediction for func-
tionality of intermediate student program output, and to analyze
student work patterns with greater detail than before.

REFERENCES

(1]

=

[10]

[11

=
&

[13]

[14]

[15

=
&

(17

[18

[19]

[20

[21]

Alireza Ahadi, Raymond Lister, Heikki Haapala, and Arto Vihavainen. 2015.
Exploring Machine Learning Methods to Automatically Identify Students in
Need of Assistance. In Proceedings of the Eleventh Annual International Conference
on International Computing Education Research (ICER ’15). ACM, New York, NY,
USA, 121-130. https://doi.org/10.1145/2787622.2787717

Brett A. Becker. 2016. A New Metric to Quantify Repeated Compiler Errors for
Novice Programmers. In Proceedings of the 2016 ACM Conference on Innovation
and Technology in Computer Science Education (ITiCSE ’16). ACM, New York, NY,
USA, 296-301. https://doi.org/10.1145/2899415.2899463

Matthew Berland, Taylor Martin, Tom Benton, Carmen Petrick Smith, and Don
Davis. 2013. Using Learning Analytics to Understand the Learning Pathways
of Novice Programmers. Journal of the Learning Sciences 22, 4 (2013), 564-599.
https://doi.org/10.1080/10508406.2013.836655

Paulo Blikstein. 2011. Using Learning Analytics to Assess Students’ Behavior in
Open-ended Programming Tasks. In Proceedings of the 1st International Conference
on Learning Analytics and Knowledge (LAK ’11). ACM, New York, NY, USA, 110-
116. https://doi.org/10.1145/2090116.2090132

Paulo Blikstein, Marcelo Worsley, Chris Piech, Mehran Sahami, Steven Cooper,
and Daphne Koller. 2014. Programming pluralism: Using learning analytics to
detect patterns in the learning of computer programming. Journal of the Learning
Sciences 23, 4 (2014), 561-599.

Adam S. Carter, Christopher D. Hundhausen, and Olusola Adesope. 2015. The
Normalized Programming State Model: Predicting Student Performance in Com-
puting Courses Based on Programming Behavior. In Proceedings of the Eleventh
Annual International Conference on International Computing Education Research
(ICER ’15). ACM, New York, NY, USA, 141-150. https://doi.org/10.1145/2787622.
2787710

Wanda P. Dann, Stephen Cooper, and Randy Pausch. 2008. Learning To Program
with Alice (2 ed.). Prentice Hall Press, Upper Saddle River, NJ, USA.

Stephen H. Edwards and Manuel A. Perez-Quinones. 2008. Web-CAT: Auto-
matically Grading Programming Assignments. In Proceedings of the 13th Annual
Conference on Innovation and Technology in Computer Science Education (ITiCSE
’08). ACM, New York, NY, USA, 328-328. https://doi.org/10.1145/1384271.1384371
Mark Everingham, Luc Gool, Christopher K. Williams, John Winn, and Andrew
Zisserman. 2010. The Pascal Visual Object Classes (VOC) Challenge. Int. J. Com-
put. Vision 88, 2 (June 2010), 303-338. https://doi.org/10.1007/s11263-009-0275-4
David Hovemeyer, Arto Hellas, Andrew Petersen, and Jaime Spacco. 2016.
Control-flow-only abstract syntax trees for analyzing students’ programming
progress. In Proceedings of the 2016 ACM Conference on International Computing
Education Research. ACM, 63-72.

Jonathan Huang, Chris Piech, Andy Nguyen, and Leonidas Guibas. 2013. Syntactic
and functional variability of a million code submissions in a machine learning
mooc. In AIED 2013 Workshops Proceedings Volume. 25.

Matthew C. Jadud. 2006. Methods and Tools for Exploring Novice Compilation
Behaviour. In Proceedings of the Second International Workshop on Computing
Education Research (ICER 06). ACM, New York, NY, USA, 73-84. https://doi.org/
10.1145/1151588.1151600

David S Janzen and Hossein Saiedian. 2006. Test-driven learning: intrinsic
integration of testing into the CS/SE curriculum. In ACM SIGCSE Bulletin, Vol. 38.
ACM, 254-258.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097-1105.

Lucas Layman, Laurie Williams, and Kelli Slaten. 2007. Note to Self: Make
Assignments Meaningful. In Proceedings of the 38th SIGCSE Technical Symposium
on Computer Science Education (SIGCSE "07). ACM, New York, NY, USA, 459-463.
https://doi.org/10.1145/1227310.1227466

Yann LeCun and Corinna Cortes. 2010. MNIST handwritten digit database. (2010).
http://yann.lecun.com/exdb/mnist/

Colleen M. Lewis. 2012. The Importance of Students’ Attention to Program
State: A Case Study of Debugging Behavior. In Proceedings of the Ninth Annual
International Conference on International Computing Education Research (ICER
’12). ACM, New York, NY, USA, 127-134. https://doi.org/10.1145/2361276.2361301
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing Atari with
Deep Reinforcement Learning. arXiv preprint arXiv:1312.5602 (2013).

Bassam Mokbel, Sebastian Gross, Benjamin Paassen, Niels Pinkwart, and Barbara
Hammer. 2013. Domain-independent proximity measures in intelligent tutoring
systems. In Educational Data Mining 2013.

Briana B. Morrison, Lauren E. Margulieux, and Mark Guzdial. 2015. Subgoals,
Context, and Worked Examples in Learning Computing Problem Solving. In
Proceedings of the Eleventh Annual International Conference on International
Computing Education Research (ICER ’15). ACM, New York, NY, USA, 21-29.
https://doi.org/10.1145/2787622.2787733

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016. Convolutional Neural
Networks over Tree Structures for Programming Language Processing. In AAAL

Vol. 2. 4.

Nick Parlante, Steven A Wolfman, Lester I McCann, Eric Roberts, Chris Nevison,
John Motil, Jerry Cain, and Stuart Reges. 2006. Nifty assignments. In ACM SIGCSE
Bulletin, Vol. 38. ACM, 562-563.

Steven T. Piantadosi. 2014. Zipf’s word frequency law in natural language: A
critical review and future directions. Psychonomic Bulletin & Review 21, 5 (2014),
1112-1130. https://doi.org/10.3758/s13423-014-0585-6

Chris Piech, Jonathan Huang, Andy Nguyen, Mike Phulsuksombati, Mehran
Sahami, and Leonidas Guibas. 2015. Learning Program Embeddings to Propagate
Feedback on Student Code. In Proceedings of the 32nd International Conference on
Machine Learning (Proceedings of Machine Learning Research), Francis Bach and
David Blei (Eds.), Vol. 37. PMLR, Lille, France, 1093-1102.

Chris Piech, Mehran Sahami, Daphne Koller, Steve Cooper, and Paulo Blikstein.
2012. Modeling how students learn to program. In Proceedings of the 43rd ACM
technical symposium on Computer Science Education. ACM, 153-160.

Chris J. Piech. 2016. Uncovering Patterns in Student Work: Machine Learning to
Understand Human Learning. Ph.D. Dissertation. Stanford University.

Mitchel Resnick, John Maloney, Andrés Monroy-Hernandez, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, and Yasmin Kafai. 2009. Scratch: Programming for All. Commun.
ACM 52, 11 (Nov. 2009), 60-67. https://doi.org/10.1145/1592761.1592779

Eric Roberts. 2000. Strategies for Encouraging Individual Achievement in In-
troductory Computer Science Courses. In Proceedings of the Thirty-first SSGCSE
Technical Symposium on Computer Science Education (SIGCSE "00). ACM, New
York, NY, USA, 295-299. https://doi.org/10.1145/330908.331873

Stephanie Rogers, Dan Garcia, John F. Canny, Steven Tang, and Daniel Kang.
2014. ACES: Automatic Evaluation of Coding Style. Master’s thesis. EECS Depart-
ment, University of California, Berkeley. http://wwwz2.eecs.berkeley.edu/Pubs/
TechRpts/2014/EECS-2014-77.html

Elizabeth Sweedyk, Marianne deLaet, Michael C. Slattery, and James Kuffner.
2005. Computer Games and CS Education: Why and How. In Proceedings of the
36th SIGCSE Technical Symposium on Computer Science Education (SIGCSE 05).
ACM, New York, NY, USA, 256-257. https://doi.org/10.1145/1047344.1047433
Sherry Turkle and Seymour Papert. 1990. Epistemological Pluralism: Styles and
Voices within the Computer Culture. Signs: Journal of Women in Culture and
Society 16, 1 (1990), 128-157. https://doi.org/10.1086/494648

Ke Wang, Rishabh Singh, and Zhendong Su. 2018. Dynamic Neural Program Em-
bedding for Program Repair. International Conference on Learning Representations
(2018).

Lisa Wang, Angela Sy, Larry Liu, and Chris Piech. 2017. Deep Knowledge Tracing
On Programming Exercises. In Proceedings of the Fourth (2017) ACM Conference
on Learning @ Scale (L@S ’'17). ACM, New York, NY, USA, 201-204. https://doi.
org/10.1145/3051457.3053985

Lisa Yan, Annie Hu, and Chris Piech. 2019. Pensieve: Feedback on Coding
Process for Novices. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education (SIGCSE ’19). ACM, New York, NY, USA. https:
//doi.org/10.1145/3287324.3287483

Lisa Yan, Nick McKeown, Mehran Sahami, and Chris Piech. 2018. TMOSS: Using
Intermediate Assignment Work to Understand Excessive Collaboration in Large
Classes. In Proceedings of the 49th ACM Technical Symposium on Computer Science
Education (SIGCSE ’18). ACM, New York, NY, USA, 110-115. https://doi.org/10.
1145/3159450.3159490

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2017. Learn-
ing transferable architectures for scalable image recognition. arXiv preprint
arXiv:1707.07012 (2017).

https://doi.org/10.1145/2787622.2787717
https://doi.org/10.1145/2899415.2899463
https://doi.org/10.1080/10508406.2013.836655
https://doi.org/10.1145/2090116.2090132
https://doi.org/10.1145/2787622.2787710
https://doi.org/10.1145/2787622.2787710
https://doi.org/10.1145/1384271.1384371
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1145/1151588.1151600
https://doi.org/10.1145/1151588.1151600
https://doi.org/10.1145/1227310.1227466
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1145/2361276.2361301
https://doi.org/10.1145/2787622.2787733
https://doi.org/10.3758/s13423-014-0585-6
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/330908.331873
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-77.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-77.html
https://doi.org/10.1145/1047344.1047433
https://doi.org/10.1086/494648
https://doi.org/10.1145/3051457.3053985
https://doi.org/10.1145/3051457.3053985
https://doi.org/10.1145/3287324.3287483
https://doi.org/10.1145/3287324.3287483
https://doi.org/10.1145/3159450.3159490
https://doi.org/10.1145/3159450.3159490

	Abstract
	1 Introduction
	2 Related Work
	3 Data
	3.1 Dataset complexity
	3.2 Labeling milestones efficiently

	4 Method
	4.1 Classifying milestones
	4.2 Extending classification to final solutions

	5 Results
	6 Discussion
	7 Future work and Conclusion
	References

