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Abstract
In traditional educational settings, students are often summarized
by a single number—a final course grade—that reflects their perfor-
mance. While final grades are convenient for reporting or compari-
son, they oversimplify a student’s true ability and do not express
uncertainty. In this paper, we introduce a new item-response model
for classroom settings that infers a distribution over student abilities
and uses this to represent each student’s final grade as a probability
distribution. This approach captures the uncertainty that comes
from variations in both student performance and grading processes.
Practical applications of our approach include enabling teachers to
better understand grading confidence, impute missing assignment
scores, and make informed decisions when curving final grades.
For students, the model offers probabilistic estimates of their final
course grades based on current performance, supporting informed
academic decisions such as opting for Pass/Fail grading. We eval-
uate our model using real-world datasets, showing that the Soft
Grades model is well-calibrated and surpasses the state-of-the-art
polytomous IRT model in accurately predicting future scores. Ad-
ditionally, we share a web application and Python scripts to make
our model available to teachers and students.
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1 Introduction
Traditional course grades reduce the complexity of student perfor-
mance to a single number, ignoring the inherent uncertainty in
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learning and assessment. As educators, we recognize that many
factors unrelated to a student’s true understanding of the mate-
rial can affect their performance. In this paper, we introduce a
novel item response model and inference method for classroom
settings that captures this uncertainty by representing final grades
as probability distributions, which we call “Soft Grades.” Inspired
by advancements in fields like medical testing, weather forecast-
ing, and localization [1–3], where probability distributions have
enhanced decision-making, our approach brings a similar shift to
education, offering a richer and more informative grading system.

Consider a real student in a university level course who has
completed 6 homework assignments and 2 exams. Her teacher has
calculated her final grade as 90%. This 90% hides any expression of
uncertainty in her final grade. For this student, our model articu-
lates that there is a large amount of uncertainty, as shown in figure
1. For example, there is a non-zero probability that the student
deserves a grade that lies outside the 85% to 95% range. The right
side of figure 1 illustrates the distribution of standard deviations in
"Soft Grades" for an entire introductory computer science course at
an R1 university. This distribution reveals that while some students
have low variance—indicating a high confidence—many students
have higher variance, suggesting that their given grade may not
fully capture their true understanding. If the final grade is a crit-
ical summative assessment, the teacher should be aware of this
uncertainty and consider whether more data is needed. This richer
representation offers teachers and students a more precise and
actionable understanding of student outcomes. Teachers can use
“Soft Grades" to better assess the confidence that they should have
in each student’s grade, improve decisions on grade curving, and
impute missing grades with greater accuracy. “Soft Grades" offers
students a clearer picture of their performance, enabling them to
make more informed choices—such as whether to opt for Pass/Fail
or how to best allocate study time across courses.

But how do we know that the uncertainty in the student’s soft
grade (shown in figure 1) is accurate? We show that our model is
both more predictive of future scores than state-of-the-art poly-
tomous IRT and that it is well calibrated. This means that when
the model predicts an event with a probability of 70%, that event
will occur about 70% of the time, validating the accuracy of the
uncertainty in Soft Grades.

1.1 Main Contributions
(1) We develop a novel item-response model that represents

grades as probability distributions. We propose a new infer-
ence technique for Item Response Theory (IRT) that enables
learning a full probability distribution over student ability,
rather than traditional point estimates. To the best of our
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Figure 1: Left: The “Soft" Grade for a single student, based off their inferred ability, after observing all of their course assessment
grades. Even after 6 psets and 2 exams there is a lot of uncertainty as to the grade that reflects their ability. This uncertainty is
inherent in the grading process (variance in student performance and grader accuracy) but is not represented by teachers in
traditional classrooms. Right: the distribution of uncertainty (standard deviation) of soft grades given to students in a real class
of 374 students.

knowledge, this is the first approach that comprehensively
expresses uncertainty inherent in course grades.

(2) We validate our model using real-world datasets, demon-
strating that the Soft Grades model outperforms the state-of-
the-art polytomous IRT model in imputing missing grades
and predicting future scores. We also show that our model
is well-calibrated.

(3) We present practical applications for teachers, such as repre-
senting student grades as "Soft Grade" distributions, which
show the likelihood of each potential grade a student may
deserve. This approach provides insights into grading confi-
dence, assists in imputing missing assignment scores, and
aids in curving final grades.

(4) We show how students can benefit from our model by receiv-
ing probabilistic estimates of their final course grades based
on their current performance, helping them make informed
academic decisions.

(5) We present a freeweb application that implements ourmodel,
making it accessible for both teachers and students.

2 Soft Grade Problem
Formally, the soft grade problem is to produce a prediction of a
student’s final grade as a probability distribution 𝐺 . The prediction
𝐺 is defined by a probability mass function 𝑃𝐺 . For any grade
𝑥 ∈ {0, 1, 2, . . . , 100}, 𝑃𝐺 (𝑥) should return the probability, according
to the model’s estimate, that the student will get the final grade 𝑥
in the class.

The soft grade prediction is based on the grades that the stu-
dent has received in the class: 𝑔1, 𝑔2, . . . , 𝑔𝑛 , where 𝑛 represents the
number of assessments the student has completed. Additionally, to
make a grounded prediction, information about the scores of other
students on these 𝑛 assessments is also necessary.

We present two variants of the problem for calculating the soft
grade prediction: one from the teacher’s perspective and one from

the student’s perspective. We formalize the inputs to the soft grade
problem as follows:

• Student’s observed scores: 𝑔1, . . . , 𝑔𝑛 for all 𝑛 assessments in
the course

• Assessment characteristics (two variants):
(1) Instructor’s perspective: 𝑆 𝑗 (set of all students’ scores) for

each assessment 𝑗
(2) Student’s perspective: mean score and standard deviation

of scores for each assessment 𝑗
A good Soft Grade prediction should be accurate and well-

calibrated. A calibrated model ensures that the predicted probabili-
ties align with the actual frequencies of outcomes. For instance, if
the Soft Grades Model predicts a 70% chance of a student achieving
a grade of 80 or higher, calibration ensures that, across all students
for whom the model predicts a 70% probability of achieving 80
or higher, approximately 70% of them actually score 80 or higher.
Accuracy measures how closely the model’s predictions match the
true final grades. We evaluate our Soft Grades model by compar-
ing it to traditional grading baselines and a Continuous Response
Model from Item Response Theory, using both calibration and accu-
racy metrics. This approach assesses how well the model quantifies
uncertainty and accurately predicts final grades, key factors for its
practical use in real-world classrooms.

2.1 Downstream Impacts of Soft Grades
The main applications of Soft Grades will be discussed in detail
later, but we introduce them here to provide context for the fol-
lowing sections. For teachers, the Soft Grades model can assist
in imputing missing assignment scores, offering a more nuanced
alternative to simply dropping the grade. It also provides insight
into how confident they can be in the grades they assign, informing
decisions about curving grades and assigning grades to students on
the borderline between two grade levels. For students, Soft Grades
offers personalized predictions of their final grade, allowing them
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Figure 2: Graphical model for CGRT (Student Perspec-
tive). The teacher perspective would have the entire set of
scores 𝑆 𝑗 for item statistics. Observed variables are shaded.
Arrows represent dependency between random variables,
and each rectangle represents a plate (i.e., repeated obser-
vations).

Figure 3: Histograms of exam grades (normalized to be be-
tween 0 and 1) from two different R1 university courses,
with the best-fitting logit-normal distributions overlaid.
These examples highlight how logit-normals can effec-
tively model grades.

to explore different scenarios for upcoming assessments and make
informed decisions about studying, grade targets, and whether to
opt for Pass/Fail or letter grades.

2.2 Related Work
Item Response Theory (IRT) has been a key framework in educa-
tional assessment. It models the probability of a correct response
based on a student’s latent ability and item characteristics such as
difficulty. Foundational models like the RaschModel primarily focus
on binary outcomes (correct/incorrect), while polytomous exten-
sions handle multiple ordered categories or partial credit scenarios
[4, 5]. Continuous Response Models (CRM) further extend IRT to
continuous outcomes by modeling probability density functions
[6–9].

However, traditional IRT models predominantly operate at the
question level, requiring detailed item-level data that may not al-
ways be available in real-world classroom settings. Moreover, most
IRT inference techniques, such as Maximum Likelihood Estima-
tion (MLE) or Expectation-Maximization (EM), provide single-point
estimates of latent traits like ability. These methods fail to explic-
itly capture the uncertainty inherent in student performance and
grading processes. Although rare, Bayesian inference techniques
have been used in IRT, primarily for analyzing multiple-choice test
scores [10], but to the best of our knowledge, they have not been
applied to course grades.

In addition to IRT models, various predictive models have been
developed to estimate student performance over time [11–21].
These models typically track skill acquisition using machine learn-
ing or theoretical approaches. They often focus on mastery of spe-
cific skills based on practice performance. These models are often
designed for controlled environments and may not fully capture the
complexities of real-classroom settings, where assessments involve
multiple skills and are influenced by factors such as stress, grading
inconsistencies, and cumulative evaluations.

We propose a novel approach that extends IRT by incorporating
uncertainty into the inference process. Unlike traditional models
that focus on individual questions as items, our method considers
entire assessments and ultimately computes final course grades,

offering a more comprehensive representation of real-world class-
room settings.

3 Methodology
Having defined the Soft Grades problem and its evaluation criteria,
we now present our solution: Course-Grade Response Theory, a
statistical model that links student abilities, assessment parameters,
and observed scores to generate Soft Grades. To implement this
approach, we follow three steps: first, we estimate the model param-
eters for each assessment; second, we infer each student’s ability
based on their performance; and third, we use the inferred ability
to generate Soft Grades. The following sections detail each of these
steps, demonstrating how we move from theoretical foundations
to practical predictions.

3.1 Course-Grade Response Theory
Course-Grade Response Theory (CGRT) extends Item Response
Theory (IRT) by modeling student performance across entire assess-
ments and computing a probability distribution over the final course
grade for each student. An assessment refers to any academic eval-
uation in a course, such as an assignment, quiz, or exam. The CGRT
model accounts for inherent uncertainties in both student perfor-
mance and grading processes. To build this framework, CGRT uses
parameters to represent important features of both assessments and
students. Each assessment 𝑗 has a difficulty parameter 𝑑 𝑗 , which
measures how challenging that assessment is compared to others.
Similarly, each student 𝑖 has a true ability level, 𝐴𝑖 , which reflects
their overall proficiency in the course material. We assume that 𝐴𝑖

follows a normal distribution, as shown in equation 5, with mean 0
and variance 𝜎2𝑎 . The parameter 𝜎𝑎 represents our prior belief about
the range in student abilities across the class. A lager 𝜎𝑎 suggests
a more diverse range of abilities in a course, whereas a smaller 𝜎𝑎
indicates a group of students with more similar ability levels.

A student’s performance can vary from day to day due to factors
unrelated to their true ability, such as fatigue, illness, or even grad-
ing errors. To account for this, we introduce𝐴𝑖 𝑗 , a noisy ability that
represents the performance of student 𝑖 on the day they completed
assessment 𝑗 .𝐴𝑖 𝑗 is modeled as the student’s true ability plus a noise
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Reference 1: Key Variables in CGRT
Parameters:
𝜎𝑎 Standard deviation in student abilities within the class.
𝑑 𝑗 Difficulty of assessment 𝑗 .
𝜖2
𝑗

Variance of noise for assessment 𝑗 .
Random Variables:
𝐴𝑖 True ability of student 𝑖 . 𝐴𝑖 ∼ 𝑁 (0, 𝜎2𝑎)
𝐴𝑖 𝑗 Noisy ability of student 𝑖 on assessment 𝑗 . 𝐴𝑖 𝑗 = 𝐴𝑖 +𝑀𝑗

𝑀𝑗 Noise term for assessment 𝑗 .𝑀𝑗 ∼ 𝑁 (0, 𝜖2
𝑗
)

𝐺𝑖 𝑗 Grade of student 𝑖 on assessment 𝑗 . 𝐺𝑖 𝑗 = Sigmoid(𝐴𝑖 𝑗 − 𝑑 𝑗 )
𝐺 𝑗 Distribution of grades for all students on assessment 𝑗 .

𝐺 𝑗 ∼ Logit-Normal(−𝑑 𝑗 , 𝜎2𝑎 + 𝜖2
𝑗
)

Composites:
var𝑗 = 𝜎2𝑎 + 𝜖2

𝑗
Variance for assessment 𝑗 .

𝑍𝑖 𝑗 = 𝐴𝑖 𝑗 − 𝑑 𝑗 Difference between combined ability and difficulty for assessment 𝑗 .
𝑔𝑖1, . . . , 𝑔𝑖𝑛 Scores that student i received on assessments 1 through n

Derivation 1: Grades as Modeled by CGRT Follow a Logit-Normal Distribution
To understand how grades in CGRT follow a Logit-Normal distribution, we derive this result using the assumptions and equations
defined in the model. The derivation starts by substituting 𝐴𝑖 𝑗 = 𝐴𝑖 +𝑀𝑗 into equation 7,

𝐺𝑖 𝑗 = Sigmoid(𝐴𝑖 +𝑀𝑗 − 𝑑 𝑗 ) . (1)

Since 𝐴𝑖 and𝑀𝑗 are independent and normally distributed, their sum is also normally distributed, where the resulting mean is the
sum of the means and the resulting variance is the sum of the variances:

𝐴𝑖 +𝑀𝑗 ∼ 𝑁 (0, 𝜎2𝑎 + 𝜖2𝑗 ). (2)

Subtracting the assessment difficulty 𝑑 𝑗 , which is a constant, we define:

𝑍𝑖 𝑗 = 𝐴𝑖 +𝑀𝑗 − 𝑑 𝑗 ∼ 𝑁 (−𝑑 𝑗 , 𝜎2𝑎 + 𝜖2𝑗 ). (3)

Substituting 𝑍𝑖 𝑗 into the grade equation, we derive:

𝐺𝑖 𝑗 = Sigmoid(𝑍𝑖 𝑗 ) ∼ Logit-Normal(−𝑑 𝑗 , 𝜎2𝑎 + 𝜖2𝑗 ). (4)

When a normally distributed variable is transformed by the sigmoid (logistic) function, the resulting distribution is a Logit-Normal.
This result shows that when we consider the distribution of grades across all students for a particular assessment 𝑗 , the grades
follow a Logit-Normal distribution characterized by mean −𝑑 𝑗 , reflecting assessment difficulty, and variance 𝜎2𝑎 + 𝜖2

𝑗
, combining

the variability from student abilities and assessment noise. This aligns with prior research and empirical observations indicating
that assessment grades often follow distributions resembling the Logit-Normal.

term𝑀𝑗 , as shown in equation 6.𝑀𝑗 captures assessment-specific
variability such as fluctuations in performance or inconsistencies
in grading, and is assumed to follow a normal distribution with
mean 0 and variance 𝜖2

𝑗
. The parameter 𝜖 𝑗 quantifies the degree of

uncertainty introduced by these external factors for assessment 𝑗 .
Larger values of 𝜖 𝑗 indicate that the assessment is more affected by
outside variability, while smaller values mean it is a more consistent
and reliable observation of the student’s true ability. Introducing
noisy ability 𝐴𝑖 𝑗 allows us to account for variations and explic-
itly capture the uncertainty inherent in a student’s performance
on any given assessment. This is similar to established practices
in psychometrics and statistical modeling where accounting for
measurement error leads to more robust inferences [22]. Another
example is Elo ratings [23] in competitive gaming, which model
a player’s observed performance as fluctuating around their true
skill due to transient factors.

In academic assessments, a student’s performance depends on
both their ability and the difficulty of the assessment. The Rasch
Model [24], a foundational approach in Item Response Theory (IRT),
models the probability of a correct response based on the difference
between a student’s ability and an item’s difficulty. In the Rasch
model, the probability 𝑃𝑖 𝑗 that student 𝑖 answers item 𝑗 correctly is
given by: 𝑃𝑖 𝑗 = Sigmoid(𝜃𝑖 −𝑑 𝑗 ) where 𝜃𝑖 is the ability of student 𝑖 ,
𝑑 𝑗 is the difficulty of item 𝑗 , and the sigmoid function (also known
as the logistic function): Sigmoid(𝑥) = 1

1+𝑒−𝑥 , maps real numbers
to values between 0 and 1. The logistic function converts the differ-
ence between the student’s ability and the item’s difficulty into a
probability. For example, if a student’s ability (𝜃𝑖 ) is much higher
than the item’s difficulty (𝑑 𝑗 ), the resulting probability will be close
to 1, suggesting that the student is likely to answer the question
correctly. Conversely, if the difficulty exceeds the student’s ability,
the probability will be close to 0, reflecting a low likelihood of a
correct response.
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In CGRT, we take the same intuitive idea: higher ability com-
pared to difficulty leads to better performance. However, instead of
modeling the probability of a correct response on a single question,
CGRT extends this approach to handle continuous grades on entire
assessments. We use the same principle: squashing the difference
between ability and difficulty to a number between 0 and 1 using
the logistic function. Instead of interpreting this as a probability, we
treat it as a score (a fraction out of 100) that a student receives on
an assessment. Additionally, rather than using a student’s true abil-
ity directly, CGRT incorporates their noisy ability (𝐴𝑖 𝑗 ). In CGRT,
The grade for student 𝑖 on assessment 𝑗 is defined as the result
of applying the logistic function to the difference between their
noisy ability and the assessment’s difficulty, as shown in equation
7. This approach allows CGRT to model grades in a way that aligns
naturally with standard grading systems while capturing inherent
uncertainties in performance.

The graphical model in Figure 2 illustrates the dependencies in
Course-Grade Response Theory. Each student’s true ability, 𝐴𝑖 , is
drawn from a normal distribution and influences their noisy ability,
𝐴𝑖 𝑗 , on each assessment. 𝐴𝑖 𝑗 and assessment-specific difficulty, 𝑑 𝑗 ,
affect the grade,𝐺𝑖 𝑗 , that student 𝑖 receives for assessment 𝑗 . The
observed variables are shaded to indicate that they are directly
measured, while the latent variables, such as the true ability and
assessment noise, remain unobserved but inferred. The arrows
between variables represent the dependencies within the model.
The lower part of the diagram shows the item statistics, where the
mean and standard deviation of the grades for each assessment
are used to estimate the parameters 𝑑 𝑗 and 𝜖2𝑗 , respectively. This
plate structure highlights the repeated observations across multiple
students and assessments, which are needed to estimate model
parameters and infer student abilities.

In summary, we formalize our three key assumptions as:
(1) Student abilities are normally distributed:

𝐴𝑖 ∼ 𝑁 (0, 𝜎2𝑎) (5)

(2) Abilities on assessments include noise from daily fluctuations
and grading inconsistencies:

𝐴𝑖 𝑗 = 𝐴𝑖 +𝑀𝑗 where 𝑀𝑗 ∼ 𝑁 (0, 𝜖2𝑗 ) (6)

(3) Grades are modeled using a logistic function, noisy ability,
and assessment difficulty:

𝐺𝑖 𝑗 = Sigmoid(𝐴𝑖 𝑗 − 𝑑 𝑗 ) (7)

To initially validate these assumptions, we show in Derivation 1
that they lead to the claim that grades on assessments are distributed
as Logit-Normals, which aligns with prior research and empirical
observations [25].

The model’s ability to reproduce this characteristic distribution
initially supports the validity of Course-Grade Response Theory.
With this understanding of how grades are distributed according
to our model, we can proceed to estimating the model parameters.

3.2 Estimating Model Parameters
In CGRT, we first estimate all parameters, then given estimated
parameters we can compute soft grades for each student. The key
parameters we estimate are: the difficulty 𝑑 𝑗 of each assessment 𝑗 ,
the variance in noise 𝜖2

𝑗
for each assessment 𝑗 and the variance in

our prior belief over student abilities 𝜎2𝑎 . We outline the parameters
in Reference 1.

3.2.1 Estimating student ability parameter, 𝜎𝑎 . We begin by
estimating the standard deviation of student abilities, 𝜎𝑎 . This pa-
rameter captures variability in performance levels, enabling the
model to scale assessment difficulty and interpret grade distribu-
tions accurately. A common approach in Item Response Theory
(IRT) is to set 𝜎𝑎 = 1, assuming a standard normal prior on stu-
dent abilities [26, 27]. While this assumption is reasonable in many
contexts, it can lead to issues in assessments where the variance
in scores is small. Through our research, we found that learning
𝜎𝑎 for each course significantly improves prediction accuracy and
calibration, particularly in cases where assessment scores exhibit
low variance.

To better understand a problem with fixing 𝜎2𝑎 = 1, recall that the
total variance in assessment scores, var𝑗 , is the sum of student abil-
ity variance, 𝜎2𝑎 , and assessment noise variance, 𝜖2

𝑗
. Now, consider

an ideal assessment which has no noise (𝜖2
𝑗
= 0). If an assessment

has no noise, the variance of scores, var𝑗 , is determined entirely by
the variance in student abilities, 𝜎2𝑎 . This implies that the smallest
observed variance across assessments serves as an upper bound for
the variance in student abilities. If the minimum observed var𝑗 is
less than 1, setting 𝜎2𝑎 = 1 overestimates ability variance, distorting
predictions and leading to poorly calibrated models.

To address this, we propose one method for estimating 𝜎𝑎 per
course that works well in practice. We assume that the assessment
with the smallest observed variance, min𝑗 var𝑗 , is the least noisy
and use this variance as an approximate upper bound on 𝜎2𝑎 . Based
on this insight, we estimate 𝜎𝑎 using the following formula:

𝜎𝑎 = 𝛼 ×min
𝑗

var𝑗

where 𝛼 is a hyperparameter between 0 and 1. This hyperparameter
reduces the variance attributed to student ability, ensuring that not
all of the variance in an assessment is explained by student abilities
alone. By doing so, it guarantees that every assessment includes
at least some assessment-specific noise. To determine the optimal
value of 𝛼 , we performed leave-one-out cross-validation on the
OULAD dataset [28]. Our analysis identified 𝛼 = 0.833 as the value
that provided the best results. While this one approach works well
in practice, more research is needed to explore alternative strategies
for learning this parameter.

3.2.2 Estimating the assessment parameters, 𝑑 𝑗 and 𝜖 𝑗 . We
present two scenarios for estimating the assessment parameters
depending on the user and the data that user would have available.
The Teacher Variant assumes the user has access to a typical grade
book: a score for each student and each assignment. Formally they
have student scores 𝑆 𝑗 = {𝑆𝑖 𝑗 }

𝑁 𝑗

𝑖=1 for each assessment 𝑗 , where
𝑁 𝑗 is the number of students who completed that assessment. In
contrast, the Student Variant assumes the user only has access to
their own scores on assessments, 𝑔1, . . . , 𝑔 𝑗 and summary statistics
(mean and standard deviation) of each assessment.

Teacher Variant: In the teacher variant, we have access to the full
distribution of student scores for each assessment, 𝑆 𝑗 . In CGRT, we
assume each 𝑆 𝑗 follows a logit-normal distribution. The parameters
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of a logit-normal distribution are the mean and variance of the un-
derlying normal distribution. Since we have the entire distribution
𝑆 𝑗 , we can estimate its mean and variance directly by applying the
logit transformation to all scores, and then calculating the mean
and variance of the transformed values:

𝜇 𝑗 =
1
𝑁 𝑗

𝑁 𝑗∑︁
𝑖=1

logit(𝑆𝑖 𝑗 ) var𝑗 =
1
𝑁 𝑗

𝑁 𝑗∑︁
𝑖=1

(
logit(𝑆𝑖 𝑗 ) − 𝜇 𝑗

)2
Once we calculate var𝑗 , we can compute 𝜎𝑎 as 𝛼 multiplied by

the minimum variance. From there, we determine each 𝜖2
𝑗
using

the equation: 𝜖2
𝑗
= var𝑗 − 𝜎2𝑎 . Since 𝜇 𝑗 = −𝑑 𝑗 , we also recover the

difficulty parameter 𝑑 𝑗 .

Student Variant: In the student variant, we only have the mean
and standard deviation of the scores 𝑆 𝑗 , so we cannot perform the
straightforward parameter estimation used in the teacher variant.
The logit-normal distribution presents two unique challenges. First,
there is no closed-form solution to determine the parameters of the
distribution from the mean and variance. Second, even with known
parameters, closed-form expressions for the mean and variance
do not exist. Fortunately, techniques for estimating the mean and
variance from parameters have been well-studied [29, 30].

Our goal is to find the parameters of the logit-normal distribution
that produce estimated mean and standard deviation values as close
as possible to the actual observed student data. We begin by making
an initial guess of the distribution parameters and then leverage
the TensorFlow Probability (TFP) library to analytically estimate
the mean and standard deviation based on these initial parameters.
To quantify how well our estimated parameters match the observed
data, we define a loss function that captures the squared differences
between the estimated and observed summary stats:

L =

(
E[𝐺 𝑗 ] − E[𝐺 𝑗 ]

)2
+
(
Std(𝐺 𝑗 ) − Std(𝐺 𝑗 )

)2
We then minimize this loss function using the L-BFGS-B opti-

mization algorithm [31]. L-BFGS-B is particularly well-suited for
this task because it efficiently handles smooth, high-dimensional
functions. We run the optimization multiple times with different
starting points to increase the likelihood of finding a global mini-
mum, ensuring that our estimates are as accurate as possible. While
we found L-BFGS-B to be stable and effective, other methods, such
as rejection sampling, can also be employed to achieve similar re-
sults. After optimization, we recover the optimal difficulty 𝑑 𝑗 and
variance var𝑗 , for each of the assessments. From there, we do the
same steps as in the teacher version to recover the variance in
student abilities 𝜎2𝑎 and the 𝜖 𝑗 terms.

Either the teacher or student variant can be used in our model,
depending on the data available, with no significant performance
differences. With the estimated assessment parameters, we now
turn to the next step: inferring student abilities.

3.3 Inferring Student Ability
Given the estimated assessment parameters-namely the standard
deviation in student abilities 𝜎𝑎 , the difficulties 𝑑1, . . . , 𝑑𝑛 , and the
noise variances 𝜖21 , . . . , 𝜖

2
𝑛 , along with the student’s observed scores

on assessments 𝑔𝑖1, . . . , 𝑔𝑖𝑛 , our next task is to infer the student’s

true ability 𝐴𝑖 . The objective is to update our belief about 𝐴𝑖 by
incorporating information from the student’s performance on as-
sessments.

The first step involves transforming the student’s observed
grades 𝑔𝑖 𝑗 into noisy ability samples 𝑎𝑖 𝑗 . Recall that equation 7
models the grade 𝐺𝑖 𝑗 for student 𝑖 on assessment 𝑗 . Since we have
specific observed grade values, 𝑔𝑖 𝑗 , we solve for the noisy abilities
𝑎𝑖 𝑗 , by applying the inverse of the sigmoid function, known as the
logit function.

𝑎𝑖 𝑗 = logit(𝑔𝑖 𝑗 ) + 𝑑 𝑗 (8)

Here, 𝑎𝑖 𝑗 is a specific noisy value, denoting the estimated abil-
ity of student 𝑖 on assessment 𝑗 based on their grade 𝑔𝑖 𝑗 and the
assessment’s difficulty 𝑑 𝑗 . Note that we use lowercase letters repre-
sent observed values, while uppercase letters are used for random
variables. Now we have a list of noisy abilities 𝑎𝑖1, . . . , 𝑎𝑖𝑛 . To infer
the student’s true ability 𝐴𝑖 from the list of observed abilities, we
use Bayesian inference, specifically leveraging the properties of the
normal distribution to perform a Gaussian posterior update.

We beginwith the prior belief that each𝐴𝑖 is normally distributed
as defined in equation 5. We define 𝜇prior = 0 and 𝜎2prior = 𝜎2𝑎 . Each
observed ability 𝑎𝑖 𝑗 provides a likelihood function for 𝐴𝑖 . Recall
that 𝐴𝑖 𝑗 = 𝐴𝑖 +𝑀𝑗 . It then follows that 𝐴𝑖 𝑗 ∼ 𝑁 (0, 𝜎2𝑎 + 𝜖2

𝑗
). If we

condition 𝐴𝑖 𝑗 on 𝐴𝑖 , we have 𝐴𝑖 𝑗 |𝐴𝑖 ∼ 𝑁 (𝐴𝑖 , 𝜖
2
𝑗
). This means that

given 𝐴𝑖 , the observed ability 𝐴𝑖 𝑗 is normally distributed around
𝐴𝑖 with variance 𝜖2

𝑗
.

Since both the prior and likelihoods are normal distributions, the
posterior distribution of 𝐴𝑖 given the observations 𝑎𝑖1, . . . , 𝑎𝑖𝑛 is
also normally distributed 𝐴𝑖 |𝑎𝑖1, . . . , 𝑎𝑖𝑛 ∼ 𝑁 (𝜇posterior, 𝜎2posterior).
The parameters of the posterior distribution are calculated using
standard formulas for Bayesian updating with normal distributions
shown below.

𝜎2posterior =
©­« 1
𝜎2prior

+
𝑘∑︁
𝑗=1

1
𝜖2
𝑗

ª®¬
−1

,

𝜇posterior = 𝜎2posterior
©­«
𝜇prior

𝜎2prior
+

𝑘∑︁
𝑗=1

𝑎𝑖 𝑗

𝜖2
𝑗

ª®¬ . (9)

The outcome of the Gaussian posterior update is an updated
normal distribution for 𝐴𝑖 that incorporates the evidence from
the student’s performance. The posterior mean, 𝜇posterior is our
updated best estimate of the student’s true ability and the posterior
variance, 𝜎2posterior quantifies our uncertainty about this estimate.
This process generalizes to any number of assessments allowing for
flexible application across different courses and grading structures.

3.4 From Ability to Grade Distributions
Our next step is to use the inferred ability to estimate a distribu-
tion over the student’s final grade, referred to as their Soft Grade.
This distribution represents the likelihoods of all potential scores
the student could receive, given the current belief of their ability
and the characteristics of the assessments. We construct the Soft
Grade using Monte Carlo simulation, sampling from the student’s
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ability distribution to simulate assessment performance. This pro-
cess generates an empirical distribution of final grades, effectively
propagating the uncertainty in the student’s ability.

We begin by drawing a large number of samples 𝑎 (𝑠 )
𝑖

, where 𝑖
identifies the student and 𝑠 is the sample index, from the inferred
posterior distribution of the student’s ability. Each sample repre-
sents a possible true ability level the student might have. For each
sampled ability, 𝑎 (𝑠 )

𝑖
, we simulate the student’s performance on

each assessment 𝑗 by first sampling an observed ability 𝑎 (𝑠 )
𝑖 𝑗

from
the conditional distribution 𝐴𝑖 𝑗 |𝐴𝑖 ∼ 𝑁 (0, 𝜖2

𝑗
). This step models

the fluctuations in the student’s performance on assessment 𝑗 due
to factors unrelated to their true ability. Next, we compute the sim-
ulated grade, 𝑔 (𝑠 )

𝑖 𝑗
= Sigmoid(𝑎 (𝑠 )

𝑖 𝑗
− 𝑑 𝑗 ). For each sample, we then

have 𝑛 simulated grades, one for each of the 𝑛 assessments. We
then compute a final grade as an average of all 𝑛 grades, denoted
as 𝑓 (𝑠 )

𝑖
and computed:

𝑓
(𝑠 )
𝑖

=
1
𝑛
Σ𝑛𝑗=1𝑔

(𝑠 )
𝑖 𝑗

(10)

Each final grade sample is rounded to two decimal places to ensure
consistency in reporting and to reflect real-world grading practices.
We repeat this for a large number of samples (e.g., 10000 iterations)
to create a set of final grades 𝑓 1

𝑖
, 𝑓 2
𝑖
, . . . 𝑓 𝑆

𝑖
. This collection of discrete

simulated final grades forms the student’s Soft Grade distribution.

4 Experimental Setup
To evaluate our model, we conducted experiments to predict stu-
dents’ future grades. We outline the datasets, evaluation metrics,
and baseline models used for comparison.

4.1 Datasets
We conducted experiments using both synthetic and real-world
datasets. This dual approach allowed us to assess the model’s per-
formance under controlled conditions with known parameters, as
well as its applicability in real university courses. For the synthetic
dataset, we generated data from a simulated course environment to
evaluate our model’s capability to recover the true parameters. The
simulated course consisted of 9 assignments and 200 students. To
enhance the robustness of our results, we created ten different of-
ferings of this course, each with varying parameters. The outcomes
are averaged across all offerings.

For the real-world evaluation, we used two datasets: the first is
non-public data from two courses at a large R1 research university
(denoted as datasets C1 and C2), and the second is the publicly
available Open University Learning Analytics Dataset (denoted
as OULAD) [28], consisting of seven courses spanning two years.
Grades were clipped to the range 0.005 to 0.995 to ensure numer-
ical stability with the sigmoid function, and only students with
scores for all assessments were included. C1 is an introductory
computer science course with 9 assessments and 378 students. C2 is
a probability course with 8 assessments, drawn from three offerings
with 392, 307, and 239 students respectively. The OULAD dataset
includes 7 courses (OULAD-1 through OULAD-7), each with 2-4
offerings each. Each offering had 5 to 13 assessments and 200 to
2,000 students. For all offerings, we inferred student ability from

the first half of assessments (rounding down when the total number
of assessments was odd) and predicted performance on the rest.

4.2 Evaluation Metrics
We used likelihood as a metric to assess how closely the predicted
grades matched the true final grades, measured at different lev-
els of precision (exact match, within ±1, ±3, etc.). Next, we used
calibration plots to compare predicted probabilities of achieving
certain grades with observed frequencies. A well-calibrated model’s
predictions should align with the diagonal 𝑦 = 𝑥 line, indicating
that predicted probabilities match actual outcomes. We quantified
calibration using Expected Calibration Error (ECE), with lower ECE
indicating better calibration. Finally, we conducted a hard predic-
tion evaluation, generating a single grade estimate instead of a
distribution. This was done by using the mean of the inferred true
ability𝐴𝑖 to produce a final grade prediction for each student. Hard
predictions provide a more straightforward comparison to tradi-
tional IRT models, which also produce single grade estimates. We
evaluated these predictions using Root Mean Square Error (RMSE),
which measures how closely the predicted final grades match the
given final grades.

4.3 Baseline Comparison
We implemented a baseline model for comparison to our soft pre-
dictions. In this baseline, each student’s grade is represented as
a normal distribution, with the mean set to their average score
across all assessments and a fixed, small standard deviation to re-
flect minimal uncertainty. This Fixed Mean Normal (FMN) baseline
reflects current grading practices, ignoring individual abilities and
assessment difficulties, and having little to no uncertainty.

To compare to the hard predictions, we implemented a Continu-
ous Response Model (CRM) [6] where we fit the parameters with
the EM approach described in this paper [9]. We learned parame-
ters and student abilities from the first half of the assessments. For
the remaining assessments, we used the average parameter values
learned from the first half to predict future scores. This approach is
referred to as the CRM baseline.

5 Results
5.1 Synthetic Data
We first evaluate our model using synthetic data, where the true
parameters for each assessment are known. This allows us to com-
pare our model, which learns these parameters, to an oracle model
that uses the true parameter values for all predictions. By doing so,
we can validate whether our model accurately learns the correct
parameters.

The Soft Grades model performs nearly as well as the Oracle,
as shown in Table 1. The likelihood of exactly predicting the final
grade is 0.118 for the Soft Grades model, compared to 0.119 for the
Oracle. With a tolerance of ±1, the likelihoods are 0.323 and 0.324,
respectively, and for a tolerance of ±3, they are 0.605 and 0.612.
These results demonstrate that the Soft Grades model accurately
learns the true parameters of the synthetic data, achieving predic-
tions almost as precise as the Oracle. In contrast, the FMN Baseline
model, which does not learn parameters, performs significantly
worse. Its likelihood of exactly matching the final grade is 0.066,
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Likelihood Expected Calibration Error
Exact ±1 ±3 (ECE)

Oracle 0.119 ± 0.007 0.324 ± 0.013 0.612 ± 0.016 0.018
Soft Grades 0.118 ± 0.007 0.323 ± 0.014 0.605 ± 0.016 0.020
FMN Baseline 0.066 ± 0.007 0.192 ± 0.019 0.407 ± 0.027 0.131

Table 1: Likelihood of predicting the final grade within different tolerance levels (Exact, ±1, ±3) for synthetic data using Oracle,
Soft Grades, and FMN Baseline models. The Oracle represents the theoretical upper bound of performance, and lower ECE
values indicate better calibration.

and for ±1, it achieves 0.192—substantially lower than both the
Oracle and the Soft Grades models.

The calibration plot for synthetic data (Figure 4c) shows that the
Soft Grades model is well-calibrated, with points closely aligning to
the𝑦 = 𝑥 line. This indicates that the model’s predicted probabilities
closely match the actual outcomes. The Expected Calibration Error
(ECE), shown on the right side of table 1 is 0.020, significantly lower
than the FMN baseline’s ECE of 0.131, and very close to the oracle’s
ECE of 0.018, indicating that the Soft Grades model provides reliable
probability estimates in line with the true outcomes.

5.2 Real Data
The calibration plots for C1 and C2 (Figures 4a and 4b) show that the
Soft Grades model is well-calibrated in predicting final grades on
these two real datasets, demonstrating that the Soft Grades model
is robust when applied to data from these two university courses.

The ECE values for real data (Table 2) provide further evidence
of the model’s calibration accuracy. For C1, the Soft Grades model
achieves an ECE of 0.021, compared to the FMN baseline’s 0.187.
Similarly, for C2, the Soft Grades model has an ECE of 0.064, sig-
nificantly lower than the baseline’s 0.119. In the OULAD courses,
the Soft Grades model consistently outperforms the baseline, with
ECE values ranging from 0.039 to 0.174, while the baseline’s ECE
values are much higher, ranging from 0.242 to 0.530. These results
indicate that the Soft Grades model is much better calibrated across
various courses compared to the FMN baseline.

In addition to calibration, we assess the likelihood of the true
final grades falling within specific ranges around the predicted
grades, using the same method as with the synthetic data. In the
OULADdataset, the Soft Gradesmodel consistently outperforms the
baseline. In OULAD-1, the likelihood of exactly predicting the final
grade is 0.059 for Soft Grades, compared to 0.100 for the baseline. At
a tolerance of ±3, the Soft Grades model achieves 0.396, while the
baseline reaches 0.574. In OULAD-7, the Soft Grades model predicts
with an exact likelihood of 0.058, outperforming the baseline’s
0.034, and at ±3, it achieves 0.393 compared to 0.252 for the baseline.
Similar patterns emerge in the university courses. In C1, the Soft
Grades model achieves a likelihood of 0.201 for exact predictions,
0.482 at ±1, and 0.762 at ±3, outperforming the baseline at every
level. In C2, the exact likelihood is 0.120 for Soft Grades, with 0.341
at ±1 and 0.652 at ±3, remaining competitive with the baseline.
These results highlight the Soft Grades model’s ability to deliver
more accurate predictions, especially at wider tolerances.

Finally, we compare the hard predictions of our model to the
CRM baseline to evaluate its relative accuracy. Table 3 presents
the Root Mean Square Error (RMSE) of hard predictions from the

Soft Grades Model compared to the CRM baseline across differ-
ent courses. The Soft Grades model consistently achieves lower
RMSE values, indicating more accurate predictions. For instance,
in C1, the Soft Grades model has an RMSE of 0.042, compared to
the CRM baseline’s 0.060. Similarly, in C2, the Soft Grades model
achieves a much lower RMSE of 0.058, while the CRM baseline
records a significantly higher RMSE of 0.264. This trend continues
across the OULAD courses, with the Soft Grades model consistently
outperforming the CRM baseline. For example, in OULAD-2, the
Soft Grades model’s RMSE is 0.067, compared to 0.221 for the CRM
baseline, and in OULAD-6, the RMSE is 0.046 for Soft Grades, while
the CRM baseline reaches 0.401. These results show the Soft Grades
model is more accurate than CRM on these datasets.

6 Practical Applications of Soft Grades
The Soft Grades model offers powerful and practical tools for both
teachers and students, providing a richer and more informative
representation of student performance.

6.1 Soft Grades For Teachers
Soft Grades provides a principled way to impute missing scores
for students who, due to extenuating circumstances such as family
emergencies or health issues, have incomplete coursework. Instead
of dropping a missing grade, teachers can infer a student’s ability
using the assessments they have completed. From this inferred
ability, they can generate an estimated grade for that assessment
using Monte Carlo sampling from the student’s ability distribution.
The teacher can then have more information when deciding how
to handle cases like this.

Furthermore, Soft Grades can improve grading practices by pro-
viding teachers with a visual representation of the uncertainty in
the grades they assign. A wider spread in a student’s Soft Grade
distribution indicates higher uncertainty, offering teachers insights
into how confident they should be about a student’s performance.
This can be particularly valuable when assigning grades to students
who are on the borderline of grade boundaries.

Many teachers curve grades to align student outcomes with ex-
pected distributions. Soft Grades support this process by offering
histograms of standard deviations and visualizations of scores with
their uncertainties. These tools enable teachers to make more in-
formed decisions about how to apply curves fairly, ensuring the
final grade distribution aligns with the variability in student per-
formance.
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(a) Calibration plot for one offering of C1. (b) Calibration plot for one offering of C2. (c) Calibration plot for synthetic data.

Figure 4: Calibration plots comparing the Soft Grades model across two real course offerings (C1 and C2) and one synthetic
dataset. The model is well-calibrated in all cases, suggesting that the Soft Grades model accurately captures uncertainty and
provides reliable predictions. Error bars are standard error of the mean.

C1 C2 OULAD-1 OULAD-2 OULAD-3 OULAD-4 OULAD-5 OULAD-6 OULAD-7

Soft Grades (ECE) 0.021 0.064 0.049 0.084 0.174 0.110 0.039 0.082 0.080
FMN Baseline (ECE) 0.187 0.119 0.275 0.375 0.308 0.435 0.338 0.242 0.530

Table 2: Expected Calibration Error (ECE) of Soft Grades Model compared to FMN baseline averaged across all offerings of each
course. The Soft Grades model demonstrates significantly lower ECE than the FMN baseline, indicating better calibration in
its predictions. The p-values for all comparisons are < 0.0001, indicating that the observed differences in ECE are statistically
significant.

C1 C2 OULAD-1 OULAD-2 OULAD-3 OULAD-4 OULAD-5 OULAD-6 OULAD-7

Soft Grades (RMSE) 0.042 0.058 0.069 0.067 0.062 0.089 0.071 0.046 0.076
CRM Baseline (RMSE) 0.060 0.264 0.079 0.221 0.071 0.145 0.080 0.401 0.349

Table 3: Root Mean Square Error (RMSE) comparison between Soft Grades and CRM Baseline across all courses. Lower RMSE is
better. All comparisons are statistically significant, with p-values < 0.05.

6.2 Soft Grades For Students
We make a few modifications to the algorithm to better serve stu-
dents’ needs. First, students input their scores and the statistics
(mean and standard deviation) for the 𝑘 assessments they have
completed so far. The model uses this data to infer the student’s
current ability. Next, the student provides their best estimates for
the mean and standard deviation of the remaining𝑛−𝑘 assessments.
With these estimates, the model runs Monte Carlo simulations to
predict potential grades for the remaining assessments.

In each simulation, the final grade combines the student’s actual
scores from the first 𝑘 assessments with the predicted scores for
only the remaining𝑛−𝑘 assessments. This differs from the teacher’s
version of the Soft Grades model, where we simulate scores for all
𝑛 assessments using the inferred ability. For students, it is most
helpful to focus on the range of possible future outcomes rather than
the uncertainty in their past performance, since this information

allows them to make actionable decisions about how to approach
the remainder of the course.

The model then produces a final soft grade distribution, giving
the student a clear understanding of the likelihood of potential
outcomes in the course. At this point, the student has two options.
First, they can experiment with different assumptions about the
difficulty of future assessments, adjusting the statistics to see how
these changes affect the possible grades. Second, they can select a
specific grade for a future assignment and ask the model to assume
they received that grade. The model will then update its inference of
the student’s ability using the original 𝑘 true scores, plus the newly
assumed score for the selected assignment. This feature allows
students to explore how different assessment parameters, such as
difficulty, can influence their final outcomes, and see how achieving
specific future scores would affect their overall grade. This level of
interactive exploration is not available with current tools.

This ability to visualize a distribution over possible outcomes
gives students valuable information they can use to make strategic
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Figure 5: Soft Grade web application user interface for students

academic decisions, such as how to best allocate their study time
across different courses, or even whether to opt for a letter grade
or Pass/Fail based on the likelihood of outcomes. By offering a
detailed look into potential outcomes, the Soft Grades model en-
courages proactive academic planning and helps students make
more informed decisions about their study habits and goals.

6.3 Web Application
We have developed a web application that allows students and
teachers to use the Soft Grades model. For students, the app allows
them to input their completed assignment scores and statistics.
They can then experiment with different scenarios for upcoming
assignments to predict their soft final grade or the Soft Grades
for specific future assessments. The user interface for the web
application student page in shown in figure 5. The teacher ver-
sion of the web app links to Python scripts for imputing grades,
viewing Soft Grades, and generating class-wide statistics like the
distribution of standard deviations. These scripts run locally to
ensure student data privacy and are available with instructions at:
https://juliettewoodrow.github.io/softgrades/.

7 Discussion
An important extension of Soft Grades is to refine the modeling
of assessment variance by separating the variance due to student
abilities (𝜎2𝑎) from the variance caused by noise (𝜖2

𝑗
, factors unre-

lated to ability). Perhaps with rich historical data, or when prior
knowledge about assessment noise is available, we could develop
models that more precisely capture how much of the uncertainty
stems from the student and how much arises from external factors.
This differentiation could lead to better-informed decisions about
interventions and adjustments in grading practices.

Another extension is the concept of a "Soft GPA", which would
incorporate the ideas behind soft grades into a comprehensive
measure of student performance over the course of an entire aca-
demic program. Unlike traditional GPAs, which reduce student
performance to point estimates, a Soft GPA would reflect both the
student’s ability, the varying difficulties of different courses, and
the uncertainty-especially early on in a student’s academic journey.
This could lead to a richer understanding of students’ academic

trajectories, enabling employers, advisors, instructors, and students
themselves to make more informed decisions.

Finally, although our current model assumes that grades follow
a logit-normal distribution, it is worth exploring alternative distri-
butions to model assessments. Other distributions, such as the beta
distribution, may better fit certain types of grading patterns.

8 Limitations
A key assumption in our model is that a student’s true ability is
assumed to remain constant throughout an entire course. This sim-
plification facilitates the modeling process, but it does not account
for the dynamic nature of learning. Abilities can and should cer-
tainly evolve throughout a course as students learn course content
and meta-course skills (e.g. test taking strategies). Future work
should explore methods for dynamically updating ability estimates,
potentially incorporating temporal models or Bayesian approaches
that allow for evolving student abilities.

Another limitation is that the Soft Grades model has not yet
been deployed in live classroom environments. While the model
performs well in simulations and post-hoc analysis of real-world
data, there is much to learn from observing how teachers and
students actually engage with the tool in practice. Future work
could involve usability studies and feedback from teachers and
students to better understand how the model integrates into real
classroom settings.

9 Conclusion
Soft Grades offer a new lens for understanding student perfor-
mance by incorporating uncertainty into final course grades. By
moving beyond single-point estimates, this model provides a richer
framework that better reflects the realities of classrooms. With
demonstrated state-of-the-art performance in grade prediction and
imputation, we envision Soft Grades as a transformative tool for ed-
ucators and students alike—empowering more informed decisions
and fostering deeper insights into academic achievement.
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