TMOSS: Using Intermediate Assignment Work to Understand
Excessive Collaboration in Large Classes

Lisa Yan Nick McKeown
Stanford University Stanford University
yanlisa@stanford.edu nickm@stanford.edu
ABSTRACT

As computer science classes grow, instructor workload also in-
creases: teachers must simultaneously teach material, provide as-
signment feedback, and monitor student progress. At scale, it is hard
to know which students need extra help, and as a result some stu-
dents can resort to excessive collaboration—using online resources
or peer code—to complete their work. In this paper, we present
TMOSS, a tool that analyzes the intermediate steps a student takes
to complete a programming assignment. We find that for three
separate course offerings, TMOSS is almost twice as effective as
traditional software similarity detectors in identifying the number
of students who exhibit excessive collaboration. We also find that
such students spend significantly less time on their assignment,
use fewer class tutoring resources, and perform worse on exams
than their peers. Finally, we provide a theory of the parametric
distribution of typical student assignment similarity, which allows
for probabilistic interpretation.

CCS CONCEPTS

« Social and professional topics — Computer science educa-
tion; CS1; Student assessment;

KEYWORDS

Programming courses; plagiarism detection; student performance;
teaching at scale; undergraduate courses

ACM Reference Format:

Lisa Yan, Nick McKeown, Mehran Sahami, and Chris Piech. 2018. TMOSS:
Using Intermediate Assignment Work to Understand Excessive Collabora-
tion in Large Classes. In Proceedings of The 49th ACM Technical Symposium
on Computer Science Education, Baltimore, MD, USA, February 21-24, 2018
(SIGCSE ’18), 6 pages.

https://doi.org/10.1145/3159450.3159490

1 INTRODUCTION

In the past decade, an increasing number of educators have begun
digitizing and transforming the learning experience in order to
meet the ever-rising demand for education. This phenomenon is
especially apparent in CS education at the undergraduate level,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCSE ’18, February 21-24, 2018, Baltimore, MD, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5103-4/18/02...$15.00
https://doi.org/10.1145/3159450.3159490

Mehran Sahami Chris Piech
Stanford University Stanford University
sahami@cs.stanford.edu piech@cs.stanford.edu

where the nature of the learning material enables efficient use of
computing resources. Not only can the content delivery be delivered
via online lectures, but also an entire homework assignment can
be delivered, submitted, and graded with the aid of autograders.

Due to the size of the CS 1 class at many universities today, it
is intractable to monitor every student as they progress through
an assignment, even with the use of undergraduate or graduate
teaching assistants [5, 19]. Inevitably a large component of the
course relies on students performance on assignments, which often
must be completed outside of a closed lab setting. Instead of the
teacher quickly identifying a student who is struggling, it is often
the case that such a student must seek out instructor help through
scheduled office hours. At best, teachers can look only at the final
homework submission for each student and evaluate whether the
student needs additional help based on their final product.

By asking students to take on the responsibility of seeking help,
a pressing issue arises. Sometimes, the students who struggle the
most will not access the provided learning environments and will
instead find their own resources; seeking shortcuts to learning, they
can occasionally resort to unpermitted outside resources. This is
especially prevalent in large online courses [25].

Two questions arise from the current state of large CS 1 classes:
Given that there is a risk of excessive collaboration on assignments,
where students overly rely on outside resources like peer code or
online solutions, how can we identify students who exhibit such
behavior? Furthermore, how does excessive collaboration correlate
with student assignment work patterns and overall course perfor-
mance? If we can address these two questions, we can learn more
about our students, detect students exhibiting excessive collabora-
tion, and ensure a healthy learning environment.

In this paper we tackle both of these problems by introducing
Temporal Measure of Software Similarity (TMOSS), based on the
well-known Measure of Software Similarity (MOSS) system [20].
TMOSS is a tool that builds on traditional software similarity score
measures like MOSS. Instead of looking only at a student’s final sub-
mission, TMOSS computes similarity on intermediate assignment
work. These summaries are then verified by a human to hypoth-
esize which students may have exhibited excessive collaboration.
Through this procedure, we demonstrate the effectiveness of the
TMOSS algorithm and paint a picture of how excessive collabora-
tion impacts student performance. We further provide a theoretical
foundation for interpreting TMOSS and MOSS scores and show that
the distribution of similarity scores that do not exhibit excessive
collaboration can be modeled with a parametric Gumbel distribu-
tion. Such a distribution enables formal analysis and also indicates
that the likelihood of false positives in our tool is very low.

Our paper proceeds as follows: After summarizing related work
in Section 2, in Section 3 we describe our learning environment and

https://doi.org/10.1145/3159450.3159490
https://doi.org/10.1145/3159450.3159490

Table 1: Statistics per Breakout repository (1420 students).

=======m=m== Mean SE
Start day -5.22 273

Snapshots 253 199

¢ Hours ontask 9.77 4.93

- TA hours 418 9.09

the process of collecting snapshots of student progress through a
programming assignment. Section 4 introduces the TMOSS tool,
which uses intermediate student work to compute high similarity
scores; these are then used to hypothesize excessive collaboration.
Section 5 gives a theoretical framework for the interpretation of
similarity scores. Finally, in Section 6 we report our results using
TMOSS for three course offerings, and we demonstrate that stu-
dents that exhibit excessive collaboration and those that do not are
meaningfully different in how they interact with the class material—
including time on task, use of office hours, and exam performance.

2 RELATED WORK

Many software similarity systems have been developed over the
past two decades to detect for software plagiarism [7, 18, 20, 23, 24].
Among these systems, MOSS [20] is commonly used in academic
settings to detect student plagiarism in course assignments. People
have used biometrics measures like keystroke logging to identify
plagiarism [10], which is used in Coursera [11].

Online learning and teaching computer science courses at scale
have also prompted new research on modeling and understanding
student learning from programming assignment solutions. Spohrer
et al. [22] observe and collect student progress based on observa-
tion of student programming bugs, whereas Piech et al. [16] use
assignment progress repositories to analyze intermediate student
work. Social science research in the past has attempted to explain
motivations for student plagiarism, citing that plagiarism is most
common when there are small penalties and high rewards [3, 13].

Recent work has combined these two areas of research and an-
alyzed how excessive collaboration affects student performance.
Pierce et al. [17] developed a tool that correlated plagiarism with
negative performance over other assignments in the course, and
there has also been anecdotal evidence that over-reliance on outside
help can incite negative student experiences in a CS 1 course [15].
Schneider et al. [21] implemented a plagiarism detection tool that
analyzes logs of student interaction with course software. To the
best of our knowledge, our work is the first to use intermediate
student work for identifying cases of excessive collaboration and
the first to model the probability of false positives in similarity
software detection.

3 DATA

In this study we focus on the first large programming assignment
in an undergraduate level CS 1. Breakout, a classic Atari game [14],
is a programming assignment used widely in many institutions
like Stanford, Cornell, Johns Hopkins, and CodeHS [4, 6, 8, 19]. In
the course studied, Breakout is the first large, intensive creative
project assignment, and enthusiastic students often extend their

work beyond the minimum requirements. At the same time, the
assignment unfortunately also creates the first opportunity for
excessive collaboration.

In the CS 1 course studied, students complete Java programming
assignments individually using the Eclipse Integrated Development
Environment (IDE). The IDE has been modified to automatically
log snapshots of student code in a local git repository every time a
student compiles their assignment project to check program output,
which occurs whenever the student tries to run their program. This
leads to a series of snapshots with temporal granularity on the
order of minutes of programming time. Each snapshot in a student
code repository can be indexed by a snapshot index, corresponding
to a timestamped copy of student code at compile time. When
students submit their final code, they also submit the code snapshot
repository. A repository can therefore be analyzed for functional
information on the student’s code development path [16] or for
temporal information to quantify student work habits.

We identify broad metrics of student work habits: number of
hours worked and which day the student started coding. Similarity
scores—statistics that will be used for measuring collaboration—are
then calculated by analyzing the repository in depth (described
more in Section 4). Due to the graphics-based, open-ended nature
of the Breakout assignment, we unfortunately did not have unit
tests or a functioning autograder and did not have metrics on func-
tionality per snapshot.

We use the Breakout assignment submissions from the CS 1 of-
ferings in Fall 2012 (416 students), Fall 2013 (476 students), and Fall
2014 (528 students). All students from this dataset were taught by
the same instructor and had nine days to work on Breakout (with
an extra two late days to submit with potential grade penalty). The
Breakout assignment is held on week four of a 10-week course.
While students work on the assignment individually until the dead-
line, they can also attend walk-in office hours held Sunday to Thurs-
day evenings to clarify concepts or discuss debugging tips with un-
dergraduate teaching assistants (TAs). In our analysis, we leverage
attendance logs of these TA hours—students record their check-
in time and their assignment or course issue, and TAs record the
students’ check-out time and issue resolution. Table 1 provides a
summary of how these three sets of students worked through the
Breakout assignment. On average, students started the assignment
5.22 (SE=2.73) days before the deadline and spent a mean of 9.77
(SE=4.93) hours on task. TA office hours attended were calculated
over the entire course. Hours on task were determined by grouping
snapshot times that were within half an hour of each other.

4 METHOD

In this section, we give an overview of the typical process of flagging
final student submissions for excessive collaboration with other
students or online solutions. We then present TMOSS, a tractable
method for identifying excessive collaboration over intermediate
versions of student code.

4.1 Traditional software similarity detection

Traditional software similarity detectors compute similarity scores
over a student’s submitted code; these tools compare the student
code to peer submissions and online solutions on various metrics,

ALGORITHM 1: Computing top matches in TMOSS.

Input: N students (students)
n online solutions (online)
Output: N top matches (top_matches). Each student has a
tuple of (highest similarity score, match code).
top_matches = [];

foriinl...Ndo
compare_set =

getFinalSubmissions(students - students[i]) + online;

snapshots = getRepository(students[i]);
student_matches = [];
forjin1...Mdo
results = compute_similarity(
snapshots[j], compare_set);
student_matches.append(
argmaxy_; n4n—p results[k].getScore());
end
top_matches.append(
argmax;_;_ s student_matches[j].getScore());
end

and flag student submissions that deviate from standard statis-
tics [7, 17, 18, 20, 21, 23, 24]. Among these, Measure of Software
Similarity (MOSS) is highly regarded as the standard for detecting
software plagiarism in the classroom [1, 20]. The software acts as a
filtering tool prior to human decision; submissions with high sim-
ilarity scores are checked manually by course staff, who identify
excessive collaboration as plagiarism on a case-by-case basis. These
pairwise detectors all scale quadratically with the size of the class,
as comparing N student submissions to N peers and n < N known
online solutions requires a runtime of O(N?).

Running these tools on student final submissions can only iden-
tify a subset of the students exhibiting excessive collaboration. For
example, suppose a student pastes in an online solution momentar-
ily to check the desired output, then removes the online solution
and submits his or her own work. While this is a plagiarism case at
many academic institutions, existing software similarity detectors
cannot flag this student from his or her final submission work.

4.2 TMOSS: Temporal Measure of Software
Similarity

TMOSS is a tool designed to extend traditional software similarity
detectors by identifying excessive collaboration on any interme-
diate snapshot of a student’s code repository, not just final code
submission. While TMOSS (as the name implies) currently imple-
ments MOSS-based similarity scores [20], the tool can be easily
adapted to different similarity detector backends.!

An outline of TMOSS’s operation is shown in Algorithm 1.
TMOSS produces N top matches—one per student—corresponding
to the final peer or online code that returned the highest similar-
ity score over all M snapshots per student repository. The set of
peer submissions are from the same course quarter, whereas online

ITMOSS is available as an open-source project at https://github.com/yanlisa/tmoss.

100

=)
k|
£ 50
<
O
g
© 0

0 0.2 0.4 0.6 0.8 1

Normalized snapshot index
—Student A = =StudentB - Student C ==-Student D
(a)
100 -- % Snapshot [1000
> % Match
E e —# Tokens -
E 50 e - 500 &
:\-O- W
O 1 1 1 1 0
0 0.2 0.4 0.6 0.8 1
Normalized snapshot index
(b)

Figure 1: (a) Examples of students in the HEC group; (b) 95th
percentiles of different MOSS similarity scores over time.

solutions are those that the teaching staff found via github or cod-
ing blogs. The compute_similarity() function is our traditional
similarity detector backend, which computes similarity scores of a
student snapshot to each of the final and online code files. Attempt-
ing to run existing pairwise similarity detection algorithms on all M
snapshots for each of N students would require O(N?M?) runtime,
which is impractical. Instead, we avoid pairwise comparison by
comparing a snapshot to N final peer submissions and n < N on-
line solutions, thus reducing the runtime per snapshot to O(N) and
the overall runtime to O(N2M). We note that comparing snapshots
to final code is often preferable; similarity score algorithms that we
surveyed scale much better with larger code files, and comparing
two intermediate code files often produces a very low similarity
score. Finally, we use human detection as the final step to determine
which of these N top matches exhibits excessive collaboration. All
students who fall into this category are put into the hypothesized
excessive collaboration (HEC) group.

Figure 1a shows four students from our dataset who fall into the
HEC group, using MOSS as the detector backend for TMOSS. The
percent (%) similarity of a match’s code to the intermediate code
snapshot is plotted over time, here computed as the normalized
snapshot index (from their first compiled code at 0.0 to their final
submission at 1.0). While all of the students graphed exhibit exces-
sive collaboration, Student A would go undetected by a typical run
of MOSS on final submissions.

MOSS similarity scores. While any pairwise software similarity
detector that fits the function signature of compute_similarity()
can be used in TMOSS, we describe MOSS, which is used in our
implementation [1, 20]. MOSS returns a triplet of similarity scores
for each pair of (snapshot, match), where match refers to a final or
online code file: (1) number of tokens—MOSS’s internal, tokenized

https://github.com/yanlisa/tmoss

representation of code—shared between the two programs, (2) %
snapshot similarity, and (3) % match similarity. The latter two scores
are computed as the percentage of shared tokens in the tokenized
MOSS representation of the student snapshot code (% snapshot
similarity) and the matched peer or online code (% match similarity).

In our implementation of TMOSS, we only consider the first
of these metrics—the number of shared tokens—to pick the top
match for each student. We ignore the % snapshot similarity score
since it varies inversely with the length of the student snapshot,
and therefore it will be high when the student starts, and will
decrease as the student progresses (Figure 1b). By contrast, the
other two metrics do not exhibit this behavior. We further compare
the effectiveness of number of tokens and % match similarity as
similarity scores in Section 6.

5 THEORY

What is the chance that a student, who did not cheat, is reported as
having plagiarized? In this section we provide a theoretical frame-
work for calculating the probability of a false-positive maximum
similarity score. The theory presented applies to all similarity mea-
sures for plagiarism detection, including MOSS and TMOSS.

Consider a student S who worked independently. When we com-
pute a similarity score X; between student S and another student i,
there is an non-zero probability that the score will be accidentally
large. While we suppose that this probability is exceedingly small,
the likelihood of a false-positive report for student S increases when
we compute a similarity score between them and every other stu-
dent in the history of the course. The score Y that is analyzed for
student S is the highest similarity score between the student and
all other submissions: Y = max; X;, for all other students i. The
potential for a large max similarity score arising by chance—in the
absence of collaboration—is concerning and worth exploring in
detail.

We assume that the probability distribution of X; is unknown,
but that it is exponentially-tailed.? We also assume that, as the
student did not collaborate with any of their peers, the values X;
should be mutually independent. Finally, it is reasonable to suppose
that the X; scores have the same (though unknown) distribution.
The Fisher-Tippett-Gnedenko Theorem, a more obscure cousin of
the Central Limit Theorem, tells us that the max of exponentially-
tailed independent identically distributed (IID) variables can only
converge to a Gumbel distribution [9]. Since we assumed that Y
is the max of exponentially-tailed IID random variables, ¥ should
have a Gumbel distribution; as such,

_e~(k=pIB

Pr(Y >k)=1-¢ (1)

holds for all values of k. The parameters of mode (i) and scale
() can be estimated using minimal datapoints via the method
of probability weighted moments [12]. Once the parameters of Y
are known we can answer questions of the form in Equation 1:
What is the probability that a student S, who did not work with
any other student, has a similarity score Y that is greater than

2 An exponential tail is a reasonable assumption for the token count similarity score X;.
Notably, this assumption has a light impact on the results: If X; has a sub-exponential
tail (for example % similarity has a fixed upper limit and thus has no tail), Y will have
a Reverse Weibull Distribution, which along with the Gumbel is a special case of the
Generalized Extreme Value Distribution.

Table 2: Results of TMOSS (per snapshot) and MOSS (per fi-
nal submission) on set of 1420 students.

MOSS TMOSS

HEC students 35 (2.5%) 61 (4.3%)
Runtime 0.03 hr 9.77 hr

some threshold k used to report plagiarism? The Fisher-Tippett-
Gnedenko Theorem should apply for any plagiarism measure—not
just MOSS and TMOSS, and not just for programming assignments.

6 RESULTS

After using TMOSS with human verification, we found 61 students
(4.1% of the dataset) in the HEC student group. By contrast, we
found only 35 students (2.5% of the dataset) using the traditional
MOSS approach with human verification (Table 2). We run both ex-
periments per-quarter by comparing only against peer submissions
in the same course offering (in addition to the same set of online
solutions across quarters).

We compare the distribution of final submission similarity scores
in regular MOSS (Figure 2a) with that of the maximum similarity
score over all snapshots in TMOSS (Figure 2b). In both cases, the
distribution of similarity scores for the non-HEC student group
(1359 students) fit a Gumbel distribution; (TMOSS: i = 153.4, f =
37.8; MOSS: u = 118.8, = 39.2). However, the distribution of
TMOSS scores for the HEC group is easily differentiable from the
non-HEC group, where as the MOSS scores for the HEC group are
less differentiable, further suggesting that TMOSS is a better metric
for detecting students in the HEC group.

We also compare the effectiveness of two different MOSS similar-
ity scores. From Section 3, the number of shared MOSS tokens and
% match similarity can both be considered valid scoring backends
as they are less dependent on snapshot length. For each similar-
ity score, we filter the TMOSS top matches through various score
thresholds k, and we compute the F1 score (a harmonic mean of pre-
cision and recall) for each resultant candidate HEC group. We find
that the optimal threshold for number of tokens (k = 367 tokens)
produces an F1 score of F1 = 0.97, compared to the optimal thresh-
old for % match similarity (k = 46%) at F1=0.58. Moreover, number
of tokens performs better as a similarity score at all thresholds.

6.1 Performance analysis

We next consider how excessive collaboration is correlated with
assignment work patterns and overall course performance. Table 3
compares various groups of students characterized by their HEC
traits. A quick glance at Table 3 shows almost immediately that
students in the HEC group compared to those in the non-HEC
group tend to start significantly later (an mean of 3.31 days before
the deadline, § = 2.0 days later), have significantly lower midterm
and final scores (6 = 0.328, § = 0.351, respectively), spend 27% less
time on task, and often attend fewer TA office hours (51% less over
the entire course).

It is important to note that factors other than HEC group mem-
bership did not correlate as significantly with student exam per-
formance. A natural one to consider is start date on the Breakout
assignment. Figure 2c shows that for non-HEC students, a later

Table 3: Work patterns comparison of different student groups: (a) midterm and (b) final scores; (c) start day as number of days
prior to deadline that a student started the assignment; (d) hours on task as computed in Section 3; (¢) TA hours attended over

the entire course.

Non-HEC HEC Online-Match ~ Peer-Match MOSS TMOSS-only

Students 1359 61 55 6 35 26

4t (SE) 1t (SE) p* 1t (SE) p(SE) pt 1t (SE) pt (SE) p*
(a) Midterm® 519(282) .191(207) <.0001 192(208) 183 (.202) .50 158 (161) .235(250) .08
(b) Final® 518 (.282) 167 (.189) <.0001 169 (.193) 156 (.148) .49 114 (106) 246 (247) <.01
(c) Start day -5.31(2.69) -3.31(2.92) <.0001 -3.13(2.95) -5.00(1.83) .07 -2.97 (2.85) -3.77(2.94) .14
(d) Hours on task ~ 9.88 (4.92) 7.23 (4.34) <.0001 6.98 (4.18) 9.54(5.04) .09 5.98(3.65) 8.91(4.61) <.01
(e) TA hours 427 (9.24) 210 (4.04) .02 2.03 (4.18) 2.67 (2.38) .25 238 (4.61) 1.71(3.08) .25

T Exam scores are exam ranking per quarter. Students who dropped the class mid-quarter were removed in each group when computing exam statistics.

¥ p-values are computed by bootstrapping for 100,000 iterations on a one-tailed hypothesis test.

T [Non-HEC 040 r tr
i Non-HEC -
MOSS HEC TMOSS a HEE -&-Non-HEC
» 0.30 - HEC
2 0. — Gumbel fit 2030 — Gumbel fit e
= g S
= O
2 2 2
£020 020 1 E05
£ E c
2 2 =
2 e s
A 0.10 A 0.10
0.00 0.00 0 L . . . P
0 200 400 600 800 0 200 400 600 800 T9 T7 T5 T3 T10T+1
Max # Tokens Matched (Y) Max # Tokens Matched (Y) Start day
(a) (b) (©

Figure 2: Distribution of HEC vs Non-HEC scores by (a) MOSS and by (b) TMOSS; (c) Average exam rank with bootstrapped SE.

start on the assignment is correlated with lower performance on
the midterm. However, the HEC group performs consistently lower
than the non-HEC group regardless of how early or late they start
the assignment. The distribution for the final exam scores were
consistent with this finding; for clarity they are not shown.

Digging further into the HEC group, we compare students who
exhibited excessive similarity with an online solution with those
who had high scores with peer final submissions as follows: we
construct an undirected connectivity graph of all the top matches of
all students, with N + n nodes for all students and all known online
submissions, and edges connect student nodes to their top match
nodes. We define an online match student as one whose top match
is connected to an online solution in our graph; all other students
are defined as peer matches. We find that out of the 61 students
in the HEC group, only 6 students were in our peer-match group.
We see that students in the online-match HEC group tend to start
slightly later than those in the peer-match HEC group; however,
the p-values are limited by the small sample size and we are unable
to draw any real conclusions.

Finally, we consider the 26 students that were only detectable via
TMOSS; these students had high similarity scores over the course of
their assignment, but did not exhibit excessive collaboration in their
final submission. Again looking at Table 3, we find that the student
who were detectable only through TMOSS tend to perform slightly

better and work slightly more than those detectable through regular
MOSS, but these differences were not as significant.

7 DISCUSSION

Our results show that TMOSS, a temporal analysis of student
progress to detect excessive collaboration, is both feasible and more
accurate than the final-submission-based detection algorithms used
today. Temporal tools are not only effective for detecting unusual
patterns of students, but they can also be used to further understand
work patterns as correlated with class performance in an effort to
provide improved feedback.

We also found that the Gumbel distribution provides us a prob-
abilistic interpretation for scores; this interpretation can be used
in a more formal model for separating HEC from non-HEC for
a future tool. It also helps absolve students’ concerns of a false
positive; the likelihood of getting more than 376 tokens (the simi-
larity score threshold determined in our F1 thresholding analysis)
is Pr(Y > 376) < 0.003. We therefore believe that the likelihood of
having a false positive in our results is incredibly low.

We have shown that the students who have a high match with
online solutions comprise a large portion of the HEC group, and
students who excessively collaborate with peers within their quar-
ter are very low. Work remains to gauge how the HEC group would

change when the analysis is expanded to compare against submis-
sions from previous quarters. Moreover, we have yet to understand
how the use of TMOSS changes student behavioral patterns. We
hope that the use of similarity scores on intermediate work acts as a
deterrent and helps engender an academically honest ecosystem. It
would even be possible to modify our Eclipse IDE to upload interme-
diate work periodically, prior to final submission; this would allow
us to run TMOSS over the course of the assignment and provide
timely interventions for students that help them get back on track.

Finally, we emphasize that TMOSS is not a substitute for human
verification; it only helps to provide a more accurate picture of the
student landscape. Nor is it intended to impose a negative, pressur-
ing environment on students; instead, we hope that TMOSS is an
example of how intermediate student work can be incorporated
into the overall feedback system. For instance, TMOSS can be re-
purposed to evaluate intermediate work on a set of unit tests; an
understanding of how a solution functionally evolves over time
can guide instructors in giving improved, personalized feedback for
each student. We hope that improvements to tools like TMOSS will
simultaneously deter plagiarism efforts and facilitate the learning
process in future classrooms.

8 CONCLUSION

We have shown that TMOSS can be used to identify students who
exhibit excessive collaboration with online or peer solutions and to
understand student work patterns over the course of an assignment.
The use of MOSS is not critical; any software similarity detector
with numerical similarity scores can be used as a backend to TMOSS.
TMOSS can thus also be extended to non-programming scenarios;
for example, TurnltIn similarity scores [2] can be used instead to
check for collaboration in essay grading.

We found that students exhibiting excessive collaboration per-
form worse on exams and make more limited use of TA office
hours. In addition, we have found that a Gumbel distribution fits
the distribution of similarity scores in the absence of any excessive
collaboration.

TMOSS is just one step in the direction of designing software to
better understand students in large classrooms. Such a tool sepa-
rates typical students from atypical students, and can even be used
to indicate at what time a student was experiencing issues. While
the use of TMOSS in this work is to detect excessive collabora-
tion, its analysis of intermediate student work can be extended to
provide more timely, more accurate feedback. We can therefore
identify struggling students in a large classroom, instead of waiting
for them to come to us. By reaching out to these students early on,
we can give them the right resources to achieve success.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation Graduate Research Fellowship under Grant No. DGE-
114747.

REFERENCES

[1] A. Aiken. 2014. A System for Detecting Software Plagiarism. Online. (2014).
Retrieved October 25, 2016 from https://theory.stanford.edu/~aiken/moss/.

[2] T. Batane. 2010. Turning to Turnitin to Fight Plagiarism among University
Students. Educational Technology & Society 13, 2 (2010), 1-12.

B3

[4

—
)

(12]

(13]

[14

(15]

=
&

[17

[18

[19

[20]

[21]

[22]

[25

R. Caldarola and T. MacNeil. 2009. Dishonesty deterrence and detection: How
technology can ensure distance learning test security and validity. In Proceedings
of the 8th European Conference on E-Learning. 108-115.

CodeHS. 2016. Project: Breakout. Online. (2016). Retrieved October 25, 2016
from https://codehs.com/library/course/1/module/469.

J. Forbes, D. J. Malan, H. Pon-Barry, S. Reges, and M. Sahami. 2017. Scaling
Introductory Courses Using Undergraduate Teaching Assistants. In Proceedings
of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education
(SIGCSE ’17). ACM, New York, NY, USA, 657-658. https://doi.org/10.1145/3017680.
3017694

P. H. Frohlich. 2016. Department of Computer Science at The Johns Hopkins
University: 600.111: Python Scripting. Online. (2016). Retrieved October 25, 2016
from http://gaming.jhu.edu/~phf/2011/fall/cs111/assignment-breakout.shtml.

D. Gitchell and N. Tran. 1999. Sim: A Utility for Detecting Similarity in Computer
Programs. In The Proceedings of the Thirtieth SIGCSE Technical Symposium on
Computer Science Education (SIGCSE ’99). ACM, New York, NY, USA, 266-270.
https://doi.org/10.1145/299649.299783

D. Gries, L. Lee, S. Marschner, and W. White. 2016. CS 1110: Introduction to
Computing Using Python Fall 2016. Online. (2016). Retrieved October 25, 2016
from http://www.cs.cornell.edu/courses/cs1110/2016fa/.

E.J. Gumbel. 1935. Les valeurs extrémes des distributions statistiques. Ann. Inst.
Henri Poincaré 5, 2 (1935), 115-158.

E. Lau, X. Liu, C. Xiao, and X. Yu. 2004. Enhanced user authentication through
keystroke biometrics. Computer and Network Security 6 (2004).

A. Maas, C. Heather, C. T. Do, R. Brandman, D. Koller, and A. Ng. 2014. Offering
Verified Credentials in Massive Open Online Courses: MOOCs and technology
to advance learning and learning research (Ubiquity symposium). Ubiquity 2014,
May (2014), 2.

S. Mahdi and M. Cenac. 2005. Estimating Parameters of Gumbel Distribution
using the Methods of Moments, probability weighted Moments and maximum
likelihood. Revista de Matematica: Teoria y Aplicaciones 12, 1-2 (2005).

D. L. McCabe. 2005. Cheating among college and university students: A North
American perspective. Intl. Journal for Educational Integrity 1, 1 (2005), 10-11.
N. Parlante, S. A. Wolfman, L. I. McCann, E. Roberts, C. Nevison, J. Motil, J. Cain,
and S. Reges. 2006. Nifty Assignments. In Proceedings of the 37th SIGCSE Technical
Symposium on Computer Science Education (SIGCSE '06). ACM, New York, NY,
USA, 562-563. https://doi.org/10.1145/1121341.1121516

A. Petersen, M. Craig, J. Campbell, and A. Tafliovich. 2016. Revisiting Why
Students Drop CS1. In Proceedings of the 16th Koli Calling International Conference
on Computing Education Research (Koli Calling ’16). ACM, New York, NY, USA,
71-80. https://doi.org/10.1145/2999541.2999552

C. Piech, M. Sahami, D. Koller, S. Cooper, and P. Blikstein. 2012. Modeling How
Students Learn to Program. In Proceedings of the 43rd ACM Technical Symposium
on Computer Science Education (SIGCSE ’12). ACM, New York, NY, USA, 153-160.
https://doi.org/10.1145/2157136.2157182

J. Pierce and C. Zilles. 2017. Investigating Student Plagiarism Patterns and Corre-
lations to Grades. In Proceedings of the 2017 ACM SIGCSE Technical Symposium
on Computer Science Education (SIGCSE °17). ACM, New York, NY, USA, 471-476.
https://doi.org/10.1145/3017680.3017797

L. Prechelt, G. Malpohl, and M. Phlippsen. 2000. JPlag: Finding plagiarisms among
a set of programs. Technical Report. Universitat Karlsruhe.

E. Roberts, J. Lilly, and B. Rollins. 1995. Using Undergraduates As Teaching
Assistants in Introductory Programming Courses: An Update on the Stanford
Experience. In Proceedings of the Twenty-sixth SIGCSE Technical Symposium on
Computer Science Education (SIGCSE ’95). ACM, New York, NY, USA, 48-52.
https://doi.org/10.1145/199688.199716

S. Schleimer, D. S. Wilkerson, and A. Aiken. 2003. Winnowing: Local Algorithms
for Document Fingerprinting. In Proceedings of the 2003 ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD ’03). ACM, New York, NY,
USA, 76-85. https://doi.org/10.1145/872757.872770

J. Schneider, A. Bernstein, J. vom Brocke, K. Damevski, and D. C. Shepherd. 2016.
Detecting Plagiarism based on the Creation Process. CoRR abs/1612.09183 (2016).
http://arxiv.org/abs/1612.09183

J. G. Spohrer and E. Soloway. 1986. Analyzing the high frequency bugs in
novice programs. In Papers presented at the first workshop on empirical studies
of programmers on Empirical studies of programmers. Ablex Publishing Corp.,
Norwood, NJ, USA, 230-251. http://portal.acm.org/citation.cfm?id=28897

G. Whale. 1988. Plague: Plagiarism Detection Using Program Structure. In Tech.
Rep. 8805.

M. J. Wise. 1996. YAP3: Improved Detection Of Similarities In Computer Program
And Other Texts. In SIGCSEB: SIGCSE Bulletin (ACM Special Interest Group on
Computer Science Education). ACM Press, 130-134.

J. Young. 2012. Dozens of plagiarism incidents are reported in Coursera’s free
online courses. The Chronicle of Higher Education (Aug 2012). http://www.
chronicle.com/article/Dozens-of-Plagiarism-Incidents/133697

https://theory.stanford.edu/~aiken/moss/
https://codehs.com/library/course/1/module/469
https://doi.org/10.1145/3017680.3017694
https://doi.org/10.1145/3017680.3017694
http://gaming.jhu.edu/~phf/2011/fall/cs111/assignment-breakout.shtml
https://doi.org/10.1145/299649.299783
http://www.cs.cornell.edu/courses/cs1110/2016fa/
https://doi.org/10.1145/1121341.1121516
https://doi.org/10.1145/2999541.2999552
https://doi.org/10.1145/2157136.2157182
https://doi.org/10.1145/3017680.3017797
https://doi.org/10.1145/199688.199716
https://doi.org/10.1145/872757.872770
http://arxiv.org/abs/1612.09183
http://portal.acm.org/citation.cfm?id=28897
http://www.chronicle.com/article/Dozens-of-Plagiarism-Incidents/133697
http://www.chronicle.com/article/Dozens-of-Plagiarism-Incidents/133697

	Abstract
	1 Introduction
	2 Related Work
	3 Data
	4 Method
	4.1 Traditional software similarity detection
	4.2 TMOSS: Temporal Measure of Software Similarity

	5 Theory
	6 Results
	6.1 Performance analysis

	7 Discussion
	8 Conclusion
	Acknowledgments
	References

