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Members of an ant colony perform a variety of tasks outside the nest, such as 
foraging and nest maintenance work. The number of ants actively performing each 
task changes, because workers switch from one task to another and because workers 
are sometimes active, sometimes inactive. In field experiments with harvester ants 
(Gordon, 1986, Anita. Behao. 34, 1402-1419, 1987, Anita. Behav. 35, 833-834), a 
perturbation that directly affects only the number of workers engaged in one task, 
causes changes in the numbers engaged in other activities. These dynamics must be 
the outcome of interactions among individuals; an ant cannot be expected to assess 
and respond to colony-level changes of behaviour. Here we present a parallel distri- 
buted model of the processes regulating changes in numbers of workers engaged in 
various tasks. The model is based on a Hopfield net, but differs from conventional 
Hopfield models in that when a unit or ant changes state, it changes its interaction 
patterns. Simulation results resemble experimental results; perturbations of one activ- 
ity propagate to others. Depending on the pattern of interactions among worker 
groups, the distribution of active workers in different tasks either settles into a 
single, global attractor, or shows the dynamics associated with a landscape containing 
multiple attractors. 

Introduction 

There are obvious analogies between social insect colonies and brains. In both sys- 
tems, local information is exchanged among simple units (e.g. workers or neurons), 
leading to complex results at the level o f  the whole system. Individual social insect 
workers are incapable of  complicated decisions, yet colonies manage to construct 
nests, defend territories and retrieve food. Though the reproductive individual in the 
colony is referred to, misleadingly, as the "queen",  social insect colonies are not 
hierarchically organized. Workers do not receive instructions from above. Models 
developed to describe the organization of  brain processes may be applicable to social 
insect colonies. Here we present a parallel distributed process model of  an ant colony. 

Our model is concerned with one aspect of  the behaviour of  an ant colony: the 
distribution of  workers into various tasks. In some models of  colony organization, 
the colony is composed of  distinct "castes" or groups of  specialized workers; each 
worker consistently does a particular task (e.g. Oster & Wilson, 1978). According to 
this view, the distribution of  workers in various tasks is static in the short term, 
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because such distributions are determined by the number of workers available in 
each behavioural caste. (The "short term" is any time less than that required to 
produce more workers of a given caste.) Recent work has shown that the distribution 
of workers into different tasks is not static (reviewed in Gordon, 1989a). Changes in 
numbers engaged in various tasks arise from two sources: first, workers switch tasks, 
and second, workers that are committed to particular tasks change between active 
and inactive states. 

Much research on social insects has examined how the distribution of workers in 
various tasks affects the fitness of a colony. The dynamics of such distributions 
determine how a colony responds when environmental conditions change. These 
dynamics can also affect colony fitness. For example, it may be advantageous to a 
colony to channel large numbers of workers into searching for food when it is scarce; 
on the other hand, territorial interactions with other colonies may be more important, 
so that patrolling takes priority over foraging. To understand changes in worker 
distributions, empirical studies are needed in which the environment of a colony is 
altered; for example, perturbation experiments with seed-eating ants are summarized 
below. In addition, a model that describes colony response to perturbations can 
provide the basis for further study, both of short-term response to environmental 
change, and of the evolution of colony behaviour. Our objective here is to show that 
the dynamics of a parallel distributed model can account for some of the observed 
responses of harvester ant colonies to perturbation. Further empirical work is needed 
to test whether actual changes of worker distributions are based on mechanisms 
consistent with the model. 

Harvester ants (Pogonomyrmex) are so-called because they collect, store and eat 
seeds. A colony performs various tasks outside the nest (Gordon, 1986). Foragers 
leave the nest on shared foraging trails, collect food, and bring it back to the nest. 
Nest maintenance workers maintain interior tunnels, carry out sand from the nest, 
and clear vegetation from the nest mound. Patrollers recruit foragers to new food 
sources, and respond to disturbances. Midden workers sort and maintain the colony 
refuse pile, or midden. Each of these activities is performed by a distinct group of 
workers, but when environmental conditions change, workers switch tasks (Gordon, 
1989b). At any time, an exterior worker is either active outside the nest or remains 
in the upper chambers of the nest, near the nest entrance (MacKay, 1983). The 
interior workers, probably younger than the exterior ones, remain inside the nest at 
all times, tending the immature workers and maintaining the stored seeds. 

Here we are concerned only with the behaviour of exterior workers. These are 
classified into four categories: foragers, nest maintenance workers, midden workers, 
and patrollers. Each category is further divided into active workers, currently outside 
the nest, and inactive ones currently inside the nest. Communication among workers 
is chemical and tactile; any individual ant can only perceive local information from 
the ants nearby. An individual exterior worker, of any type, enters and leaves the 
nest frequently. Considerable mixing among categories occurs, at the next entrance 
and in the nest chamber immediately inside the entrance, where ants of all categories 
meet as they go in and out of the nest. 

A series of field studies examined the ways that colonies respond to environmental 
change (Gordon, 1986, 1987, 1989b). Perturbation experiments caused changes in 
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the numbers of workers actively engaged in one task outside the nest. Perturbations 
of one activity led to changes in the numbers of workers engaged in other activities. 
For example, piles of toothpicks placed near the nest entrance caused an increase in 
the numbers of nest maintenance workers, who carried the toothpicks away. An 
increase in the numbers of  active nest maintenance workers caused a decrease in the 
numbers of active foragers, and experiments with marked individuals showed that 
direct task switching between categories of active ants did not account for this; 
foragers did not simply switch tasks to do nest maintenance. The disturbance altered 
the proportions of ants in the active and inactive categories of each task, and also 
caused an increase in the number of active patrollers. Thus, several categories 
responded to a perturbation directly affecting only one. Similar patterns of  task 
switching occurred in response to other perturbations, such as placing barriers on 
the foraging trails so that the rate of seed retrieval is decreased. In this case, the 
number of active foragers decreased while the number of nest maintenance workers 
increased, but again not as a result of simple, direct switching between these categor- 
ies. When two such perturbations were given to the colony simultaneously, the result 
was not the sum of the two single disturbances. 

These experimental results suggest a model in which individual ants are units in a 
network described as a parallel distributed process. Since there are eight different 
possible states for each exterior worker (four types of task, each with active and 
inactive ants), the dynamics of state transitions involve three different binary deci- 
sions, each of which can be modelled by a Boolean threshold function. The model 
thus has some of the basic properties of Kauffman networks (Kauffman, i 969) and, 
due to the symmetric structure of the interaction matrices, it has affinities with 
Hopfield networks (Hopfield, 1982). The biological basis for the symmetry is the 
assumption that ants interact symmetrically via pheromones or other communication 
signals. However, our model has a significant difference from Hopfield nets, in which 
the interactions between any pair of units (neurons, spins, etc) are defined at the 
outset (e.g. when memories are laid down) and remain fixed through time. In our 
ant model, on the other hand, the interactions between any two ants depends on 
which categories of activity they are in, and these interactions can change as the ants 
change categories in accordance with the dynamics of the model. 

The Model 

The eight different categories of ant activity in the present application are defined 
by a triad of binary vectors (ak, bk, Ck) where a, b and c take on the values of  ! and 
-1 .  The state assignments we have chosen and the category labels are as follows: 

(!, 1, 1) = active patroller, P 

( -  1, 1, 1 ) = inactive patroller, p 

(1, 1, - 1) = active forager, F 

( -  1, 1, - 1 ) = inactive forager, f 

( 1, - 1, 1) = active nest maintenance worker, N 
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( -  1, - 1, 1) = inactive nest maintenance worker, n 

(1, - 1, - ! ) = active midden worker, M 

( - I , - 1 , - 1 )  =inactive midden worker, m 

Individual ants in a category are labelled with a numerical subscript; for example, 
ants in the active patroller category (P) are labelled Pj ,  P2, etc. 

Ants appear usually to interact by pairwise encounters, sometimes involving 
antennal contact and probably pheromone exchange. In the model we assume however 
that all ants in a category interact before making a decision about switching categories. 
Though interactions between ants are local, it appears that movement and random 
encounters, especially at the nest entrance, lead to enough mixing to warrant this 
assumption. In the model, an ant decides its appropriate activity category by assessing 
three distinguishable local interactions with other ants, and then makes three indepen- 
dent decisions as to what a, b and c states it should take to conform to the interactions. 
The first decision, a = I or - 1 ,  is whether to be active or inactive (see the Boolean 
assignments above). The second, b = 1 or - I, is whether to be in the Patrol ler /Forager  
subclass or the Nest Maintenance/Midden Worker subclass. Finally, the third, c = 1 or 
- 1, decides whether to be a Patroller or a Forager if in the Patrol ler /Forager  subclass, 
or Nest Maintenance or Midden Worker  if in the Nest Maintenance/Midden Worker  
subclass. 

Consider the first decision, whether to be active or inactive. Let the matrix 
defining interactions between ants relevant to this decision be defined by (ajk). The 
decision function is defined in the usual manner for a threshold function. I f  
h~ = ~ aika~ - 0i > 0, where the sum goes over all ants k ~j ,  then thejth ant either remains 
or becomes active (aj = 1 ). If the equality is reversed, the j th  ant remains or becomes 
inactive ( a j = - 1 ) .  The quantity hj can be thought of  as the field on a n t j  due to its 
interaction with other ants k ~j .  The decision function then amounts to a dynamical 
law such that the state a t adjusts to conform to its interactions. For  convenience we 
take the threshold fields 0 j = 0  and proceed to specify the interaction matrix (ajk). We 
choose an interaction pattern which will result in approximately equal numbers of  
active and inactive ants in each category. It is assumed that, relative to the active- 
inactive decision, there is interaction only among ants within single categories, such as 
patrollers or foragers, not between categories. A matrix structure that satisfies these 
assumptions has the form shown in (1). 
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Any specific matrix with numerically defined components gives rise to a simple 
algebraic formula describing the decision function; an example is given below. We 
use the matrix description, rather than the algebraic expression, because it allows for 
more complex forms of  interaction than are included in the present model. In particu- 
lar, the matrix elements could be made into periodic functions of  time, with phase- 
shifts corresponding to the different times of day at which different categories reach 
maximum numbers (Gordon, 1986). The elements could also be made functions of 
space, describing different intensities of interaction in different regions of  the nest. 

All entries of  (1) are matrices, and the blank entries are to be interpreted as zero 
matrices in which all matrix elements are zero. The matrix in (1) then shows that 
active patrollers (P), for example, interact with active and inactive patrollers but 
with no other ants. This is also true for ants in other categories. In addition, it is 
necessary to specify how every ant within each category interacts with other ants in 
the same category. This can be illustrated by an example. Suppose there are r active 
and s inactive patrollers. Then the -1  entry in the top left-hand position signifies a 
symmetric r×  r matrix with the structure shown in matrix (2), i.e. every matrix 
element has the value -1  except for the diagonal values. These are zero because ants 
are assumed not to interact with themselves. 

PI P2 

e l  

P2 

e~ 

0 -1  -1  

- i  0 

-1 

-1 0 

(2) 

The - 1 under p in the first row of the matrix in eqn ( 1 ) signifies an r × s matrix with all 
matrix elements equal to -1  as shown in (3). This implies that all inactive patrollers 
contribute with strength -1  to the local field of each active patroller, and vice versa. 

P! 

P2 

Pr 

PJ P2 P.s 
- I  --1 - t  

-1  - I  

-1 -1 

(3) 

The decision function for ant PI then is determined by the sign of the field strength 
in he, = ~k ap,kak, where the index k runs over all other ants in the category. Entering 
the numerical values of  ae,k and ak, the sum is - ( r - 1 ) + s .  l f s = r ,  this is +1, and 
P~ remains active. 
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The decision function for p~ can be determined from matrix (1), and is - r  + ( s -  1). 
If s = r ,  this is - 1  and p~ remains inactive. Effectively, the negative values give the 
interactions the property of  a negative feedback system : if there are more active than 
inactive ants, active ones become inactive, and vice versa. Thus the interaction matrix 
as defined results in stability when there are equal numbers of  active and inactive 
ants in each category. 

The interaction matrices corresponding to the other two decision functions are 
designated as (flik) and (Yjk). We assume that there are interactions between active 
ants only, since no data are yet available on interactions among task groups inside 
the nest. Values giving a stable distribution into the eight categories are: 
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0 

II Ili  
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(4) 

(5) 

As before, each of  the entries defines a sub-matrix, with zeros on the main diagonal 
of  the whole matrix. Thus, if there are r Patrollers, the - 1 0  in the first position of  
the matrix (fljk) is the sub-matrix: 

P~ P~ e r  

- 1 0  

(6) 

e l  

P2 

0 - I 0  

- 1 0  

P~ - 1 0  0 
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All the off-diagonal entries are also sub-matrices of dimension defined by the numbers 
of ants in the designated categories, with the indicated number in every matrix 
position. For example, the five in the row labelled N and column labelled F in (4), 
which defines interactions between active Nest Maintenance workers of which there 
are, say r, and Foragers of number s, is an r x s matrix with a 5 in every position. 
The use of the particular numbers 10 and 5 in the fl and ~, matrices is not significant, 
though the sign pattern and the use of different numbers is required to get a 
global attractor with equal numbers of ants in each of the eight categories (see 
the Appendix for an analytical demonstration of this property). 

Real colonies do not have this structure, because numbers tend to be greater in 
certain categories than in others, but this is a convenient reference state. It is a simple 
matter to adjust the matrices to give any desired distribution of ants among the 
categories in a stable state. For instance, if it is required that there be twice as many 
active as inactive ants in each category, then the matrix coefficients under the inactive 
categories (p,f,  n, m) in matrix (1) are doubled relative to those under the active 
categories (P, F, N, M). This gives them double weight in the interactions so that 
one inactive ant is equal to two active ones in the decision function. 

The decision functions for the binary variables bk and Ck are defined in the same 
way as for ak, using the appropriate matrices (4) and (5). These are respectively 

If 

and if 

~-,k fljk bk > 0, bk = 1 

<0, bk = -  1 

~.,k yjkCk>O, Ck = 1 

<0, Ck=--l. 

The matrices all obey a symmetry constraint and the decision functions are of the 
same type as those used in neural network models. However, the behaviour of the 
model does not exactly conform to behaviour in which every change of state results 
in either a decrease or no change in the energy function. During the transients leading 
ultimately to the attractor in the neighbourhood of (20, 20, 20, 20, 20, 20, 20, 20), 
it was observed that the value of the energy function defined by (7) could increase, 
though overall the motion led to an energy minimum (see Figs 4 and 5). 

E=-- ~ [ ~  Ctjkajak + ~" fljkbjbk + ~ ~,jkCjCk]. (7) 

Use of this energy function to demonstrate a global attractor is presented in the 
Appendix. 

In our model, ants can Change their interaction patterns when they change categor- 
ies, as from active to inactive or vice versa. For example, an active Midden Worker 
interacts with all other active ants and with inactive Midden Workers, whereas in 
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the inactive condition it interacts only with active and inactive members of the same 
category. This appears to be why the energy defined by (7) can increase during a 
transient. The energy function is such, however, that there is always a downward 
path from any point on the surface towards the minimum, so that eventually the 
system reaches the neighbourhood of the global attractor. 

Dynamics of Colony Behaviour 

The model was programmed in FORTRAN, using a random updating procedure 
to determine the state of ants in the colony at successive time steps: i.e. ants were 
selected at random. The three decision functions were assessed based on the current 
state of the colony and the interaction matrices, to determine whether or not the 
chosen ant should change its state. An initial condition was defined by the number 
of ants in each category. These numbers then changed as determined by the Boolean 
decision functions until the distribution of ants in the eight categories reached 
stability. 

Using the matrices defined by (1), (4) and (5) all initial conditions tested followed 
trajectories that terminated near or at the state in which all categories contain equal 
numbers of ants. An example is shown in Fig. I. The total number of ants in the 
colony was 160, with an initial state vector (20, t5, 25, 20, 20, t5, 25, 20), the entries 
corresponding to the eight categories in the order of states in matrix (1). The number 
of ants in the different categories follow a transient that settles on a state in the 
neighbourhood of the vector (20, 20, 20, 20, 20, 20, 20, 20) which is an attractor. 

3o ! 

/--ZX,A it.._ / ,, N* 

~ 2 0  

o IOO 200 
Time step 

FIG. 1+ Double perturbation, 160 ants. Results of  one simulation with initial condition (20, 15, 25, 20, 
20, 15, 25, 20). Activity categories marked with an asterisk were perturbed; in this case, foraging was 
decreased and nest maintenance increased. 
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FIG. 2. Single perturbations with numbers in one activity increased, 160 ants. Results of one simulation 
with initial condition (18, 18, 25, 19, 18, 18, 25, 19). Asterisks indicate the categories that were perturbed. 

Figure 2 shows the results of a perturbation in which one category (nest mainten- 
ance workers) has been given initial conditions of increased numbers active and 
inactive, relative to the other categories. In the subsequent convergence to the attrac- 
tor (neighbourhood of 20 for all groups), there are changes in all categories. Figure 3 
shows the results of a similar perturbation using 1600 ants. Since there are more 
ants, the set of possible configurations is larger, and more interactions are required 
to bring the system to an attractor. Each timestep corresponds to the calculation of 
a decision function for an individual ant. 

260 O P 

240 F ~  l ~  F 

220 - %%" ,0 m 

6 200 - - - ' l - - "  f 

180 [ ~ " - "  " O, m 

,60 
0 2000 4o00 6oo0 8000 

Time step 

FIG. 3. Single perturbation with numbers in one activity increased, 1600 ants. Results of one simulation 
with initial condition (180, 180, 250, 190, 180, 180, 250, 190). Asterisks indicate the categories that were 
perturbed. 
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Because of the random updating, repeated trials from the same initial state follow 
different transients, though with matrices (1), (4) and (5) all trials converge on the 
neighbourhood of the same attractor. Two perturbations were each repeated 50 
times: the ones shown in Figs 2 and 3, in which numbers in one category were 
increased, and the one shown in Fig. 1, in which numbers in one category were 
increased and numbers in another were decreased. In the single perturbation, 60% 
of the trials stabilized at or near the attractor of equal numbers in all categories (20, 
20, 20, 20, 20, 20, 20, 20), within 300 timesteps. Near the attractor was arbitrarily 
defined as having the numbers in all eight categories equal to 20+2. Of this 60%, a 
small number (15% of the total 50) reached the attractor well before 300 timesteps. 
Of the 40% that had not arrived at the attractor within 300 timesteps, most were 
wandering at some distance from it, with one or more categories more than five away 
from 20. The double perturbation was somewhat less variable: 75% had reached the 
global attractor within 200 timesteps, and a small number (23% of the total 50) did 
so well before 200 timesteps. In every instance, however, the global attractor is 
eventually reached by extending the number of timesteps sufficiently. 

These results suggest that if in a population of colonies the numbers active in 
various tasks were determined by a process like the one modelled here, most colonies 
would show a similar response to perturbations. That is, if numbers active were 
counted shortly after the perturbation, as they were in field experiments, then most 
colonies in the population would still be in iransition to the stable state, and would 
tend to differ from undisturbed, control colonies (as in Gordon, 1987). However, 
there would still be differences among colonies, which of course is also true of real 
colonies. In our model it is the random updating that causes variability in the results. 
In real colonies, the random process of encounters among ants of different categories 
as they enter and leave the nest entrance might product an effect analogous to random 
updating. 

It should be noted that the attractor corresponding to approximately equal num- 
bers of ants in each activity category is rather broad in state space. It is comprised 
of clusters of closely spaced but shallow minima into any of which the system can 
be trapped. This can be seen in Fig. 4, which shows the structure of the energy 
function defined by (7) and the matrices (1), (4) and (5) as a function of two 
variables, the numbers of active patrollers and of active foragers. A close-up view of 
the energy surface is given in Fig. 5, showing the rugged nature of the landscape and 
the local minima where the colonies can get trapped in the neighbourhood of the 
attractor. Introduction of noise would presumably shake the system down into a 
lowest or dominant minimum. 

Multiple Attractors 

One of the interesting features of Hopfield nets is the possibility of multiple attrac- 
tors or "memory states". These are built into the system by choosing appropriate 
matrix coefficients. Here, in a procedure similar to the one used in Hopfield nets, we 
choose matrix coefficients that result in several stable configurations, each of which 
act as an attractor to neighbouring configurations. 
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Fio. 4. The structure of the energy surface defined by eqn (7) and matrices (1), (4) and (5), showing 
the contour structure as a function of the number of active patrollers and of active foragers. The global 
minimum is at (20, 20). 

In our model a colony could settle down to a new attractor if a perturbation 
changes the interaction matrices. This would constitute "learning". If an existing 
interaction matrix contains multiple attractors, the colony may respond to perturba- 
tion by moving from one at tractor to another. Harvester ant colonies seem to 
" remember"  past events; for example, colonies subjected to repeated perturbations 
showed changes in numbers active, relative to controls, even 6 days after perturba- 
tions had ceased (Gordon,  1986). To use our model to test whether an ant colony 
learns, it would be necessary (though difficult) to distinguish between (I)  a transient 
state in which the colony has still not settled down from a previous perturbation, (2) 
a situation in which an existing interaction matrix leads to multiple attractors, and 
a colony moves from one to another  within an existing interaction matrix, and (3) 
a situation in which the interaction matrix changes and the colony settles down to a 
new attractor.  

The ?'jk matrix was modified by selecting matrix values that gave other stable states 
as well as that at (20, 20, 20, 20, 20, 20, 20, 20). Figure 6(a) shows the result of  a 
small perturbation, near the original attractor,  which settled down near this attractor. 
Similar small perturbations consistently gave similar results. Larger perturbations 
led to other attractors. For  example, Fig. 6(b) shows an oscillation near an attractor 
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FIG. 5. A close-up view of  the energy surface of Fig. 4 revealing details of the rugged landscape and 
the many small local minima in the region of the attractor at (20, 20), 

with increased numbers of active Midden Workers. The new matrix, containing 
multiple attractors, was" 
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The effect of this change on the energy function, showing why multiple attractors 
are generated, is shown in the Appendix. 
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F|G. 6. Multiple attractor. With initial conditions of  (25, 19, 17, 27, 17, 23, 20, 12), the distr ibution 
returns to the original state of  equal numbers  of ants in all eight categories. (b) Multiple attractor. With 
initial condition of (15, 32, 25, 17, 9, 19, 18, 25), the distribution moves to a new stable state at (16, 21, 
18, 26, 15, 20, 18, 26)+ 

C o n c l u s i o n s  

A parallel distributed model seems to exhibit several characteristics of  ant colony 
behaviour. Using simple decisions based on accumulated interactions between indivi- 
duals, it produces global changes in numbers of workers active in various task groups. 
Changes in numbers engaged in one task cause changes in numbers engaged in other 
tasks. In the model, an initial increase or decrease in numbers active in some category 
propagates to other categories until eventually the system settles into a stable state. 
In ant colonies, perturbations have a similar effect: colonies change numbers engaged 
in various tasks, including the perturbed ones, and eventually return to a normal, 
baseline state. 
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To test whether PDP models actually describe the behaviour of  real colonies, both 
theoretical and empirical refinements will be needed. For  a model to reproduce more 
closely the dynamics of  the behaviour of  actual colonies, it will be necessary to 
consider the temporal structure of  colony behaviour. Individuals switch tasks in 
response to changes of  environment that alter colony requirements. In addition, on 
timescales from the hourly to the yearly, colonies adjust the numbers of  workers 
actively engaged in various tasks. For  example, in harvester ants activities are carried 
out in a characteristic sequence each day, the "daily round"  of  the colony. Such daily 
temporal patterns are characteristic of  many species. Harvester ants'  response to 
perturbations showed that only some aspects of the daily round are flexible (Gordon,  
1986). This imposes constraints on the recovery from perturbations which are not 
yet included in our model, because it does not take temporal patterns of  behaviour 
into account. 

Further empirical work is needed to determine the thresholds for switching, either 
between task categories or between active and inactive ants in the same task category. 
Studies of  task switching have generally concentrated on switching tasks as a function 
of  the amount  of  work to be done (Meudec & Lenoir, 1982; Gordon,  1989b), or 
alternatively on switching as a function of  the total number  of  workers (active and 
inactive) apparently available to do a task (Wilson, 1984). Here what is needed are 
temporally precise measures of  numbers active and inactive in the vicinity of  a worker 
as it switches tasks, or as it changes between active and inactive states. The notion 
of  workers "in tlle vicinity" is a vague one, because we do not yet know the exact 
range in which information about nestmates is locally available to any individual. 
Much communication in social insects depends on chemical cues, but pheromones 
are produced in tiny quantities that are difficult to measure. Thus, further research 
is also needed on the mechanisms social insects use to assess the behaviour of  their 
nestmates. 

Recent theoretical work on social insects has emphasized the relevance of negative 
feedback and simple local rules in models of  colony behaviour (Pasteels et al., 1987). 
These have been applied to the study of spatial patterns ofbehaviour  such as foraging 
trails in ant colonies (Deneubourg et al., 1987). Our model makes use of  negative 
feedback to account for changes in the distribution of  workers in different tasks. It 
may be useful to think of  the evolution of  the social organization of  an ant colony 
as the evolution of  a particular interaction pattern which determines changes of  
activity in various worker groups. A colony's relation with its environment depends 
on the dynamics of  worker allocation in changing conditions. The analogy of  social 
insect colonies and brains may help to elucidate these dynamics. 
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APPENDIX 

Use the n o t a t i o n  N j ,  N2, N3, N4 for  the numbe r s  o f  act ive pa t ro l le r s ,  foragers ,  
nest m a i n t e n a n c e  and  m i d d e n  workers ,  respect ively,  and  n l ,  n2, n3, n4 for  the corre-  
s p o n d i n g  inact ive  categories .  Then  for  large N~, n~, the c on t r i bu t i ons  to  the  energy  
funct ion (7) f rom the three in te rac t ion  matr ices ,  are  

I - ~ ~ ajj, a j a k ~  ~ ~ ( N ; - n i )  2 

- ½ E fl:kb:bk'-- ½ {St(N,  - N 2 ) : +  (N3 - N4):] + u [ ( N ,  - N2) - (N3 - N4)]:} 

- 4 Z yjkbjbk ~ ½ {5[(N,  - N3) 2 + (Nz  - N4) z] +/1 [(N, - N3) - (N2 - N4)]:}. 

Where  5 = A . - p  and  A., ~ are  the values  10 and  5, respect ively,  in the matr ices .  
These  are  all pos i t ive  defini te  func t ions  wi th  a single m i n i m u m  at  N i = n i ,  Nt  = Nj ,  

which is the g loba l  a t t r ac to r ,  for  5, ~ > 0. 
F o r  the ma t r i x  (8) which  gives mul t ip le  a t t r ac to r s ,  the energy func t ion  becomes  

- ~ • Yjk b1 bk "-- ½ { O[(N, - N3) 2 - (N2 - N4) 2] - 2~b (N~N3 - N2N4) } 

where  ~b = 1 7 - 0  and  0, I / a r e  the ma t r ix  entr ies ,  5 and  20 respect ively.  The  overa l l  
energy func t ion  ceases to  be pos i t ive  defini te  and  a l lows the exis tence o f  local  min ima ,  
m a x ima ,  and  sadd le  poin ts ,  m a k i n g  mul t ip le  a t t r a c to r s  possible .  


