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Nestmate recognition in ants (Hymenoptera: Formicidae): a review

Shelby J. STURGIS & Deborah M. GORDON

Abstract

Nestmate recognition is the process by which individuals discriminate between nestmates and con- and hetero-specifics.
Nestmate recognition is based on recognition cues, which include cuticular hydrocarbons (CHCs). Models of nestmate
recognition predict that recognition decisions are based on the overlap of recognition cues. Colony recipients assess cue
differences by comparing an individual's CHC profile to an internal template, which is based on the colony-specific cues.
The behavioral response to this assessment depends on cue similarities or differences with the template. Ants show graded
responses to cue differences. More recent models of nestmate recognition include adjustable thresholds that account for
graded responses and intra-colony individual variation in behavioral responses towards non-nestmates. Ants display
differing levels of aggression towards conspecifics under different contexts, which suggests that nestmate recognition is
context-dependent. Here, we review models of decision rules and the role of CHCs in nestmate recognition. We discuss
the role of ecological and social context in nestmate recognition, and explore future directions of research for the field.
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Introduction

Nestmate recognition allows workers in social insect col-
onies to discriminate between nestmate and non-nestmate
con- and hetero-specifics (FIELDE 1903, FOREL 1923). Col-
onies compete for resources with neighbors. Intra- and
inter-specific competition among neighbors affects colony
behavior and survival (RYTI & CASE 1988, GORDON 1991,
YAMAGUCHI 1995, ROWLES & O'DowD 2007). Nestmate re-
cognition maintains colony cohesiveness and prevents the
exploitation of colony resources by non-nestmates (CRO-
ZIER & PAMILO 1996).

Nestmate recognition consists of the expression, detec-
tion, and perception of recognition cues and the corres-
ponding action based on cue differences (NEWEY & al.
2010). Ants express recognition cues on their cuticle, which
are detected and perceived as nestmate cues or non-nestmate
cues. Recognition cues are thought to be compared to a
template which resides in the peripheral and central ner-
vous system (LEONHARDT & al. 2007). A template is an
internal representation of the recognition cues of nestmates
(LACY & SHERMAN 1983). Individuals are recognized as
nestmates when the recognition cues of a recipient are suf-
ficiently close to the template used by the individual asses-
sing the recipient (OBIN & VANDER MEER 1989, NUNES &
al. 2008).

The action component of nestmate recognition is the be-
havioral response. It is the definitive signal that researchers
use to determine whether recognition has occurred. How-
ever, social insects may be able to discriminate between
nestmates and conspecifics without any response apparent
to us (BREED 2003). In addition, evidence suggests that the
action component is context-dependent (BUCZKOWSKI &

SILVERMAN 2005, Bos & al. 2010) and may not simply
depend on differences in recognition cues.

Cuticular hydrocarbons (CHCs) are of particular im-
portance in nestmate recognition in social insects because
they very often contain the recognition cues used to distin-
guish nestmates from non-nestmates (SINGER & ESPELIE
1992, DAHBI & al. 1996, GAMBOA & al. 1996, SINGER &
ESPELIE 1996, LORENZI & al. 1997, LIANG & SILVERMAN
2000, RUTHER & al. 2002, LORENZI & al. 2004, Bucz-
KOWSKI & SILVERMAN 2006, ROMANA DANI 2006, TOR-
RES & al. 2007, VAN WILGENBURG & al. 2006, TANNURE-
NASCIMENTO & al. 2007, VASQUEZ & SILVERMAN 2008,
LALZAR & al. 2010, VAN WILGENBURG & al. 2010). Nest-
mates share similar CHC profiles due to genetic relatedness
(PAGE & al. 1991, ESPELIE & al. 1994, DRESCHER & al.
2010, NEHRING & al. 2011) and hydrocarbon transfer
through trophallaxis and grooming (SOROKER & al. 1994,
SOROKER & al. 1995, DAHBI & al. 1999, SOROKER & HE-
FETZ 2000, LENOIR & al. 2001a, FoITZIK & al. 2007).
Sharing of hydrocarbons among nestmates creates a colony-
specific CHC profile (DAHBI & LENOIR 1998) that encodes
multiple levels of recognition (reviewed by D'ETTORRE
2008).

CHC profiles differ among species (MARTIN & al.
2008a, VAN WILGENBURG & al. 2011), colonies (LAVINE &
al. 1990, DAHBI & al. 1996, MARTIN & al. 2008b), repro-
ductive castes (MONNIN & PEETERS 1999), and task groups
(WAGNER & al. 1998, MARTIN & DRIJFHOUT 2009a). In
addition, CHC profiles change over time (LENOIR & al.
2001a, VAN ZWEDEN & al. 2009, DRESCHER & al. 2010),
with diet (LE MOLI & MORI 1990, LIANG & al. 2001, ICHI-



NOSE & LENOIR 2009), age (CUVILLIER-HOT & al. 2001),
and environmental conditions (WAGNER & al. 2001, Bucz-
KOWSKI & SILVERMAN 2006).

Several models have been proposed to explain nest-
mate recognition. The earlier models proposed that nest-
mate recognition is based on shared alleles at specific odor
loci (CROZIER & Dix 1979, GETZ 1981, GETZ 1982). How-
ever, recognition cues are assessed at the phenotypic level
and not the genetic level. Conspecifics contain the same
CHCs but in colony-specific quantities (reviewed by LE-
NOIR & al. 2001b). Consequently, CHC profiles overlap
among colonies. Cue distribution models propose that ants
base nestmate recognition decisions on the extent of overlap
in recognition cues (reviewed by VAN ZWEDEN & D'ET-
TORRE 2010). Individuals make a decision to reject or ac-
cept based on cue similarities and / or differences. How-
ever, such binary recognition may be unlikely. Individuals
show variation and graded responses to non-nestmates
(NEWEY & al. 2010). More recent models suggest a graded
response to nestmate recognition with dynamic thresh-
olds for aggression that may be context-dependent (REEVE
1989, VAN ZWEDEN & D'ETTORRE 2010, NEWEY 2011).

In this review, we examine the basis for nestmate re-
cognition in ants. We discuss current models of decision
rules for nestmate recognition. We review the role of hy-
drocarbons as recognition cues, and we focus on nestmate
recognition as a context-dependent process. We investigate
the role ecological context plays in nestmate recognition
for Pogonomyrmex barbatus. Finally, we explore future di-
rections for research in the field.

Nestmate recognition models

Earlier models of nestmate recognition assumed workers
discriminated among kin and non-kin through the assess-
ment of colony-specific alleles (CROZIER & Dix 1979, GETZ
1981, GETZ 1982). Of course, genes are not directly as-
sessed by ants, and there are no clear examples of geneti-
cally encoded templates (ALEXANDER 1990, PFENNIG &
SHERMAN 1995). In addition, relatedness of the individuals
within colonies varies with queen number, extent of poly-
andry, and colony size (BOOMSMA & al. 1999, PEDERSEN
& BOOMSMA 1999, MURAKAMI & al. 2000, DIEHL & al.
2001, KELLNER & al. 2007). In certain ant species, colo-
nies are comprised of genetically unrelated individuals, as
in slave-making ant colonies (TALBOT & KENNEDY 1940,
BUSCHINGER 2009) or parabiotic ant colonies (ORIVEL &
al. 1997). Nestmate recognition appears to function even
when nestmates are not related making it apparent that nest-
mate recognition is distinct from kin recognition.

It became clear through observations of mixed colo-
nies and mixed species studies (MORLEY 1944, KING &
SALLEE 1957, SANWALD 1968, ALLOWAY 1980, CARLIN
& HOLLDOBLER 1983, CARLIN & HOLLDOBLER 1986,
CARLIN & al. 1987) that ants incorporate unrelated con-
and hetero-specifics into their colonies. This implied a
transfer of recognition cues among naturally or artificially
mixed nestmates, which was similarly proposed by the Ge-
stalt model (CROZIER & Dix 1979). ERRARD & VIENNE
(1994) showed that mixed species groups of Manica ru-
bida and Formica selysi gradually acquired hydrocarbons
from their heterospecific nestmates. Furthermore, CHC
analysis of the slave-maker ant suggested that Polyergus
rufescens adjusted the proportions of some common CHCs
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to match that of their Formica rufibarbis or F. cunicularia
slaves (BONAVITA-COUGOURDAN & al. 1997). SOROKER &
al. (1994) provided definitive evidence for the Gestalt mod-
el by showing that radioactively labeled hydrocarbons are
transferred to the post pharyngeal gland (PPG) and cuticle
of nestmates through trophallaxis, grooming, and contact.
The authors suggested that the PPG is the site for the col-
ony odor in ants.

Early experience in the nest affects the ability to dis-
criminate between nestmates and non-nestmates (GAMBOA
& al. 1986, LORENZI & al. 1999, ERRARD & al. 2008),
which suggests a learning period for template acquisition
(however see LE MOLI & MORI 1985). Callow workers are
generally less aggressive to non-nestmates than their adult
counterparts (JAISSON 1991) and can be placed with unre-
lated callows to form mixed colonies (ERRARD 1984), which
suggests template learning occurs early in development.
Additionally, colony CHC profiles change over time (DRE-
SCHER & al. 2010), so adult workers must constantly up-
date their profile and template (LE MOLI & MORI 1989,
ERRARD & HEFETZ 1997, LENOIR & al. 2001a). Since the
PPG is located close to the brain and contains the mixture
of nestmate hydrocarbons, it is considered an important
organ for template formation and learning in nestmate re-
cognition (LEONHARDT & al. 2007).

Individuals within species generally share the same hy-
drocarbon molecules in their profiles; therefore, conspeci-
fics often exhibit overlapping cues (GETZ 1981, LACY &
SHERMAN 1983, GETZ 1991, COUVILLON & al. 2009). Cue
distribution models of nestmate recognition propose that
the amount of overlap between the recipient's cues and the
actor's template determines whether an individual is accepted
into the colony (LACY & SHERMAN 1983). The probability
of acceptance and rejection errors depends on the position
of the acceptance threshold, the boundary at which workers
will no longer accept individuals as nestmates (Fig. 1).

The "desirable-present" (D-present) and the "undesirable-
absent" (U-absent) models (SHERMAN & al. 1997) predict
different positions for the acceptance threshold, based on
the types of cues ants assess during dyadic encounters. Un-
der the D-present model, workers accept individuals with
desirable cues. Desirable cues are present in all nestmates
and some non-nestmates, therefore, workers will accept
some non-nestmates in error. Under the U-absent model,
workers reject individuals with undesirable cues. Undesir-
able cues are present in all non-nestmates and some nest-
mates. Workers reject nestmates whose recognition profiles
are too far from the colony mean.

REEVE (1989) found that an acceptance threshold that
maximizes fitness must consider the fitness consequences
of making recognition errors. REEVE (1989) proposed a
context-dependent, plastic acceptance threshold that mini-
mizes acceptance and rejection errors. Acceptance thresh-
olds may change according to environmental conditions or
resource availability. For example, in the honeybee, Apis
mellifera, non-nestmates are found in neighboring hives
when nectar flow is abundant, but in times of low food
supply when loss of resources to the colony entails a high
fitness cost, non-nestmates are readily identified and killed
(RIBBANDS 1954).

VAN ZWEDEN & D'ETTORRE (2010) build on the D-
present and U-absent models by proposing the "undesirable-
present" (U-present) model to explain nestmate recognition
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Fig. 1: Acceptance threshold for nestmate recognition in
recognition cue dissimilarity models. The dashed line
represents the acceptance threshold for which ants either
accept or reject individuals. The shaded areas represent re-
cognition errors. The shaded area in grey represents ac-
ceptance errors, and the shaded area in black represents
rejection errors. Adapted from SHERMAN & al. (1997).
Printed with permission from Wiley-Blackwell: Behavioral
ecology: an evolutionary approach, copyright 1997.

and its underlying neural mechanism. The authors suggest
individuals respond to the presence of undesirable cues.
Implicit to the model is that individuals are habituated to
their colony odor, and therefore only respond to unfamiliar
recognition profiles. Their model follows the rule "if olfac-
tory receptor neurons are not spiking and/or the pattern
of activation in the antennal lobes is not altered, the en-
countered individual is accepted as a nestmate." The model
assumes that nestmate recognition occurs at the level of the
antennae and antennal lobes. It predicts graded responses
to increasingly dissimilar CHC profiles and a context-
dependent threshold. Graded responses follow a non-linear
relationship between cue dissimilarity and rejection res-
ponse where low dissimilarity between individuals produces
a mild rejection response followed by an increase in ag-
gression with increasing profile dissimilarities until it reaches
the leveling off stage.

The formation of the template for nestmate recognition
occurs at either the level of the antennae and antennal lobes
(first-order brain centers) or the lateral horn and mushroom
bodies (higher-order brain centers). Previous research con-
cluded that nestmate recognition requires long-term memo-
ry to establish a neural template, which suggests that higher-
order brain centers are involved (ERRARD 1994, FOUBERT
& NOWBAHARI 2008). However, recent work supports the
possibility that nestmate recognition occurs in the first-order
brain centers of the antennae and antennal lobes (OZAKI &
al. 2005, STROEYMEYT & al. 2010). OzAKI & al. (2005)
found a chemosensory sensillum on the antennae of Cam-
ponotus japonicus that only responds when presented with
non-nestmate CHC profiles which suggests that ants are
anosmic to their colony odor. However, BRANDSTAETTER
& al. (2011) report conflicting results. The authors inves-
tigated the neuronal correlates of colony odors and found
that Camponotus floridanus is not anosmic to nestmate
odors. It is still unclear whether the template for nestmate
recognition occurs at the level of the peripheral or central
nervous system.

Fig. 2: Diagram based off the model proposed by NEWEY
(2011) using the findings from Pogonomyrmex barbatus
task groups. Each line is a vector originating at the origin
Q (0, 0) and ending at an endpoint, e.g., * (2, 2). Each end-
point represents a specific P. barbatus task group: FOR —
forager, PT — patroller, NM — nest maintenance, and MW
— midden worker. The origin Q represents the colony tem-
plate. Each end point * represents the average distance in
chemical space of a task group from the colony template.
Ellipses around the vectors represent the space in which
ants will accept individuals into the colony. NM and MW
have significantly larger ellipses than FOR and PT. *R; and
*R, represent non-nestmates. The distance in chemical space
of non-nestmates from the acceptance thresholds of P.
barbatus task groups is represented by solid and dashed ar-
rows. The further away the non-nestmate is from the peri-
meter of the ellipse, the more aggression it receives. Printed
with permission from Elsevier: Journal of Theoretical Biol-
ogy, NEWEY (2011), copyright 2011.

A recent model proposed by NEWEY (2011) addresses
the role of individual variation in recognition behavior with-
in colonies. Not all individuals in a colony have the same
CHC profiles (WAGNER & al. 1998, KAIB & al. 2000,
FERREIRA-CALIMAN & al. 2010) or react in the same man-
ner to non-nestmates (NOWBAHARI & al. 1999). NEWEY &
al. (2010) showed that in the weaver ant, Oecophylla sma-
ragdina, individuals in a colony vary in aggressive response
to non-nestmates. Their model proposes that ants use both
their own odor and a colony template to discriminate be-
tween nestmates and non-nestmates. Nestmates whose in-
dividual profile is close to the colony profile will be less
tolerant of non-nestmates than an individual whose pro-
file is further away. The beauty of the model is that it pre-
dicts quantifiable and testable acceptance thresholds in so-
cial insect recognition systems.

Our work (S.J. Sturgis & D.M. Gordon, unpubl.) offers
evidence to support Newey's model. We examined the
chemical distances of individuals from their colony-specific
CHC profile among Pogonomyrmex barbatus task groups.
Task groups that were closer in chemical space to their
colony-specific CHC profile displayed significantly more
aggression towards non-nestmates than those that were
further away (Fig. 2). The more aggressive task groups were
those most likely to encounter non-nestmate conspecifics
in the field. This finding reveals that ecological contexts
may play a significant role in nestmate recognition.
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Hydrocarbons as recognition cues

Hydrocarbons are the most abundant chemical compounds
found on ant cuticles, and they are found in the glands,
crop, stomach, and hemolymph of ants (ATTYGALLE &
MORGAN 1984). Hydrocarbons are synthesized in the fat
bodies and oenocytes located within the epidermal layer
through the elongation and conversion of fatty acids (BLOM-
QUIST 2010). Hydrocarbons on insect cuticles generally
range in size from 21 to > 40 carbons in chain length, and
consist of the hydrocarbon structural classes of n-alkanes,
mono-, di-, and tri-alkenes, and methyl-branched hydro-
carbons (reviewed by MARTIN & DRIJFHOUT 2009b). It is
likely that CHCs precede eusociality in evolutionary his-
tory, since they function in many insects to prevent de-
siccation and cuticle abrasion, promote water balance, and
act as a barrier to microorganisms (reviewed by HOWARD
& BLOMQUIST 2005).

Because of the number of hydrocarbon structural clas-
ses and the variations in chemical structure within each
class (reviewed by MARTIN & DRIUFHOUT 2009b), hydro-
carbons permit a complex nestmate recognition system.
Ant hydrocarbons are comprised of several variations of
n-alkanes, methyl-branched alkanes, and n-alkenes (SCHAL
& al. 1998, TIssOT & al. 2001, LENOIR & al. 2001b).
n-Alkanes are saturated hydrocarbons that are believed to
be the major components involved in water-loss preven-
tion. WAGNER & al. (1998) found a higher abundance of
n-alkanes on Pogonomyrmex barbatus foragers, which spend
long periods outside the nest, than on nest maintenance
workers, which mostly stay inside the nest. n-Alkanes have
high melting temperatures, which suggests they may func-
tion to prevent dessication (GIBBS 1998, GIBBS & al. 2003).

Methyl alkanes are saturated hydrocarbons with func-
tional methyl groups attached, while n-alkenes are unsat-
urated hydrocarbons that have > one, but no more than
three, double bonds along its carbon chain. Methyl alkanes
and n-alkenes have lower melting temperatures than al-
kanes of the same chain length, and are typically not as ef-
fective as n-alkanes in waterproofing (reviewed by GIBBS
1998). Both methyl alkanes and n-alkenes are considered
to be primary candidates for species and nestmate recogni-
tion cues (LUCAS & al. 2005, MARTIN & al. 2008a, MARTIN
& al. 2008b). However, more than one hydrocarbon struc-
tural class may be needed to illicit stronger behavioral
responses to non-nestmates, as in Linepithema humile and
Aphaenogaster cockerelli (see GREENE & GORDON 2007a)
or Formica japonica (see AKINO & al. 2004).

Many studies implicate CHCs as correlates of nestmate
recognition behavior or as direct causes of aggression among
individuals (HOWARD & BLOMQUIST 2005). Dyadic en-
counters between individuals from different colonies of the
polydomous ant, Cataglyphis iberica, were highly aggres-
sive and correlated with the quantitative differences be-
tween colonies in the major CHCs (DAHBI & al. 1996).
WAGNER & al. (2000) found that Pogonomyrmex barbatus
ants were able to distinguish nestmates from non-nestmates
based on CHCs alone. The authors presented ants with
glass blocks coated with whole lipid and purified HC ex-
tracts from nestmate and non-nestmates and measured the
proportion of aggression to each stimulus. Blocks bearing
extracts from non-nestmates elicited higher levels of ag-
gression than blocks from nestmates. Both whole lipid and
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CHC extracts elicited similar levels of aggression. LUCAS
& al. (2005) found that only the CHC fraction and the
methyl subfraction elicited behavioral responses in the
Pachycondyla villosa species complex. The two latter stud-
ies show a direct relationship between CHCs and nest-
mate recognition behavior. Other studies manipulated the
CHC profiles of workers, rather than using immobile ob-
jects, and led to similar results (LIANG & al. 2001, TORRES
& al. 2007, MARTIN & al. 2008c).

Other cuticular chemicals besides CHCs may also medi-
ate nestmate recognition behavior. KATZAV-GOZANSKY
& al. (2004, 2008) showed that exposure to nest volatiles
in Camponotus fellah decreases aggression towards non-
nestmates. Environmental odors, likely volatile, have been
shown to play a role in nestmate recognition in bees (GIL-
LEY & al. 2006, SCHMITT & al. 2007), wasps (STEINMETZ
& SCHMOLZ 2005), and ants (ERRARD & al. 2008). How-
ever, environmental odors may consist of hydrocarbons. It
is well-established that ant nests contain colony-specific
CHCs (GRASSO & al. 2005, LENOIR & al. 2009, STURGIS
& al. 2011). In addition, hydrocarbons may display more
volatility then originally thought. CHCs analyzed by struc-
tural class show consistent melting and boiling tempera-
tures, however mixtures of different structural classes can
drastically decrease the melting and boiling points of hy-
drocarbons (reviewed by GIBBS 1998). BRANDSTAETTER
& al. (2008) showed that Camponotus floridanus are able
to recognize non-nestmates from a distance of 1 cm, which
suggests that CHCs have some volatility.

Several methods have been employed to determine the
recognition cues responsible for nestmate recognition. The
use of synthetic hydrocarbons allows investigators to con-
trol the quantity and quality of hydrocarbons used to mani-
pulate an ant's cuticle, but such synthesis is difficult. Stat-
istical analysis, such as principle component analysis and
discriminant analysis is often used to group ants according
to their CHC profiles. However, hydrocarbons in the same
structural class tend to be collinear, leading to violations in
the model assumptions (MARTIN & DRIJFHOUT 2009¢). In
addition, large samples of workers are needed to perform
multivariate analysis without reducing the dimensionality
of the data set. VAN ZWEDEN & al. (2009) introduced dia-
gnostic power to address questions about which HC com-
ponents are crucial. Diagnostic power assesses the contri-
bution of individual CHCs in distinguishing between colo-
nies. CHCs with high diagnostic power are significant pre-
dictors of colony of origin.

It is important to note that statistical methods may only
narrow the list of potential candidates for recognition cues,
but bioassays using natural or synthetic hydrocarbons are
needed to determine which compounds are used in nest-
mate recognition.

Context-dependent nestmate recognition in ants

Measurements of aggression are often used as a proxy for
nestmate recognition. However, lack of aggression does not
always signify lack of nestmate recognition (BREED 2003).
BJOERKMAN-CHISWELL & al. (2008) found an absence of
aggression towards non-nestmates in the invasive Argen-
tine ant, Linepithema humile, among nests ranging over
hundreds of kilometers but found that non-nestmates had
greater antennation frequencies than nestmates suggesting
that nestmate recognition occurred. Indeed, BUCZKOWSKI



& SILVERMAN (2005) showed that aggression in L. humile
varies with the number of ants, location of encounters, as
well as other social and ecological contexts.

It was originally thought that nestmate recognition in
social insects involved a binary recognition of group mem-
bership where an individual either accepts or rejects an-
other individual based on recognition cues (ARNOLD & al.
1996, LENOIR & al. 1999). Today, it is accepted that nest-
mate recognition in social insects is more nuanced than
previously thought, and the action component of nestmate
recognition may be context-dependent (TANNER & ADLER
2009).

In the wood ant, Formica polyctena, aggression varies
with season and temperature (MABELIS 1979). In the spring,
war ensues between neighboring colonies with overlapping
foraging trails. Aggression among colonies is highest dur-
ing the spring when nests become active and tapers off in
the summer. The number of ant casualties in war during
the spring is positively correlated with temperature. In the
fall, neighboring F. polyctena colonies share foraging trails
without aggression. A related species, Formica exsecta, also
shows seasonal variation in nestmate recognition behavior
with aggression among workers of different nests being
highest in spring (KATZERKE & al. 2006). In addition, ag-
gression varies with season in the invasive ant Paratre-
china flavipes (see ICHINOSE 1991).

Certain ant species mark their territories with colony-
specific chemical cues (GRASSO & al. 2005, LENOIR & al.
2009, STURGIS & al. 2011), and these cues provide a so-
cial context in which ants will fight to defend their terri-
tory. The leaf cutter ant, Atta laevigata, holds a fighting
advantage on trails marked with colony-specific cues and
is reluctant to fight on unmarked land (WHITEHOUSE &
JAFFE 1995). WENSELEERS & al. (2002) showed a similar
result in the desert ant, Cataglyphis niger, in which disputes
are settled through non-escalating fights where the terri-
tory owner generally wins. Ants may even perceive chem-
ical cues differently depending on the context in which they
are presented. Bos & al. (2010) showed that Camponotus
aethiops were able to associate non-nestmate CHC profiles
with food and still remain aggressive towards non-nestmates
carrying the same CHC profiles.

Queen presence has been shown to affect the levels of
aggression in several ant species (STARKS & al. 1998, VAN-
DER MEER & ALONSO 2002, VANDER MEER & al. 2008,
VASQUEZ & SILVERMAN 2008). CARLIN & HOLLDOBLER
(1983, 1986) found that workers from queenright colonies
in several Camponotus species were more aggressive to
non-nestmates than workers from queenless colonies. These
results led the authors to conclude that nestmate recogni-
tion in Camponotus is mediated by queen discriminators.
We propose that queen presence may simply be a social
context in which ants display higher levels of aggression.

LAHAV & al. (1998) tested the hypothesis that queen
discriminators mediate nestmate recognition in Cataglyphis
niger. They found that queens produce significantly lower
amounts of hydrocarbons than workers, which would make
it difficult for the queen's recognition cues to be transferred
to all members of the colony. The authors also showed
that the flow of hydrocarbon transfer was predominately
from worker to queen and not queen to worker, which led
the authors to reject the queen discriminator hypothesis for
C. niger.

BOULAY & al. (2003) also rejected the queen discrim-
inator hypothesis in Camponotus fellah, but the authors
found that queenless workers often merged with other non-
nestmate queenless workers. The authors concluded that
queens influence worker behavior by reducing social mo-
tivation and decreasing tolerance of alien conspecifics. In
addition, VIENNE & al. (1998) demonstrated that queen pres-
ence in three Myrmicinae species has a nonspecific affect
on colony-level social behavior. Their results suggest that
colony behavior in general, not simply aggression, changes
in the context of queen presence or absence.

Aggression varies with the presence of nestmates and
the ratio of nestmates to non-nestmates (GORDON & al.
1993). ROULSTON & al. (2003) and SORRELLS & al. (2011)
have shown aggression to differ depending on the number
of ants involved in bioassays. Aggression also varies with
time and rearing conditions. CHC profiles change over time
(PROVOST & al. 1993, LAHAV & al. 2001, LENOIR & al.
2001a, ICHINOSE & LENOIR 2009), and colonies that were
aggressive towards each other at one time point may not be
as aggressive at another due to a convergence of CHC pro-
files (ICHINOSE 1991) or fluctuating environments (Bucz-
KOWSKI & SILVERMAN 2005). Laboratory-reared colonies
often display less aggression towards conspecifics than their
field-reared counterparts (OBIN 1986).

Aggression can also be task-dependent. Worker aggres-
sion toward conspecifics varies in colonies (NEWEY & al.
2010). In the red harvester ant, Pogonomyrmex barbatus,
ants that work outside the nest showed significantly higher
aggression towards non-nestmate conspecifics than did ants
that work inside the nest (S.J. Sturgis & D.M. Gordon,
unpubl.). Pogonomyrmex barbatus workers switch tasks,
moving from working inside the nest to outside. Inside
workers will eventually become exterior workers, and their
levels of aggression will change accordingly. The only time
P. barbatus workers are likely to encounter non-nestmates
are when they are performing tasks outside the nest. There-
fore, in this system, higher levels of aggression in exterior
workers is ecologically relevant.

The response component of nestmate recognition has
been shown to be context-dependent and may vary with
time (PROVOST & al. 1993), age of workers (NOWBAHARI
& LENOIR 1989), queen presence (VIENNE & al. 1998), wor-
ker numbers (SORRELLS & al. 2011), worker size (NOWBA-
HARI & al. 1999), etc. Ants must assess the cost and bene-
fits of fighting. In situations in which workers have an
advantage, such as territory or worker number, aggression
may be more likely. The decision for aggression must also
be associated with ecological factors. Ant species vary
largely in ecology and behavior. Therefore, the context in
which they display aggression will likely vary and may be
highly species-specific. A more complete understanding of
the ecology and social structure of ant species are needed
before a more general pattern of nestmate recognition can
be presented.

Aggression is very obvious, but other less obvious be-
haviors may be as important in nestmate recognition, es-
pecially depending on the context in which ants are tested.
It is unclear whether the detection and perception compo-
nent of nestmate recognition is context-dependent. BRAND-
STAETTER & al. (2011) found that upon repeated stimula-
tion with the same colony odor, spatial activity patterns
were as variable as activity patterns elicited by different col-
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ony odors. This result underscores the complexity of nest-
mate recognition and olfaction in general. However, com-
bining ecologically relevant bioassays with neurophysio-
logical studies may be the key to understanding the pro-
cess of and the likely response to recognition cues.

Ecological context and nestmate recognition in Pogono-
myrmex barbatus

The context in which nestmate recognition is tested mat-
ters. Ecological context plays a considerable role in nest-
mate recognition. Ants may be more likely to display ag-
gression when they are competing for resources. For ex-
ample, in Pogonomyrmex barbatus, young colonies, which
are competing for foraging space, are more persistent in
returning to areas with overlapping foraging trails than
older colonies (GORDON 1992, GORDON & KULIG 1996).
Older colonies are more established and can therefore
switch to other foraging trails whereas a young colony has
less available foraging space. The cost of avoiding poten-
tial conflicts with neighbors differs between young and ol-
der colonies.

Individuals likely assess the cost and benefits of aggres-
sion. Pogonomyrmex barbatus foragers are slightly more
responsive to neighbors, in which they compete for forag-
ing territory, than non-neighbors (GORDON 1989a). Some
may argue that workers learn neighbor CHC profiles through
frequent encounters and may need more time to recognize
non-neighbor conspecifics. However, P. barbatus patrollers
are just as aggressive to non-neighbors as neighbors (S.J.
Sturgis & D.M. Gordon, unpubl.). Since most foragers were
patrollers before they were foragers (GORDON 1989b), this
suggests that foragers weigh the cost and benefits of fight-
ing. An unfamiliar individual from a non-neighboring colo-
ny may be less of a threat than an individual from a neigh-
boring colony, especially considering neighbors may be able
to recruit more individuals to a particular location.

In P. barbatus, the ants that fight are the patrollers. Pa-
trollers are responsible for influencing foraging direction
(GORDON 2002, GREENE & GORDON 2007b). Colonies
avoid overlapping foraging trails with neighbors (ADLER &
GORDON 2003). Foragers and interior workers are far less
aggressive than patrollers (S.J. Sturgis & D.M. Gordon,
unpubl.) which suggests that aggression in P. barbatus is
primarily task dependent. Interior workers rarely, if ever,
encounter non-nestmate conspecifics since they never leave
the nest mound. It is likely more beneficial for foragers to
forage than fight with individuals from neighboring colo-
nies. Patrollers refrain from sending foragers in the direc-
tion in which they encountered neighbors (GORDON 1991,
GORDON & KULIG 1996), which allows foragers to avoid
fights.

Identifying the ants that are more likely to be aggressive
may help explain individual variation in nestmate recogni-
tion behavior. It should also help guide nestmate recogni-
tion assays. For example, P. barbatus interior workers dis-
play very low levels of aggression to conspecifics, there-
fore, measuring other behavioral responses such as anten-
nation frequency or avoidance may be a more accurate
measure of nestmate recognition. CHC profiles also help
explain individual variation in aggression. P. barbatus wor-
kers that are more likely to encounter non-nestmates are
also closer in chemical space to their colony-specific odor
(S.J. Sturgis & D.M. Gordon, unpubl.). This means that ants
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that leave the nest mound smell more alike which should
make it easier to identify nestmates and non-nestmates.

Placing nestmate recognition in the proper ecological
context will help gain a better understanding of why and
when ants fight. Models of nestmate recognition attempt
to draw general conclusions for all social insects without
thoroughly incorporating species-specific ecologies. Not
all ants are alike, and therefore, the factors that influence
nestmate recognition are likely to differ. More recent models
of nestmate recognition recognize that acceptance thresh-
olds are plastic and nestmate recognition is context-depen-
dent. A thorough understanding of the ecology of ant spe-
cies will likely reveal the important factors involved in nest-
mate recognition.

Future directions

Many advances have been made in our understanding of
nestmate recognition. Even so, important questions remain
unanswered. Nestmate recognition appears to be context-
dependent in ants. In order to gain a better understanding
of nestmate recognition, ecological and social factors must
be linked with behavioral responses. How do these factors
affect one another, and how do they differ among species?
Is there a general pattern of nestmate recognition across
ant taxa when ecological context is considered?

CHC:s are the primary recognition cues; however, vol-
atiles appear to play some role in nestmate recognition.
Which hydrocarbon structural classes are the principal
recognition cues in ants? What is the role of nest vola-
tiles and other cuticular compounds? Synthetic hydrocar-
bons offer a means to identify the specific recognition cues
responsible for nestmate recognition in ants. However, there
are few commercially available hydrocarbons. Building a
synthetic library of hydrocarbons to be used in bioassays
may reveal surprising similarities in the recognition cues
across ant taxa.

NEWEY (2011) proposed a promising model for nest-
mate recognition. By examining individual differences in
chemical profiles, we may be able to predict behavioral
responses of ants in dyadic encounters. Neurobiology offers
a molecular perspective on nestmate recognition and prom-
ising insights into social insect olfaction. It has the poten-
tial to reveal the underlying mechanisms involved in nest-
mate recognition. Further research on the behavior, ecol-
ogy, chemistry, and neurophysiology of nestmate recogni-
tion will clarify how social insects manage the complex task
of differentiating "us" from "them".
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