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Course outline
Week 1: Introduction and Overview
Week 2: Heavy-tailed distributions; Random graphs
Week 3: More graph models
Week 4: Graph centrality and ranking
Week 5: Ranking from comparisons; Friendship paradoxes
Week 6: Homophily, social influence, contagion
Week 7: Causal inference on networks
!
Week 8-9: Synthesis; dissecting complex papers
!
Week 10: Project presentations



Practical components
Problem Set 1: Manipulating data (due 10/8)
Problem Set 2: Theory exercises (due 10/20)
!



Practical components
Problem Set 1: Manipulating data (due 10/8)
Problem Set 2: Theory exercises (due 10/20)
!
Reaction paper: (due 10/27)
Groups of 1-3. Skim some papers on the course homepage. Pick a 
paper to read carefully; pick a citation there-in, read it carefully. 
!
Prompt: What are the weaknesses of the papers, and how could they 
be improved? What are some promising further research questions in 
the direction of the papers, and how could they be pursued?
!
10/27-11/3: Discussion meetings with me!
1 week after meeting: Project proposal



Projects
Basic genres:
- An empirical evaluation of an algorithm, model, or measure on an 
interesting dataset. 
!
- A theoretical project that considers an algorithm, model, or 
measure in the area of some course topic, and derives rigorous 
results about it.
!
- An extended, critical survey of one the course topics, going into 
significant depth and offering a novel perspective on the area.

12/1:     Report due
12/1 & 12/3:  In-class presentations



Questions?



Learning outcomes
1. Students should develop a familiarity with relevant structural 
properties of empirical social networks, and how different graph 
models capture or don’t capture these properties.

2. Students should be able to weigh advantages and disadvantages 
of different observational and experimental study designs that 
examine/test mechanisms in social systems.

3. Students should be able to employ structural measures for 
diverse ranking/predicting problems on graphs.

4. Students should be able to critically read research papers in the 
field to identify strengths and potential weaknesses, and to be able to 
design tests of potential weaknesses.



Ready?



Social networks: mapping structure

• J Moreno (1934) “Who shall survive?: A new approach to the problem of human interrelations.”

First “sociogram”: 8th grade students studying in proximity

Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

n=33



Social networks: mapping structure

• J Moreno (1934) “Who shall survive?: A new approach to the problem of human interrelations.”

Moreno’s “chance sociogram”: a random graph null model



n>1,400,000,000

The digital microscope



Lazarsfeld et al. ’55
Watts-Dodds ‘07

Ryan-Gross ‘43 Coleman-Katz-Menzel ‘57

1940 election:  
two-step theory of 

opinion leaders

• B Ryan, N Gross (1943) “The diffusion of hybrid seed corn in two Iowa communities”, Rural sociology.
• P Lazarsfeld; B Berelson, H Gaudet (1948) “The People's Choice. How the Voter Makes up His Mind in a Presidential Campaign”.
• E Katz, P Lazarsfeld (1955) “Personal Influence, The part played by people in the flow of mass communications”.
• E Katz (1957) “The Two-Step Flow of Communication: An Up-To-Date Report on an Hypothesis”. Political Opinion Quarterly.
• J Coleman, E Katz, H Menzel (1957) “The diffusion of an innovation among physicians”, Sociometry.
• D Watts, P Dodds (2007) “Influentials, Networks, and Public Opinion Formation” Journal of Consumer Research.

Hybrid seed corn Tetracycline

Processes on social networks



Hybrid seed corn (Ryan-Gross):
 5 stages: awareness, interest, evaluation, trial, adoption
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2. Percentage of operators first hearing and percentage of operators accepting 
hylJlld ,eed in specified years. 

mental stage.) This spread of knowledge was highly concentrated 
in the three years 1929, 1930 and 1931. During this brief period 
about 60 percent of the operators first learned of the seed. 

Very' roughly there is a lag of about 5 years between' the curve 
of information and the curve of acceptance. However, one could 
scarcely say that the time patterns of the two aspects of diffusion 
were closely similar. The spread of information followed a pattern 
even less similar to a normal frequency distrihution than the curve 
of adoption.36 The preliminary stages of diffusion covered a longer 
time span in terms of adoption than in knowledge. The modal 
frequency in knowledge came 7 years after the first operator heard 
of the seed; the modal frequency in adoption occurred 10 years 
after the trait was first accepted. Where.as the adoption curve 
is definitely "bell-shaped," the spread of knowledge curve is asym-
metrical and even more highly concentrated around the mode. The 
adoption curve itself shows a long period of slow growth followed 
by a great wave of acceptance, which in turn is followed by a rela-
tively short period in which the remaining stragglers accepted the 
new seed. 

It is clear that the acceptance of the seed for use was delayed 
some time after initial contact. The. lag between first information 
and first adoption was 5.5 years for all operators. This lag, how-
ever, varied markedly for those who adopted the seed early and 
those who adopted it late. (See table 2.) Thus the mean number 
of years before acceptance, after initial information, was 1.6 for 
those adopting prior to 1934,. For those adopting in 1934 through 
1936, the lag was increased to 4.4 years; for those adopting in 1937 
to 1939, there was a delay of 6.4 years; and for the most resistant 
the delay amounted to 9.2 years. 

36Neither curve is in fact a normal frequency. See Ryan and Gross, op. cit. 

Survey of n=259 farmers

• B Ryan, N Gross (1943) “The diffusion of hybrid seed corn in two Iowa communities”, Rural sociology.
• P Lazarsfeld; B Berelson, H Gaudet (1948) “The People's Choice. How the Voter Makes up His Mind in a Presidential Campaign”.
• E Katz, P Lazarsfeld (1955) “Personal Influence, The part played by people in the flow of mass communications”.
• E Katz (1957) “The Two-Step Flow of Communication: An Up-To-Date Report on an Hypothesis”. Political Opinion Quarterly.
• J Coleman, E Katz, H Menzel (1957) “The diffusion of an innovation among physicians”, Sociometry.
• D Watts, P Dodds (2007) “Influentials, Networks, and Public Opinion Formation” Journal of Consumer Research.

Processes on social networks



• Bond et al. (2012) “A 61-Million-Person Experiment in Social Influence and Political Mobilization”, Nature.
• J Bjelland et al. (2015) “Investigating Social Influence Through Large-Scale Field Experimentation”, NetMob.

Experiment on n=61,000,000 Facebook users

Digital experimental microscope
Massive experiments to test theories of social processes  on 
large-scale networks.

Not just FB: Telenor service experiment (n=46,000), LinkedIn, others.



• Bond et al. (2012) “A 61-Million-Person Experiment in Social Influence and Political Mobilization”, Nature.
• J Bjelland et al. (2015) “Investigating Social Influence Through Large-Scale Field Experimentation”, NetMob.

Experiment on n=61,000,000 Facebook users

Digital experimental microscope
Massive experiments to test theories of social processes  on 
large-scale networks.

Not just FB: Telenor service experiment (n=46,000), LinkedIn, others.
who received the social message were 0.39% (s.e.m., 0.17%; t-test,
P 5 0.02) more likely to vote than users who received no message at
all. Similarly, the difference in voting between those who received the
social message and those who received the informational message was
0.39% (s.e.m., 0.17%; t-test, P 5 0.02), suggesting that seeing faces of
friends significantly contributed to the overall effect of the message on
real-world voting. In fact, turnout among those who received the
informational message was identical to turnout among those in the
control group (treatment effect 0.00%, s.e.m., 0.28%; P 5 0.98), which
raises doubts about the effectiveness of information-only appeals to
vote in this context.

These results show that online political mobilization can have a
direct effect on political self-expression, information seeking and
real-world voting behaviour, and that messages including cues from
an individual’s social network are more effective than information-
only appeals. But what about indirect effects that spread from person
to person in the social network? Users in our sample had on average
149 Facebook friends, with whom they share social information,
although many of these relationships constitute ‘weak ties’. Past
research indicates that close friends have a stronger behavioural effect
on each other than do acquaintances or strangers9,11,13,21. We therefore
expected mobilization to spread more effectively online through
‘strong ties’.

To distinguish users who are likely to have close relationships, we
used the degree to which Facebook friends interacted with each other on
the site (see Supplementary Information for more detail). Higher levels
of interaction indicate that friends are more likely to be physically
proximate and suggest a higher level of commitment to the friendship,
more positive affect between the friends, and a desire for the friendship
to be socially recognized29. We counted the number of interactions
between each pair of friends and categorized them by decile, ranking
them from the lowest to highest percentage of interactions. A validation
study (see Supplementary Information) shows that friends in the highest
decile are those most likely to be close friends in real life (Fig. 2a).

We then used these categories to estimate the effect of the mobil-
ization message on a user’s friends. Random assignment means that
any relationship between the message a user receives and a friend’s
behaviour is not due to shared attributes, as these attributes are not
correlated with the treatment (see Supplementary Information). To
measure a per-friend treatment effect, we compared behaviour in the
friends connected to a user who received the social message to beha-
viour in the friends connected to a user in the control group. To
account for dependencies in the network, we simulate the null distri-
bution using a network permutation method (see the Supplementary
Information). Monte Carlo simulations suggest that this method
minimizes the risk of false positives and recovers true causal effects
without bias (see Supplementary Information).

Figure 2 shows that the observed per-friend treatment effects increase
as tie-strength increases. All of the observed treatment effects fall outside
the null distribution for expressed vote (Fig. 2b), suggesting that they are
significantly different from chance outcomes. For validated vote
(Fig. 2c), the observed treatment effect is near zero for weak ties, but
it spikes upwards and falls outside the null distribution for the top two
deciles. This suggests that strong ties are important for the spread of
real-world voting behaviour. Finally, the treatment effect for polling
place search gradually increases (Fig. 2d), with several of the effects
falling outside the 95% confidence interval of the null distribution.

To simplify the analysis and reporting of results, we arbitrarily
define ‘close friends’ as people who were in the eightieth percentile
or higher (decile 9) of frequency of interaction among all friendships in
the sample (see the Supplementary Information). ‘Friends’ are all other
Facebook friends who had less interaction. A total of 60,491,898 (98%)
users in our sample had at least 1 close friend, with the average user
having about 10 close friends (compared with an average of 139 friends
who were not close).

The results suggest that users were about 0.011% (95% confidence
interval (CI) of null distribution 20.009% to 0.010%) more likely to
engage in an act of political self-expression by clicking on the I Voted
button than they would have been had their friend seen no message.
Similarly, for each close friend who received the social message, an
individual was on average 0.099% (null 95% CI –0.042% to 0.048%)
more likely to express voting.

We also found an effect in the validated vote sample. For each close
friend who received the social message, a user was 0.224% (null 95% CI
–0.181% to 0.174%) more likely to vote than they would have been had
their close friend received no message. Similarly, for information-
seeking behaviour we found that for each close friend who received
the social message, a user was 0.012% (null 95% CI –0.012% to 0.012%)
more likely to click the link to find their polling place than they would
have been had their close friends received no message. In both cases
there was no evidence that other friends had an effect (see
Supplementary Information). Thus, ordinary Facebook friends may
affect online expressive behaviour, but they do not seem to affect
private or real-world political behaviours. In contrast, close friends
seem to have influenced all three.

The magnitude of these contagion effects are small per friend, but it
is important to remember that they result from a single message, and in
many cases it was not possible to change the target’s behaviour. For
example, users may have already voted by absentee ballot before
Election Day, or they may have logged in to Facebook too late to vote
or to influence other users’ voting behaviour. In other words, all effects
measured here are intent-to-treat effects rather than treatment-on-
treated effects, which would be greater if we had better information
about who was eligible to receive the treatment.
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Find your polling place on the U.S.
Politics Page and click the "I Voted"
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Figure 1 | The experiment and direct effects. a, b, Examples of the informational message and social message Facebook treatments (a) and their direct effect on
voting behaviour (b). Vertical lines indicate s.e.m. (they are too small to be seen for the first two bars).
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Timeline
• 1940s-50s: Early theories, early data 

!

• 1960s-90s: Theory refinement/testing

!

• 2000s:  Large-scale data

!

• 2010s:  Large-scale experiments

!

Designing/analyzing experiments to develop/test network theories 

= Big opportunity

4 0 

:5 

" 
[-2 
"2 

0 

LI 
Vi 
r1 

0,; 

0 

:5 

o 
I':'? .... · 

t-

f-

f-
r rio. .. 

26 27 28 "'" 

.678 

OPerc.en+ hsaring -
• ac.ceptinq _ 

I-

I-

f- H H • .. 11 I r r I -= "305 or 56 -4C 41 
YI::AR 

2. Percentage of operators first hearing and percentage of operators accepting 
hylJlld ,eed in specified years. 

mental stage.) This spread of knowledge was highly concentrated 
in the three years 1929, 1930 and 1931. During this brief period 
about 60 percent of the operators first learned of the seed. 

Very' roughly there is a lag of about 5 years between' the curve 
of information and the curve of acceptance. However, one could 
scarcely say that the time patterns of the two aspects of diffusion 
were closely similar. The spread of information followed a pattern 
even less similar to a normal frequency distrihution than the curve 
of adoption.36 The preliminary stages of diffusion covered a longer 
time span in terms of adoption than in knowledge. The modal 
frequency in knowledge came 7 years after the first operator heard 
of the seed; the modal frequency in adoption occurred 10 years 
after the trait was first accepted. Where.as the adoption curve 
is definitely "bell-shaped," the spread of knowledge curve is asym-
metrical and even more highly concentrated around the mode. The 
adoption curve itself shows a long period of slow growth followed 
by a great wave of acceptance, which in turn is followed by a rela-
tively short period in which the remaining stragglers accepted the 
new seed. 

It is clear that the acceptance of the seed for use was delayed 
some time after initial contact. The. lag between first information 
and first adoption was 5.5 years for all operators. This lag, how-
ever, varied markedly for those who adopted the seed early and 
those who adopted it late. (See table 2.) Thus the mean number 
of years before acceptance, after initial information, was 1.6 for 
those adopting prior to 1934,. For those adopting in 1934 through 
1936, the lag was increased to 4.4 years; for those adopting in 1937 
to 1939, there was a delay of 6.4 years; and for the most resistant 
the delay amounted to 9.2 years. 

36Neither curve is in fact a normal frequency. See Ryan and Gross, op. cit. 



Whirlwind tour
!

• What network?
• From karate to communities
• Influence, instrumented 
• Homophily vs. contagion
• Influence experiments
• Network experiments

!

Hopefully this lecture will convince you there are really  interesting 
research questions you can work on.



Testing a theory with data
!

• Homans (1950): Small groups of people create a social structure that 
contains many clique subgroups and a ranking system.
!

• Davis & Leinhardt (1967): Operational statement using subgraph 
frequencies: some patterns less frequent than random model predicts.

• G Homans (1950) “The Human Group.”
• J Davis, S Leinhardt (1971) “The structure of positive interpersonal relations in small groups,” Sociological Theories in 

Progress.



Extending a theory with more data
!

• Ball-Newman (2013): Maximum likelihood inference of status according 
to Homans’ theory.

• Examined 84 high school networks for correlates of Homans status.

• G Homans (1950) “The Human Group.”
• J Davis, S Leinhardt (1971) “The structure of positive interpersonal relations in small groups,” Sociological Theories in 

Progress.
• B Ball, MEJ Newman (2013) “Friendship networks and social status.” Network Science.
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What network?
!
“Name generators” in sociology show huge difference between social 
networks generated by questions:
!
 “Who do you know?”  “Who are your three closest friends?"
  “With whom do you discuss important matters?”

• K Campbell, B Lee (1991) “Name generators in surveys of personal networks.” Social Networks.
• M Resnick et al. (1997) “Protecting adolescents from harm: findings from the national longitudinal study on adolescent 

health.” JAMA.
• C Apicella, F Marlowe, J Fowler, N Christakis (2012) “Social networks and cooperation in hunter-gatherers,” Nature.
• B Ball, MEJ Newman (2013) “Friendship networks and social status.” Network Science.



What network?
!
“Name generators” in sociology show huge difference between social 
networks generated by questions:
!
 “Who do you know?”  “Who are your three closest friends?"
  “With whom do you discuss important matters?”
!
Ball-Newman used AddHealth, which has issues that requires care.
!

“Up to 10 people with whom they are friends, 
with a maximum of five being male and 5 being female”

• K Campbell, B Lee (1991) “Name generators in surveys of personal networks.” Social Networks.
• M Resnick et al. (1997) “Protecting adolescents from harm: findings from the national longitudinal study on adolescent 

health.” JAMA.
• C Apicella, F Marlowe, J Fowler, N Christakis (2012) “Social networks and cooperation in hunter-gatherers,” Nature.
• B Ball, MEJ Newman (2013) “Friendship networks and social status.” Network Science.



What network?
!
“Name generators” in sociology show huge difference between social 
networks generated by questions:
!
 “Who do you know?”  “Who are your three closest friends?"
  “With whom do you discuss important matters?”

• K Campbell, B Lee (1991) “Name generators in surveys of personal networks.” Social Networks.
• M Resnick et al. (1997) “Protecting adolescents from harm: findings from the national longitudinal study on adolescent 

health.” JAMA.
• C Apicella, F Marlowe, J Fowler, N Christakis (2012) “Social networks and cooperation in hunter-gatherers,” Nature.
• B Ball, MEJ Newman (2013) “Friendship networks and social status.” Network Science.
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Supplementary Figure S2: Example of one poster set for one sex (women).  These 

posters were used to elicit social ties. 

“With whom they would like 
to live in the next camp”
!
“To whom they would give 
an actual gift of honey”



Online Social Networks
Acquaintances, often international. Business and personal.

2004: classmates, 2015: most people you know who are online.

Mostly professional connections, some friends.

Virtual acquaintances, often interest-driven.

Photography-interested real-world/virtual friends.

People you talk to on the phone, including customer service.

Close friends who exercise.

Sometimes personal, sometimes professional, sometimes both.



Online Social Networks

Some differences:
• Design aspects
• Personal vs. professional
• Strong vs. weak (Onnela et al. 2007)
• Virtual/real-world acquaintances (Jacobs et al. 2015)
• Single interest vs. diverse interest networks
• Co-tag friends vs. news feed friends vs. chat friends
• Phone calls vs. texts
• …

• JP Onnela et al. (2007)  “Structure and tie strengths in mobile communication networks,” PNAS.
• AZ Jacobs, SF Way, J Ugander, A Clauset (2015) “Assembling thefacebook: Using Heterogeneity to 

Understand Online Social Network Assembly,” WebSci.



Zachary Karate Club
• Wayne Zachary, sociologist interested in 

group dynamics.
• Edges: interacted outside the club
• Studied a karate club for 3 years (’70-’72)
• Club formed factions around instructor (1) 

and Club President (34).
• Zachary was interested in if faction structure 

could be predicted.
• Method?

!

• W. W. Zachary (1977) “An information flow model for conflict and fission in small groups”, J Anthro Research



Zachary Karate Club
• Wayne Zachary, sociologist interested in 

group dynamics.
• Edges: interacted outside the club
• Studied a karate club for 3 years (’70-’72)
• Club formed factions around instructor (1) 

and Club President (34).
• Zachary was interested in if faction structure 

could be predicted.
• Method? 
• Network Flow! Applied Ford-Fulkerson, 

found group split was predicted by min-cut.

• W. W. Zachary (1977) “An information flow model for conflict and fission in small groups”, J Anthro Research



From Karate to Communities
• Zachary “objective function” for community 

detection: does algorithm predict how a group 
fissions when led by two rival leaders?

• W. W. Zachary (1977) “An information flow model for conflict and fission in small groups”, J Anthro Research



From Karate to Communities
• Zachary “objective function” for community 

detection: does algorithm predict how a group 
fissions when led by two rival leaders?

• Other objectives
• Modularity maximization:

• Has “resolution limit”

• Conductance (normalized min-cut):
• Produces balanced partitions; spectral guarantees

• MEJ Newman, M Girvan (2004) "Finding and evaluating community structure in networks,” Physical Rev E.
• S Fortunato, M Barthelemy (2007) "Resolution limit in community detection," PNAS.
• J Shi, J Malik (2000) “Normalized cuts and image segmentation,” IEEE Trans Pattern Analysis and Machine Intelligence.
• E Mossel, J Neeman, A Sly (2012) “Stochastic block models and reconstruction”
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detection: does algorithm predict how a group 
fissions when led by two rival leaders?

• Other objectives
• Modularity maximization:

• Has “resolution limit”

• Conductance (normalized min-cut):
• Produces balanced partitions; spectral guarantees

• Ability to recover Stochastic Block Model:
• Stylized model in absence of ground truth data

• MEJ Newman, M Girvan (2004) "Finding and evaluating community structure in networks,” Physical Rev E.
• S Fortunato, M Barthelemy (2007) "Resolution limit in community detection," PNAS.
• J Shi, J Malik (2000) “Normalized cuts and image segmentation,” IEEE Trans Pattern Analysis and Machine Intelligence.
• E Mossel, J Neeman, A Sly (2012) “Stochastic block models and reconstruction”

paa

pbb

pab

pab

nbna



From Karate to Communities

• MEJ Newman, M Girvan (2004) "Finding and evaluating community structure in networks,” Physical Rev E.
• S Fortunato, M Barthelemy (2007) "Resolution limit in community detection," PNAS.
• J Shi, J Malik (2000) “Normalized cuts and image segmentation,” IEEE Trans Pattern Analysis and Machine Intelligence.
• E Mossel, J Neeman, A Sly (2012) “Stochastic block models and reconstruction”
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• Zachary “objective function” for community 
detection: does algorithm predict how a group 
fissions when led by two rival leaders?

• Other objectives
• Modularity maximization:

• Has “resolution limit”

• Conductance (normalized min-cut):
• Produces balanced partitions; spectral guarantees

• Ability to recover Stochastic Block Model:
• Stylized model in absence of ground truth data

• Use in clustered network experiments?



Influence, instrumented
• Prob. of adoption depends on the number of friends who have adopted 

(Bass 1969, Granovetter 1978)
• What is the shape? Diminishing returns? Critical mass?
!

!
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• F Bass (1969) "A new product growth for model consumer durables". Management Science.
• M Granovetter (1978) "Threshold models of collective action," American Journal Sociology.
• D Watts, P Dodds (2007) “Influentials, Networks, and Public Opinion Formation” Journal of Consumer Research.



Influence, instrumented
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Figure 8: Probability of buying a book (DVD) given a number of incoming recommendations.

incoming recommendations on a particular book. The maximum was 30 incoming rec-
ommendations. For these reasons we cut-off the plot when the number of observations
becomes too small and the error bars too large.

We calculate the purchase probabilities and the standard errors of the estimates
which we use to plot the error bars in the following way. We regard each point as a
binomial random variable. Given the number of observations n, let m be the number
of successes, and k (k=n-m) the number of failures. In our case, m is the number of
people that first purchased a product after receiving r recommendations on it, and k
is the number of people that received the total of r recommendations on a product
(till the end of the dataset) but did purchase it, then the estimated probability of
purchasing is p̂ = m/n and the standard error sp̂ of estimate p̂ is sp̂ =

√

p(1 − p)/n.
Figure 8(a) shows that, overall, book recommendations are rarely followed. Even

more surprisingly, as more and more recommendations are received, their success
decreases. We observe a peak in probability of buying at 2 incoming recommendations
and then a slow drop. This implies that if a person doesn’t buy a book after the first
recommendation, but receives another, they are more likely to be persuaded by the
second recommendation. But thereafter, they are less likely to respond to additional

Backstrom et al. 2006: Probability of 
joining LiveJournal group

Leskovec et al. 2006: Probability of 
buying a DVD

• L Backstrom, D Huttenlocher, J Kleinberg, X Lan (2006) "Group formation in large social networks: membership, growth, and 
evolution," KDD.

• J Leskovec, LA Adamic, BA Huberman (2006) "The dynamics of viral marketing,"  EC.
• D Centola, V Eguiluz, M Macy (2007) "Cascade dynamics of complex propagation," Physica A.
• D Centola, M Macy (2007) "Complex contagions and the weakness of long ties" American Journal Sociology.



Influence, instrumented

k"(number"of"friends"in"the"community)"

Pr
ob

."o
f"j
oi
ni
ng
"

The Dynamics of Viral Marketing 19

2 4 6 8 100

0.01

0.02

0.03

0.04

0.05

0.06

Incoming Recommendations

Pr
ob

ab
ilit

y 
of

 B
uy

in
g

10 20 30 40 50 600

0.02

0.04

0.06

0.08

Incoming Recommendations

Pr
ob

ab
ilit

y 
of

 B
uy

in
g

(a) Books (b) DVD

1 2 3 4 5 6 7 80

0.05

0.1

0.15

0.2

Incoming Recommendations

Pr
ob

ab
ilit

y 
of

 B
uy

in
g

2 4 6 8 10 12 14 160

0.05

0.1

0.15

0.2

Incoming Recommendations

Pr
ob

ab
ilit

y 
of

 B
uy

in
g

(c) Music (d) Video

Figure 8: Probability of buying a book (DVD) given a number of incoming recommendations.

incoming recommendations on a particular book. The maximum was 30 incoming rec-
ommendations. For these reasons we cut-off the plot when the number of observations
becomes too small and the error bars too large.

We calculate the purchase probabilities and the standard errors of the estimates
which we use to plot the error bars in the following way. We regard each point as a
binomial random variable. Given the number of observations n, let m be the number
of successes, and k (k=n-m) the number of failures. In our case, m is the number of
people that first purchased a product after receiving r recommendations on it, and k
is the number of people that received the total of r recommendations on a product
(till the end of the dataset) but did purchase it, then the estimated probability of
purchasing is p̂ = m/n and the standard error sp̂ of estimate p̂ is sp̂ =

√

p(1 − p)/n.
Figure 8(a) shows that, overall, book recommendations are rarely followed. Even

more surprisingly, as more and more recommendations are received, their success
decreases. We observe a peak in probability of buying at 2 incoming recommendations
and then a slow drop. This implies that if a person doesn’t buy a book after the first
recommendation, but receives another, they are more likely to be persuaded by the
second recommendation. But thereafter, they are less likely to respond to additional

Backstrom et al. 2006: Probability of 
joining LiveJournal group

Leskovec et al. 2006: Probability of 
buying a DVD

• L Backstrom, D Huttenlocher, J Kleinberg, X Lan (2006) "Group formation in large social networks: membership, growth, and 
evolution," KDD.

• J Leskovec, LA Adamic, BA Huberman (2006) "The dynamics of viral marketing,"  EC.
• D Centola, V Eguiluz, M Macy (2007) "Cascade dynamics of complex propagation," Physica A.
• D Centola, M Macy (2007) "Complex contagions and the weakness of long ties" American Journal Sociology.

Complex contagion?



▪ Adoption as a simple function of ‘contact neighborhood’ size:
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Structural diversity
Conversion rate on invitations to Facebook as a function of graph, “f(G)”?
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• J Ugander, L Backstrom, C Marlow, J Kleinberg (2012) “Structural diversity in social contagion,” PNAS.



Is obesity contagious?

• N Christakis, J Fowler (2007) "The Spread of Obesity in a Large Social Network over 32 Years," New England J of Medicine.
• C Shalizi, A Thomas (2011) "Homophily and contagion are generically confounded in observational social network studies," 

Sociological Methods & Research.

The Spread of Obesity in a Large Social Network Over 32 Years

n engl j med 357;4 www.nejm.org july 26, 2007 375

poraneous obesity (changing from 0 to 1), using 
1000 randomly drawn sets of estimates from the 
coefficient-covariance matrix and assuming mean 
values for all other variables.29 All tests were 
two-tailed. The sensitivity of the results was as-
sessed with multiple additional analyses (see the 
Supplementary Appendix).

R esult s

Figure 1 depicts the largest connected subcom-
ponent of the social network in the year 2000. 
This network is sufficiently dense to obscure 
much of the underlying structure, although re-
gions of the network with clusters of obese or 
nonobese persons can be seen. Figure 2 illus-
trates the spread of obesity between adjoining 
nodes in a part of the network over time. A video 
(available with the full text of this article at www.
nejm.org) depicts the evolution of the largest 
component of the network and shows the prog-
ress of the obesity epidemic over the 32-year study 
period.

Figure 3A characterizes clusters within the 
entire network more formally. To quantify these 
clusters, we compared the whole observed net-

work with simulated networks with the same 
network topology and the same overall preva-
lence of obesity as the observed network, but with 
the incidence of obesity randomly distributed 
among the nodes (in what we call “random body-
mass–index networks”). If clustering is occur-
ring, then the probability that an alter will be 
obese, given that an ego is known to be obese, 
should be higher in the observed network than 
in the random body-mass–index networks. What 
we call the “reach” of the clusters is the point, in 
terms of an alter’s degree of separation from any 
given ego, at which the probability of an alter’s 
obesity is no longer related to whether the ego 
is obese. In all of the examinations (from 1971 
through 2003), the risk of obesity among alters 
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Figure 3. Effect of Social and Geographic Distance from 
Obese Alters on the Probability of an Ego’s Obesity in 
the Social Network of the Framingham Heart Study.

Panel A shows the mean effect of an ego’s social prox-
imity to an obese alter; this effect is derived by compar-
ing the conditional probability of obesity in the observed 
network with the probability of obesity in identical net-
works (with topology preserved) in which the same 
number of obese persons is randomly distributed. The 
social distance between the alter and the ego is repre-
sented by degrees of separation (1 denotes one degree 
of separation from the alter, 2 denotes two degrees of 
separation from the alter, and so forth). The examina-
tion took place at seven time points. Panel B shows 
the mean effect of an ego’s geographic proximity to an 
obese alter. We ranked all geographic distances (derived 
from geocoding) between the homes of directly connect-
ed egos and alters (i.e., just those pairs at one degree 
of separation) and created six groups of equal size. 
This figure shows the average distances for the six 
mileage groups: 1 denotes 0 miles (i.e., closest to the 
alter’s home), 2 denotes 0.26 mile, 3 denotes 1.5 miles, 
4 denotes 3.4 miles, 5 denotes 9.3 miles, and 6 denotes 
471 miles (i.e., farthest from the alter’s home). There is 
no trend in geographic distance. I bars for both panels 
show 95% confidence intervals based on 1000 simula-
tions. To convert miles to kilometers, multiply by 1.6.

“comparing the conditional probability of obesity in the observed network with the 
probability of obesity in identical networks (with topology preserved) in which the 
same number of obese persons is randomly distributed”



X(i)

A(i,j)Y(i,t-1)

Y(i,t)

X(j)

Y(j,t-1)

Y(j,t)

Z(j)Z(i)

Figure 1: Causal graph allowing for
latent variables (X) to influence both
manifest network ties Aij and manifest
behaviors (Y ).

Symbol Meaning
i, j Individuals
Z Observed Traits
X Latent Traits
Y Observed Outcomes

Figure 2: Notational guide to
terms used in this investigation.

or indeed X, to vary over time, as is readily verified by drawing the appropriate
graphs. Finally, adding a third individual to the graph would not help: even if
they were, say, assumed to be linked to i but not j or vice versa, Yi(t) Xi !

Aij and Yj(t� 1) Xj ! Aij would remain confounding paths.
How then might we get identifiability? It may be that very stringent para-

metric assumptions would su�ce, though we have not been able to come up
with any which would be su�ce7 Otherwise, we must keep X from being la-
tent, or, more precisely, either the components of X that influence Y must be
made observable (Figure 3a), or those parts of X which influence the social tie
formation A (Figure 3b). In either case the confounding arcs go away, and the
direct e↵ect of Yj(t � 1) on Yi(t) becomes identifiable.8 It is noteworthy that
the most successful attempts at explicit modeling that handle both homophily
and influence, as found in the work of Leenders (1995); Steglich et al. (2004)
involves, all at once, strong parametric (exponential-family) assumptions, plus
the assumption that observable covariates carry all of the dependence from X
to Y and A; the latter is also implicitly assumed by the matching methods of
Aral et al. (2009).

Whether we face the unidentifiable situation of Figure 1, or the identifiable
case of Figure 3, currently depends upon subject-matter knowledge rather than
statistical techniques. It may be possible to adapt algorithms, such as those in

7In particular, making all of the relations between continuous variables in Figure 1 linear,
with independent noise for each variable, is not enough — the confounding path continues to
prevent identifiability even in a linear model.

8Elwert and Christakis (2008) is another interesting approach. In e↵ect, they introduce
a third node, call it k, where they can assume that Yi is not influenced by Yk, but the
homophily is the same. Estimating the apparent influence of Yk on Yi then shows the extent
of confounding to due purely to homophily; if Yi is more dependent than this on Yj , the excess
is presumably due to actual causal influence.

7

• N Christakis, J Fowler (2007) "The Spread of Obesity in a Large Social Network over 32 Years," New England J of Medicine.
• C Shalizi, A Thomas (2011) "Homophily and contagion are generically confounded in observational social network studies," 

Sociological Methods & Research.
• E Bakshy et al. (2012) “The Role of Social Networks in Information Diffusion,” WWW.

Knock-out experiments
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or indeed X, to vary over time, as is readily verified by drawing the appropriate
graphs. Finally, adding a third individual to the graph would not help: even if
they were, say, assumed to be linked to i but not j or vice versa, Yi(t) Xi !

Aij and Yj(t� 1) Xj ! Aij would remain confounding paths.
How then might we get identifiability? It may be that very stringent para-

metric assumptions would su�ce, though we have not been able to come up
with any which would be su�ce7 Otherwise, we must keep X from being la-
tent, or, more precisely, either the components of X that influence Y must be
made observable (Figure 3a), or those parts of X which influence the social tie
formation A (Figure 3b). In either case the confounding arcs go away, and the
direct e↵ect of Yj(t � 1) on Yi(t) becomes identifiable.8 It is noteworthy that
the most successful attempts at explicit modeling that handle both homophily
and influence, as found in the work of Leenders (1995); Steglich et al. (2004)
involves, all at once, strong parametric (exponential-family) assumptions, plus
the assumption that observable covariates carry all of the dependence from X
to Y and A; the latter is also implicitly assumed by the matching methods of
Aral et al. (2009).

Whether we face the unidentifiable situation of Figure 1, or the identifiable
case of Figure 3, currently depends upon subject-matter knowledge rather than
statistical techniques. It may be possible to adapt algorithms, such as those in

7In particular, making all of the relations between continuous variables in Figure 1 linear,
with independent noise for each variable, is not enough — the confounding path continues to
prevent identifiability even in a linear model.

8Elwert and Christakis (2008) is another interesting approach. In e↵ect, they introduce
a third node, call it k, where they can assume that Yi is not influenced by Yk, but the
homophily is the same. Estimating the apparent influence of Yk on Yi then shows the extent
of confounding to due purely to homophily; if Yi is more dependent than this on Yj , the excess
is presumably due to actual causal influence.

7

Knock-out experiments
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or indeed X, to vary over time, as is readily verified by drawing the appropriate
graphs. Finally, adding a third individual to the graph would not help: even if
they were, say, assumed to be linked to i but not j or vice versa, Yi(t) Xi !

Aij and Yj(t� 1) Xj ! Aij would remain confounding paths.
How then might we get identifiability? It may be that very stringent para-

metric assumptions would su�ce, though we have not been able to come up
with any which would be su�ce7 Otherwise, we must keep X from being la-
tent, or, more precisely, either the components of X that influence Y must be
made observable (Figure 3a), or those parts of X which influence the social tie
formation A (Figure 3b). In either case the confounding arcs go away, and the
direct e↵ect of Yj(t � 1) on Yi(t) becomes identifiable.8 It is noteworthy that
the most successful attempts at explicit modeling that handle both homophily
and influence, as found in the work of Leenders (1995); Steglich et al. (2004)
involves, all at once, strong parametric (exponential-family) assumptions, plus
the assumption that observable covariates carry all of the dependence from X
to Y and A; the latter is also implicitly assumed by the matching methods of
Aral et al. (2009).

Whether we face the unidentifiable situation of Figure 1, or the identifiable
case of Figure 3, currently depends upon subject-matter knowledge rather than
statistical techniques. It may be possible to adapt algorithms, such as those in

7In particular, making all of the relations between continuous variables in Figure 1 linear,
with independent noise for each variable, is not enough — the confounding path continues to
prevent identifiability even in a linear model.

8Elwert and Christakis (2008) is another interesting approach. In e↵ect, they introduce
a third node, call it k, where they can assume that Yi is not influenced by Yk, but the
homophily is the same. Estimating the apparent influence of Yk on Yi then shows the extent
of confounding to due purely to homophily; if Yi is more dependent than this on Yj , the excess
is presumably due to actual causal influence.
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(a) (b)

Figure 2: An example of the Facebook News Feed interface for a hypothetical subject who has a link (high-
lighted in red) assigned to the (a) feed or (b) no feed condition.

user before she has the opportunity to share that content
herself. Additional unobserved correlations may arise due to
external influence via e-mail, instant messaging, and other
social networking sites. These causal relationships are illus-
trated in Figure 1. From the figure, one can see that all
unobservable correlations can be identified by blocking the
causal relationship between the Facebook feed and sharing.
Our experiment therefore randomizes subjects with respect
to whether they receive social signals about friends’ sharing
behavior of certain Web pages via the Facebook feed.

3.1 Assignment Procedure
Subject-URL pairs are randomly assigned at the time of

display to either the no feed or the feed condition. Stories
that contain links to a URL assigned to the no feed condi-
tion for the subject are never displayed in the subject’s feed.
Those assigned to the feed condition are not removed from
the feed, and appear in the subject’s feed as normal (Fig-
ure 2). Pairs are deterministically assigned to a condition at
the time of display, so any subsequent share of the same URL
by any of a subject’s friends is also assigned to the same con-
dition. To improve the statistical power of our results, twice
as many pairs were assigned to the no feed condition. Be-
cause removal from the feed occurs on a subject-URL basis,
and we include only a small fraction of subject-URL pairs in

the no feed condition, a shared URL is on average delivered
to over 99% of its potential targets.

All activity relating to subject-URL pairs assigned to ei-
ther experimental condition is logged, including feed expo-
sures, censored exposures, and clicks to the URL (from the
feed or other sources, like messaging). Directed shares, such
as a link that is included in a private Facebook message or
explicitly posted on a friend’s wall, are not a↵ected by the
assignment procedure. If a subject-URL pair is assigned to
an experimental condition, and the subject clicks on con-
tent containing that URL in any interface other than the
feed, that subject-URL pair is removed from the experiment.
Our experiment, which took place over the span of seven
weeks, includes 253,238,367 subjects, 75,888,466 URLs, and
1,168,633,941 unique subject-URL pairs.

3.2 Ensuring Data Quality
Threats to data quality include using content that was

or may have been previously seen by subjects on Facebook
prior to the experiment, content that subjects may have seen
through interfaces on Facebook other than feed, spam, and
malicious content. We address these issues in a number of
ways. First, we only consider content that was shared by
the subjects’ friends only after the start of the experiment.
This enables our experiment to accurately capture the first
time a subject is exposed to a link in the feed, and ensures

“Feed Condition” “No Feed Condition”

Knock-out experiments
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behaviors (Y ).

Symbol Meaning
i, j Individuals
Z Observed Traits
X Latent Traits
Y Observed Outcomes

Figure 2: Notational guide to
terms used in this investigation.

or indeed X, to vary over time, as is readily verified by drawing the appropriate
graphs. Finally, adding a third individual to the graph would not help: even if
they were, say, assumed to be linked to i but not j or vice versa, Yi(t) Xi !

Aij and Yj(t� 1) Xj ! Aij would remain confounding paths.
How then might we get identifiability? It may be that very stringent para-

metric assumptions would su�ce, though we have not been able to come up
with any which would be su�ce7 Otherwise, we must keep X from being la-
tent, or, more precisely, either the components of X that influence Y must be
made observable (Figure 3a), or those parts of X which influence the social tie
formation A (Figure 3b). In either case the confounding arcs go away, and the
direct e↵ect of Yj(t � 1) on Yi(t) becomes identifiable.8 It is noteworthy that
the most successful attempts at explicit modeling that handle both homophily
and influence, as found in the work of Leenders (1995); Steglich et al. (2004)
involves, all at once, strong parametric (exponential-family) assumptions, plus
the assumption that observable covariates carry all of the dependence from X
to Y and A; the latter is also implicitly assumed by the matching methods of
Aral et al. (2009).

Whether we face the unidentifiable situation of Figure 1, or the identifiable
case of Figure 3, currently depends upon subject-matter knowledge rather than
statistical techniques. It may be possible to adapt algorithms, such as those in

7In particular, making all of the relations between continuous variables in Figure 1 linear,
with independent noise for each variable, is not enough — the confounding path continues to
prevent identifiability even in a linear model.

8Elwert and Christakis (2008) is another interesting approach. In e↵ect, they introduce
a third node, call it k, where they can assume that Yi is not influenced by Yk, but the
homophily is the same. Estimating the apparent influence of Yk on Yi then shows the extent
of confounding to due purely to homophily; if Yi is more dependent than this on Yj , the excess
is presumably due to actual causal influence.
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(a) (b)

Figure 2: An example of the Facebook News Feed interface for a hypothetical subject who has a link (high-
lighted in red) assigned to the (a) feed or (b) no feed condition.

user before she has the opportunity to share that content
herself. Additional unobserved correlations may arise due to
external influence via e-mail, instant messaging, and other
social networking sites. These causal relationships are illus-
trated in Figure 1. From the figure, one can see that all
unobservable correlations can be identified by blocking the
causal relationship between the Facebook feed and sharing.
Our experiment therefore randomizes subjects with respect
to whether they receive social signals about friends’ sharing
behavior of certain Web pages via the Facebook feed.

3.1 Assignment Procedure
Subject-URL pairs are randomly assigned at the time of

display to either the no feed or the feed condition. Stories
that contain links to a URL assigned to the no feed condi-
tion for the subject are never displayed in the subject’s feed.
Those assigned to the feed condition are not removed from
the feed, and appear in the subject’s feed as normal (Fig-
ure 2). Pairs are deterministically assigned to a condition at
the time of display, so any subsequent share of the same URL
by any of a subject’s friends is also assigned to the same con-
dition. To improve the statistical power of our results, twice
as many pairs were assigned to the no feed condition. Be-
cause removal from the feed occurs on a subject-URL basis,
and we include only a small fraction of subject-URL pairs in

the no feed condition, a shared URL is on average delivered
to over 99% of its potential targets.

All activity relating to subject-URL pairs assigned to ei-
ther experimental condition is logged, including feed expo-
sures, censored exposures, and clicks to the URL (from the
feed or other sources, like messaging). Directed shares, such
as a link that is included in a private Facebook message or
explicitly posted on a friend’s wall, are not a↵ected by the
assignment procedure. If a subject-URL pair is assigned to
an experimental condition, and the subject clicks on con-
tent containing that URL in any interface other than the
feed, that subject-URL pair is removed from the experiment.
Our experiment, which took place over the span of seven
weeks, includes 253,238,367 subjects, 75,888,466 URLs, and
1,168,633,941 unique subject-URL pairs.

3.2 Ensuring Data Quality
Threats to data quality include using content that was

or may have been previously seen by subjects on Facebook
prior to the experiment, content that subjects may have seen
through interfaces on Facebook other than feed, spam, and
malicious content. We address these issues in a number of
ways. First, we only consider content that was shared by
the subjects’ friends only after the start of the experiment.
This enables our experiment to accurately capture the first
time a subject is exposed to a link in the feed, and ensures

“Feed Condition” “No Feed Condition”

Feed condition:

7.37x 
more likely to share.
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Do we need experiments?
• (Aral et al. 2009): Yahoo! Go service, 2007, n=27.4 million.

Is this social influence?

launched in July 2007 (Yahoo! Go) (Fig. 2A), and (iii) precise
attribute and dynamic behavioral data on users’ demographics,
geographic location, mobile device type and usage, and per-day
page views of different types of content (e.g., sports, weather, news,
finance, and photo sharing) from desktop, mobile, and Go plat-
forms. Much of these data, such as mobile device usage and page
views of different types of content, provide fine-grained proxies for
individuals’ tastes and preferences. The complete set of covariates
includes 40 time-varying and 6 time-invariant individual and net-
work characteristics. Taken together, the sampled users of the IM

network registered !14 billion page views and sent 3.9 billion
messages over 89.3 million distinct relationships. For details about
the service, the data, and descriptive statistics see the Data section
of the SI.

Evidence of Assortative Mixing and Temporal Clustering
We observe strong evidence of both assortative mixing and tem-
poral clustering in Go adoption. At the end of the 5-month period,
adopters have a 5-fold higher percentage of adopters in their local
networks (t " stat # 100.12, p $ 0.001; k.s. " stat # 0.06, p $ 0.001)
and receive a 5-fold higher percentage of messages from adopters
than nonadopters (t " stat # 88.30, p $ 0.001; k.s. " stat # 0.17,
p $ 0.001). Both the number and percentage of one’s local network
who have adopted are highly predictive of one’s propensity to adopt
(Logistic: !(#) # 0.153, p $ 0.001; !(%) # 1.268, p $ 0.001), and to
adopt earlier (Hazard Rate: !(#) # 0.10, p $ 0.001; !(%) # 0.003,
p $ 0.001). The likelihood of adoption increases dramatically with
the number of adopter friends (Fig. 2C), and correspondingly,
adopters are more likely to have more adopter friends (Fig. 2B),
mirroring prior evidence on product adoption in networks (29).

Adoption decisions among friends also cluster in time. We
randomly reassigned all Go adoption times (while maintaining the
adoption frequency distribution over time) and compared observed
dyadic differences in adoption times among friends to differences
among friends with randomly reassigned adoption times, a proce-
dure known as the ‘‘shuffle test’’ of social influence (25). Compared
with these randomly reassigned adoption times, friends are between
100% and 500% more likely to adopt within 2 days of each other,
after which the temporal interdependence of adoption among
friends disappears (Fig. 1D).

Evidence of assortative mixing and temporal clustering may
suggest peer influence in Go adoption, but is by no means conclu-
sive. Demographic, behavioral, and preference similarities could
simultaneously drive friendship and adoption, creating assortative
mixing. Such homophily could also explain the temporal clustering

Fig. 1. Diffusion of Yahoo! Go over time. (A–C and D–F) Two subgraphs of the
Yahoo! IM network colored by adoption states on July 4 (the Go launch date),
August 10, and October 29, 2007. For animations of the diffusion of Yahoo! Go
over time see Movies S1 and S2.

Fig. 2. Assortative mixing and temporal clustering. (A) The number of Go adopters per day from July 1 to October 29, 2007. (B) The fraction of adopters and
nonadopters with a given number of adopter friends. (C) The ratio of the likelihood of adoption given n adopter friends Pa(n) and the likelihood of adoption given
0adopter friendsPa(0)wherethenumberofadopter friends isassessedatthetimeofadoption. (D) Frequencyofobserveddyadicdifferences inadoptiontimesbetween
friends compared with differences in adoption times between friends with randomly reassigned adoption times. %t # ti " tj, where ti represents the time of i’s adoption.
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launched in July 2007 (Yahoo! Go) (Fig. 2A), and (iii) precise
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geographic location, mobile device type and usage, and per-day
page views of different types of content (e.g., sports, weather, news,
finance, and photo sharing) from desktop, mobile, and Go plat-
forms. Much of these data, such as mobile device usage and page
views of different types of content, provide fine-grained proxies for
individuals’ tastes and preferences. The complete set of covariates
includes 40 time-varying and 6 time-invariant individual and net-
work characteristics. Taken together, the sampled users of the IM

network registered !14 billion page views and sent 3.9 billion
messages over 89.3 million distinct relationships. For details about
the service, the data, and descriptive statistics see the Data section
of the SI.

Evidence of Assortative Mixing and Temporal Clustering
We observe strong evidence of both assortative mixing and tem-
poral clustering in Go adoption. At the end of the 5-month period,
adopters have a 5-fold higher percentage of adopters in their local
networks (t " stat # 100.12, p $ 0.001; k.s. " stat # 0.06, p $ 0.001)
and receive a 5-fold higher percentage of messages from adopters
than nonadopters (t " stat # 88.30, p $ 0.001; k.s. " stat # 0.17,
p $ 0.001). Both the number and percentage of one’s local network
who have adopted are highly predictive of one’s propensity to adopt
(Logistic: !(#) # 0.153, p $ 0.001; !(%) # 1.268, p $ 0.001), and to
adopt earlier (Hazard Rate: !(#) # 0.10, p $ 0.001; !(%) # 0.003,
p $ 0.001). The likelihood of adoption increases dramatically with
the number of adopter friends (Fig. 2C), and correspondingly,
adopters are more likely to have more adopter friends (Fig. 2B),
mirroring prior evidence on product adoption in networks (29).

Adoption decisions among friends also cluster in time. We
randomly reassigned all Go adoption times (while maintaining the
adoption frequency distribution over time) and compared observed
dyadic differences in adoption times among friends to differences
among friends with randomly reassigned adoption times, a proce-
dure known as the ‘‘shuffle test’’ of social influence (25). Compared
with these randomly reassigned adoption times, friends are between
100% and 500% more likely to adopt within 2 days of each other,
after which the temporal interdependence of adoption among
friends disappears (Fig. 1D).

Evidence of assortative mixing and temporal clustering may
suggest peer influence in Go adoption, but is by no means conclu-
sive. Demographic, behavioral, and preference similarities could
simultaneously drive friendship and adoption, creating assortative
mixing. Such homophily could also explain the temporal clustering

Fig. 1. Diffusion of Yahoo! Go over time. (A–C and D–F) Two subgraphs of the
Yahoo! IM network colored by adoption states on July 4 (the Go launch date),
August 10, and October 29, 2007. For animations of the diffusion of Yahoo! Go
over time see Movies S1 and S2.

Fig. 2. Assortative mixing and temporal clustering. (A) The number of Go adopters per day from July 1 to October 29, 2007. (B) The fraction of adopters and
nonadopters with a given number of adopter friends. (C) The ratio of the likelihood of adoption given n adopter friends Pa(n) and the likelihood of adoption given
0adopter friendsPa(0)wherethenumberofadopter friends isassessedatthetimeofadoption. (D) Frequencyofobserveddyadicdifferences inadoptiontimesbetween
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• (Aral et al. 2009): Yahoo! Go service, 2007, n=27.4 million.

more similar to one another and more dissimilar vis-à-vis the rest
of the population. Influence is also overestimated to a greater
degree in large clusters of adopters because in these clusters the
homophily effect is more pronounced. Large clusters of adopters
tend to be more similar to one another, creating greater risk of
overestimation of influence in the very cliques that seem to be the
most susceptible to contagious spread. We also find that different
subsets of the population, characterized by distributions of
individual and relational characteristics such as the strength of
ties and local clustering, display various susceptibilities to po-
tential influence.

Our work is not without limitations. First, although we measure
individuals’ dynamic characteristics, preferences, and behaviors in
great detail, the data are not necessarily comprehensive. Although
the matching process accounts for homophily on all observed
characteristics and those unobserved or latent characteristics that
are correlated with what we observe, unobserved and uncorrelated
latent homophily and unobserved confounding factors or contex-
tual effects (such as correlated exposure to advertising among
friends or information from common unobserved friends) may also
contribute to assortative mixing and temporal clustering. The
methods therefore establish upper bounds of influence estimates

that account for homophily, and limitations in observability are
likely to make our estimates of the homophily effect even more
conservative. Second, a distinct but related body of literature
examines selection and influence processes in the co-evolution of
behaviors and network structure in cases where tie formation is
likely to be a function of the behavior in question [see Snijders et
al. (34)]. In our context (and in many important contexts) link
formation is not likely to be driven by the behavior in question—Go
adoption is unlikely to drive friendship. However, extending these
methods to account for selection processes could prove useful in
cases where selection effects are more prevalent. Third, Yahoo! Go
2.0 does not exhibit direct network externalities and its adoption is
not likely to be driven by the desire to communicate with one’s
friends by using the application. We suspect that peer influence
effects differ for products with direct network externalities and
therefore encourage the application of these methods to influence
estimation in the adoption of such products.

Understanding the dynamic mechanisms that govern contagion
processes in networks is critical in numerous scientific disciplines
and for the development of effective social policy, public health
actions, and marketing strategies. A key challenge in identifying the
existence and strength of true contagions is to distinguish peer

Fig. 4. Influence and homophily effects in Go adoption. (A and B) All treated adopters (filled circles) and the number of treated adopters that can be explained by
homophily (open circles) per day (A) and cumulatively over time (B). (C–E) Treatment effects are then displayed when the average strength of ego’s ties to adopter
friends (measured by the volume of IM message traffic) is greater than and less than the median under random and propensity score matching (C); the clustering
coefficient in the network around ego is greater than and less than the median (D); and ego’s page views of news content are greater than and less than the
median (E).
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Causal inference & network effects

Fundamental problem: want to compare (average treatment effect, ATE), 
but can’t observe network in both states at once.

Universe A Universe B

• J Ugander, B Karrer, L Backstrom, J Kleinberg (2013) "Graph Cluster Randomization: Network Exposure to Multiple Universes," 
KDD.

• D Eckles, B Karrer, J Ugander (2014) "Design and analysis of experiments in networks: Reducing bias from interference," arXiv.
• S Athey, D Eckles, G Imbens (2015) "Exact P-values for Network Interference," arXiv.



Direct vs. indirect effects
Direct effect

Indirect effect Universe B

Universe A

• P Aronow, C Samii (2013) "Estimating average causal effects under interference between units," arXiv.
• C Manski (2013) "Identification of treatment response with social interactions," The Econometrics Journal.



Learning outcomes
1. Students should develop a familiarity with relevant structural 
properties of empirical social networks, and how different graph 
models capture or don’t capture these properties.

2. Students should be able to weigh advantages and disadvantages 
of different observational and experimental study designs that 
examine/test mechanisms in social systems.

3. Students should be able to employ structural measures for 
diverse ranking/predicting problems on graphs.

4. Students should be able to critically read research papers in the 
field to identify strengths and potential weaknesses, and to be able to 
design tests of potential weaknesses.


