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Neuroimaging studies of decision-making have generally related neural activity to objective measures (such as reward magnitude,

probability or delay), despite choice preferences being subjective. However, economic theories posit that decision-makers behave

as though different options have different subjective values. Here we use functional magnetic resonance imaging to show that

neural activity in several brain regions—particularly the ventral striatum, medial prefrontal cortex and posterior cingulate

cortex—tracks the revealed subjective value of delayed monetary rewards. This similarity provides unambiguous evidence that

the subjective value of potential rewards is explicitly represented in the human brain.

Since its inception, perceptual psychophysics has rested on the notion
that the objective intensity of a stimulus is distinct from the subjective
intensity that guides behavior1,2. If, for example, the number of
photons emitted by a light source is doubled, the perceived intensity
only increases by a factor of about 0.3 (ref. 3). Since the eighteenth
century, economics has rested on a similar observation4. If, for
example, the gain earned for an action is doubled, people behave as
though the desirability of this action has been increased by a much
smaller fraction. Economic theory calls the functions that relate
objective values and subjective desirabilities ‘preference functions’,
and, as in psychophysics, the form of these perceptual functions is
inferred from a person’s observed behavior.

Although the notion that choices reflect subjective desirability is
central to nearly all economic theories of decision-making, studies of
the neurobiological basis of decision-making have usually related
neural activity to more objective measures5–16 (but see refs. 17–25 for
exceptions). Thus, although perceptual neurobiologists have accumu-
lated evidence that the nervous system encodes subjective sensory
percepts, rather than objective reality3,26–29, there is less evidence that
subjective valuations, or preference functions, are encoded in the brain.

Decisions about monetary gains that will be available after different
delays clearly illustrate the role of preference functions. An individual
possessing a $20 check that can be cashed in one week might trade that
check for as little as $18 in cash, available immediately. If the check was
payable in one month, she might accept as little as $15 now in
exchange. The subjective value of a $20 gain declines as the imposed
delay to its receipt increases, a phenomenon known as temporal
discounting30–34. This decline in subjective value can differ across
individuals—a second person might accept as little as $10 immediately
in lieu of $20 in a month. Therefore, the objective amount and
delay associated with each gain alone cannot predict choice; an
idiosyncratic function that relates delay to subjective value is required.

This person-specific function, which describes the decline in subjective
value with increasing delays, is called a discount function. Whereas
temporal discounting has been widely studied behaviorally, there have
only been a few investigations of the neural mechanisms of inter-
temporal choice in humans22,35.

One of the most fruitful approaches for relating neural activity to
behavior (including behavior that depends on subjective experiences)
has been psychometric-neurometric comparisons26,27. This method
tests whether a particular, externally quantifiable variable influences
both psychophysical and neurobiological measurements in a similar
manner. One influential example of this approach found a close match
between monkeys’ perceptual decisions about motion direction and
predictions from simultaneously recorded neural activity in motion
area MT29. This approach, though, need not be restricted to directly
observable phenomena such as subjects’ choices; it can also be used to
relate indirectly revealed perceptual experiences or mental states to
neural activity3,26. Indeed, the earliest psychometric-neurometric
experiments showed that the subjective intensity of a somatosensory
stimulus and the activity of somatosensory nerves were both similar
power functions of objective stimulus intensity28. Used in this manner,
a psychometric-neurometric comparison does more than predict
behavior — it tests a specific relationship, or linking proposition36,
between psychological and physiological states. It tests the hypothesis
that the rate of neural activity (or some other candidate code) is linearly
related to, and thus can serve as a representation of, the magnitude of a
subjective mental experience.

Here we adapt the psychometric-neurometric technique to deter-
mine whether any brain areas encode the subjective value of delayed
monetary rewards to individual human decision-makers. Subjects
made repeated choices between immediate and delayed rewards
while we simultaneously measured neural activity using functional
magnetic resonance imaging (fMRI). We found a clear match between
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the subjective preferences of our subjects and neural activity in the
ventral striatum, medial prefrontal cortex and posterior cingulate
cortex. These data provide unambiguous evidence that idiosyncratic
preference functions are part of the neural mechanism for choice, as
opposed to being a purely descriptive (‘as if ’) theoretical construct, an
idea that has been widely proposed in economics37–39. From an
economic perspective, these findings indicate the existence of a neural
valuation process that is strikingly similar to the representations of
subjective values that are employed in revealed preference theories.
From a neurobiological perspective, these findings implicate particular
neural structures in the subjective valuation of outcomes during
decision-making.

RESULTS

Psychometric results

On each trial, subjects chose between a fixed immediate reward of $20
and a larger delayed reward that varied randomly from trial to trial
(Fig. 1). The value of the larger reward varied from $20.25 to $110, and
the delay varied from 6 h to 180 d. Before fMRI, subjects completed
three preliminary behavioral sessions. On the basis of the choices in
these behavioral sessions, we estimated a discount function for each
subject (Fig. 2a–i). Note that interpreting Figure 2g–i as pure discount
functions relies on the assumption that subjective value increases
linearly with the objective amount of money. Violations of this
assumption would not alter the fact that these curves reflect subjective
value, but would mean that they are better described as discounted
utility functions as they incorporate effects of amount as well as delay.
These individual preference curves, which express how a subjective
quantity (subjective value) changes as a function of an objective
variable (delay and monetary amount), are directly analogous to
sensory psychophysical functions2,3. Consistent with previous findings
in a range of species30–34, the discount curves for all subjects were well–
characterized by a hyperbolic function (median R2 from scanning
sessions ¼ 0.95, range ¼ 0.84–0.98):

SV ¼ 1

1 + kD
ð1Þ

where SV is subjective value (expressed here as a fraction of immediate
value), D is delay (in d) and k is a subject-specific constant. The best
fitting k parameter (the discount rate) varied widely across subjects. For
our most patient subject (k¼ 0.0005, Fig. 2a,d,g), an immediate gain of
$20 was less preferable than a gain of $21 in a month, while for
our most impulsive subject (k ¼ 0.1189, Fig. 2c,f,i), an immediate
gain of $20 was more preferable than a gain of $68 in a month.
Ten subjects (out of twelve) showed stable discount rates across
sessions, even though sessions occurred over a 1–6-month time
span (Supplementary Fig. 1 online). Only these ten subjects, with
relatively stable functions over the tested range, were included in the
fMRI experiment.

For comparison, we also fit each subject’s discount curve with a
single exponential function:

SV ¼ e�cD ð2Þ
as well as a sum of two exponential functions:

SV ¼ ðe�bD + e�dDÞ
2

; ð3Þ

where SV is subjective value and D is delay as in equation (1), and c, b
and d are subject-specific constants. Consistent with the literature, the
hyperbolic function equation (1) described the discount curves
better than the single parameter exponential function equation (2)
(Supplementary Fig. 2 online). The sum of two exponentials is one

formulation of an economic model that explains hyperbolic-like
discounting by the combined action of two systems32,35: one (b) that
discounts more steeply than the person’s resulting behavior, and a
second (d) that discounts less steeply than the person’s resulting
behavior. Not surprisingly, as this functional form can account for
hyperbolic-like discounting, the sum of exponentials function fit the
data better than the single parameter exponential, and as well as the
single parameter hyperbolic function (Supplementary Fig. 2).
Although other forms of the discount function have been pro-
posed32–34, for simplicity, we considered only these three widely
used forms.

Neurometric results

The ten subjects with stable discount functions completed the same
choice task as was used in the preliminary behavioral sessions during
fMRI. The behaviorally derived preference curves, which estimated
how subjective value declined with delay for each individual, were used
to find neural activity that correlated with subjective value. The
subjective value of the delayed reward on each trial was estimated by
multiplying the objective amount of the reward by the discount
fraction (estimated behaviorally) for that delay. This inferred subjective
value was then used as a regressor for brain activity. As the immediate
reward was constant, this analysis finds areas that track the sum of the
subjective values of both rewards, the difference in subjective value of
the two rewards, or the ratio of subjective values of the two rewards.

Early in the trial, there was a significant correlation between neural
activity and subject-specific subjective value (random effects group
analysis, voxel-wise P o 0.001, spatial extent 4 100 mm3) in the
ventral striatum, medial prefrontal cortex and posterior cingulate
cortex (Fig. 3a, Supplementary Table 1 online). The timing of this
effect (6–10 s into the trial) indicated that it arose from neuronal
activity during the visual presentation of the delayed reward option,
which we confirmed in a second model that assumed a hemodynamic

Early 
response

Response

No response

Time (s)

0 2 4 6 8 10 12 14

Immediate option 
(not shown)

$20
now

$40
30 days

Figure 1 Intertemporal choice task. The sequence of events within a trial is

shown. On each trial, subjects chose between an immediate and a delayed

reward. The immediate reward was the same ($20) on every trial and was
never presented visually. A red dot signaled the beginning of a trial, after

which the delayed reward for that trial was presented for 2 s and then

replaced again by the red dot. Subjects then had 6 s to consider their choice.

Throughout the trial, subjects were required to hold down a button, and they

indicated their decision by releasing or continuing to hold the button when

the dot turned green. For half of the session, a button release indicated a

choice of the delayed reward; for the other half, a button release indicated a

choice of the immediate reward. If subjects released the button before the

green light appeared, that trial was considered abandoned and removed

from the analysis. The inter-trial interval was 2 s for behavioral sessions

and 12 s for scanning sessions.
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response function (Supplementary Table 2 online). We did not find
any significant effects of subjective value during other portions of
the trial.

A region in which neural activity is correlated with the subjective
value of a delayed reward should show increased activity when the
objective amount of this reward increases, decreased activity when the
delay to this reward increases, and increased activity when the delayed
reward is chosen because it is more valuable. This is exactly what we
observed in these three regions (Fig. 3b–d, Supplementary Fig. 3
online and Supplementary Tables 3–5 online). Subjective value

accounted for activity in these regions better than did the objective
reward characteristics or the subjects’ choices: both the strength (peak
z-score) and spatial extent (cluster size in mm3) of the correlation with
subjective value were larger than those of these other variables (Fig. 3a–d
and Supplementary Tables 1–5). Of these other variables, only delay-
to-reward reached significance, and only in the medial prefrontal
cortex. Furthermore, taking all voxels identified by any of these four
variables (subjective value, monetary amount, delay and choice),
subjective value showed a stronger effect in pair-wise comparisons
with these other variables in 100% of voxels in the ventral striatum, at

Figure 3 Group analysis showing areas in which

activity is correlated with subjective value.

(a) Areas in which neural activity was correlated

with subjective value (during the 6–10-s window)

in a random-effects group analysis, overlayed on

the mean normalized anatomical image. Areas of

correlation can be seen in the medial prefrontal

cortex and posterior cingulate cortex (sagittal and

axial images) and in the ventral striatum (coronal

image). The color scale represents the t-value of

the contrast testing for a significant effect of

subjective value at time points 4–6 in the trial.

(b–e) Activity in the ventral striatum, medial

prefrontal cortex and posterior cingulate cortex
was better correlated with subjective value than

with (b) the objective amount of the delayed

reward, (c) the inverse delay of the delayed

reward, (d) the choice of the subject (chose

delayed 4 chose immediate), or (e) the value of

the delayed reward calculated using a single fixed

discount rate for all subjects (k ¼ 0.01, near the

median for our subjects). Areas in which activity

correlated with subjective value are shown in

yellow, areas in which activity correlated with the

other variables are shown in red, and areas of overlap are shown in orange. All maps are thresholded at P o 0.005 (uncorrected), spatial extent 4 100 mm3.

Data are shown in radiological convention, with the right hemisphere on the left.
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Figure 2 Subject-specific discount functions.

(a–c) Choice data from three subjects during a

single scanning session. Points are shaded

according to the imposed delay to the delayed

reward, and denote the fraction of times the

subject chose the delayed reward over an

immediate reward of $20 as a function of the

objective amount of the delayed reward. The
smooth curves are logistic functions fit to these

data. Data from different delays are slightly offset

so that all data are visible. (d–f) Indifference

points, plotted as a function of the imposed delay

to the delayed reward. Indifference points were

estimated from the logistic fit in a–c as the

amount for each delay at which the subject would

choose the immediate and delayed rewards with

equal frequency. The increase in indifference

amounts with delay was fit by a line with a fixed

intercept at $20. Delays are shaded as in a–c.

(g–i) Indifference points from (d–f), divided into

$20 to obtain a discount function. The decrease

in subjective value with delay was fit with a single-

parameter hyperbolic function. Delays are shaded

as in a–c. Data from three subjects are shown

(YH in a,d,g; JH in b,e,h; CH in c,f,i) to illustrate

the observed heterogeneity in discount functions

across subjects. CH was our most impulsive
subject (k ¼ 0.1189), YH was our most patient

subject (k ¼ 0.0005), and JH was near the

median discount rate (k ¼ 0.0097).
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least 85% of voxels in the posterior cingulate cortex, and at least 62% of
voxels in the medial prefrontal cortex. Idiosyncratic subjective value
also accounted for activity in these regions better than did assuming a
single fixed discount rate for all subjects (Fig. 3e and Supplementary
Table 6 online). The effect of value, assuming a single fixed discount

rate, only reached significance in the medial
prefrontal cortex, and the strength and spatial
extent of the correlation with subject-specific
subjective value was larger in both the ventral
striatum and the posterior cingulate cortex.
Finally, these effects of subjective value cannot
be explained by choice difficulty or corre-
sponding attentional demands. Using two
different indices of choice difficulty, we
found no significant effects in the ventral
striatum, medial prefrontal cortex or posterior
cingulate cortex (Supplementary Tables 7
and 8 online).

We also found significant effects of subjec-
tive value in single-subject analyses, for sub-

jects across the entire spectrum of discount rates. Despite marked
differences in the discount functions of the five example subjects shown
in Fig. 4a–e, ranging from patient (k ¼ 0.0042) to impulsive (k ¼
0.1189), activity in parts of the ventral striatum, medial prefrontal
cortex and posterior cingulate cortex were correlated with subjective

Figure 5 Single-subject time courses and neural

discount functions. (a–c) Data from three subjects

(HM, see Fig. 4a,f; RA, see Fig. 4c,h; and CH, see

Fig. 4e,j) are shown. Data were averaged over all

voxels that showed a correlation between activity

and subjective value in the ventral striatum,

medial prefrontal cortex and posterior cingulate

cortex (from the individual-level analyses shown in

Fig. 4), and then re-plotted as trial averages. Trial

averages are color-coded by the imposed delay to

the delayed reward. The 6–10-s window in which
we observed significant effects is shown in gray.

The largest standard error is shown on the right.

The arrows indicate the point in the trial at which

the delayed option was presented. (d–f) Data from

a–c, summed over the 6–10-s window and

re-plotted as a function of delay. The solid black

line represents average predicted activity at each

delay, from the fit of the subjective value regression using a subject-specific discount rate. Predicted activity is simply a scaled and shifted version of each

subject’s behavioral discount function. This regression is also used to scale the y-axis across subjects (see Supplementary Methods).
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Figure 4 Single-subject analyses showing areas in

which activity correlated with subjective value.

Data from five subjects are shown to illustrate that

subjective value effects were evident for subjects

spanning the entire range of behavioral discount

rates. (a–e) Discount functions for five subjects, as

measured behaviorally during a scanning session.

These subjects include one of our more patient
subjects (HM) and our most impulsive subject

(CH). (f–j) Maps showing areas in which neural

activity was correlated with subjective value in

each subject. The sagittal overlay shows areas of

activity in the medial prefrontal cortex, the coronal

overlay areas of activity in the ventral striatum,

and the axial overlay areas of activity in the

posterior cingulate cortex. The color scale

represents the t-value of the contrast testing for a

significant effect of subjective value at time points

4–6 in the trial. These maps are thresholded at

P o 0.01 (uncorrected), and the color scale

ranges from this value to P o 0.05 (corrected for

false discovery rate). Data are shown in radiological

convention, with the right hemisphere on the left.
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value in each subject (Fig. 4f–j). These same regions thus exhibited
a different pattern of activity across subjects, with each subject’s
idiosyncratic pattern of brain activity being predicted by that
subject’s idiosyncratic preferences (Fig. 5a–f, Supplementary Fig. 4
online). As a function of delay, both the subjective value of
delayed gains and the neural activity associated with those gains
decreased in a similar manner, whether subjects were more impulsive
and showed steeper decreases in both domains (Fig. 5c,f) or were
less impulsive and showed more gradual decreases in both domains
(Fig. 5a,d).

To quantify the degree to which these regions show a different
pattern of activity across subjects, we averaged activity from all voxels
that showed a subjective value effect in each of the three regions in each
subject, and then regressed neural activity on each trial (summed over
the 6–10-s window) separately against the imposed delay and objective
amount associated with the variable delayed reward. If neural activity
tracks subjective value across subjects, then the ratio of these two
regression coefficients (delay over amount, reversing the sign on the
negative delay coefficient) should be high for steep discounters and low

for shallow discounters, as delay has a stronger effect on subjective
value for more impulsive discounters. Consistent with this notion, this
ratio increased as the subject’s discount rate increased (Fig. 6a;
slopeVS ± standard error ¼ 0.77 ± 0.19, t-test, P ¼ 0.004; slopeMPFC

¼ 0.90 ± 0.21, P¼ 0.003; slopePCC ¼ 0.99 ± 0.31, P¼ 0.02; slopeALL ¼
0.87 ± 0.12, P o 10�7; VS, ventral striatum; MPFC, medial prefrontal
cortex; PCC, posterior cingulate cortex).

The preceding analysis demonstrates the correspondence between
neural activity and discount rate across subjects without making strong
assumptions about the functional form of the discount function. For a
more precise test, we assumed that the neural discount function has a
hyperbolic form and estimated the neural discount rate for these areas,
by refitting the regression model to the averaged time courses from the
correlated regions while allowing the discount rate parameter (k) to
vary. A psychometric-neurometric match requires both that the neural
discount rate increases with the subject’s behavioral discount rate and
that there is no difference between the two on average. By contrast, if
activity in these regions were best explained by the objective amount
(delay) of the delayed reward, then the neural discount rate should be

Subjective value ROIs Subjective value ROIs Subjective value ROIs

Unbiased value ROIs Unbiased value ROIs Unbiased value ROIs

–�
delay

�
amount

a b c
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Figure 6 Psychometric-neurometric comparisons. (a,d) A measure of the neural effect of delay is plotted against the subject’s behavioral discount rate for both
(a) ROIs defined on the basis of the subjective value regression and (d) value ROIs defined in an unbiased manner. The neural effect of delay used is the ratio

of the regression slope of neural activity against delay compared to that against amount. (b,e) The neural discount rate is plotted against the subject’s

behavioral discount rate for both (b) subjective value ROIs and (e) unbiased value ROIs. The neural discount rate is estimated using a nonlinear version of the

subjective value regression where k can vary. Colored lines show the robust linear fit for each ROI; black line shows the fit collapsed across all ROIs. Because

of their skewed distribution, the ratio and neural and behavioral discount rates are log-transformed. All three data points from the most patient subject

(bottom left) overlap in panels a,b,d and e. (c,f) Difference between neural discount rate and behavioral discount rate for both (c) subjective value ROIs and

(f) unbiased value ROIs. Colored triangles indicate the median differences for each ROI. Panels a–c exclude two and d–f exclude one subject-ROI pair where

an ROI could not be defined. Panel d also excludes two subject-ROI pairs where the correlation with amount was negative and e–f exclude five subject-ROI

pairs where no discount rate accounted for a significant amount of variance in neural activity (see Methods).
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consistently smaller (greater) than the behavioral discount rate. If
activity were best explained by a single fixed discount rate across all
subjects, then the neural discount rate should show no correlation with
the behavioral discount rate. Consistent with a psychometric-
neurometric match, the neural discount rate in these three regions
increased with the subject’s behavioral discount rate (Fig. 6b, slopeVS ±
standard error ¼ 0.58 ± 0.23, t-test, P¼ 0.04; slopeMPFC ¼ 0.75 ± 0.28,
P ¼ 0.03; slopePCC ¼ 0.80 ± 0.37, P ¼ 0.06; slopeALL ¼ 0.69 ± 0.16,
P ¼ 0.0002), and the difference between the neural discount rate and
the subject’s behavioral discount rate was centered on zero (Fig. 6c;
medianVS ¼ –0.0035, Wilcoxon signed rank test versus zero, P ¼ 0.30;
medianMPFC ¼ –0.0008, P ¼ 1; medianPCC ¼ –0.0006, P ¼ 1;
medianALL ¼ –0.0009, P ¼ 0.67).

As the previous analyses were conducted in regions-of-interest
(ROIs) that were defined by the subjective value regression, they merely
confirm that the regions identified exhibit a psychometric-neurometric
match. It would be even more compelling if such a match existed in
value-sensitive voxels in these regions that were selected in an unbiased
manner. We defined value-sensitive ROIs in these areas in a manner that
was unbiased with respect to the neural discount rate (see Methods). In
these ROIs, the negative effect of delay, relative to the positive effect of
amount, again increased with the subject’s behavioral discount rate
(Fig. 6d; slopeVS ± standard error ¼ 0.58 ± 0.36, t-test, P ¼ 0.15;
slopeMPFC ¼ 0.86 ± 0.36, P ¼ 0.046; slopePCC ¼ 0.90 ± 0.46, P ¼ 0.10;
slopeALL ¼ 0.78 ± 0.21, P ¼ 0.0009). In addition, consistent with a
psychometric-neurometric match, the neural discount rate in these
ROIs increased with the subject’s behavioral discount rate (Fig. 6e;
slopeVS ± standard error ¼ 0.51 ± 0.48, t-test, P ¼ 0.32; slopeMPFC ¼
0.73 ± 0.67, P ¼ 0.31; slopePCC ¼ 0.89 ± 0.66, P ¼ 0.23; slopeALL ¼
0.70 ± 0.31, P ¼ 0.03), and the difference between the neural and
behavioral discount rates was centered on zero (Fig. 6f; medianVS ¼
–0.0039, Wilcoxon signed rank test versus zero, P ¼ 0.50; medianMPFC

¼ –0.0008, P ¼ 0.95; medianPCC ¼ –0.0006, P ¼ 0.94; medianALL ¼
–0.0009, P ¼ 0.93; see Fig. 7a–d for a single-subject example).

Finally, to evaluate an alternative hypothesis about the role of these
regions in intertemporal choice32,35, we repeated the above analyses

using the b (steep exponential) and d (shallow exponential) value
functions from the sum of exponentials discount function fit to each
subject’s behavior. Perhaps not surprisingly, as the b and d value
functions are correlated to some degree with subjective value, the
brain regions in which activity is correlated with these three value
functions are largely overlapping (Supplementary Fig. 5 online,
Supplementary Tables 9–11 online). A psychometric-neurometric
comparison, though, provides a more precise test of which value
function best accounts for neural activity. As b and d are exponential
functions, we estimated the neural discount rates using a single
exponential (rather than hyperbolic) function, and compared this
rate to the behavioral discount rate estimated using a single
exponential and the exponential b and d discount rates estimated
behaviorally. In both sets of ROIs, the difference between the neural
discount rate and the behavioral discount rate was again centered on
zero (Fig. 8a,b; subjective value ROIs, median ¼ –0.0006, Wilcoxon
signed rank test versus zero, P ¼ 0.91; unbiased value ROIs, median ¼
–0.0006, P ¼ 0.77). By contrast, the difference between the neural
discount rate and b is centered to the left of zero, indicating that the
theoretically defined b term discounts more steeply than neural activity
in these areas (Fig. 8c,d; subjective value ROIs, median ¼ –0.0081,
P ¼ 0.001; unbiased value ROIs, median ¼ –0.0088, P ¼ 0.23), while
the difference between the neural discount rate and d is centered to
the right of zero, indicating that the theoretically defined d term
discounts less steeply than neural activity (Fig. 8e,f, subjective
value ROIs, median ¼ 0.0024, P o 0.0001; unbiased value ROIs,
median ¼ 0.0016, P ¼ 0.003). Thus, neural activity in the ventral
striatum, medial prefrontal cortex and posterior cingulate cortex tracks
the subjective value of rewards as determined from behavior, rather
than tracking a theoretically defined component of value that is more
impulsive (b) or more patient (d) than the person’s behavior.

DISCUSSION

Revealed preference theories in economics posit that decision-
makers behave as though different options have different subjective
values4,37–39. Here we have shown that neural activity in several brain

Figure 7 Single-subject example of unbiased

value ROIs and resulting neural discount

functions. (a) ROIs in the ventral striatum, medial

prefrontal cortex and posterior cingulate cortex are

shown for one subject (HM, same subject shown

in Fig. 4a,f and Fig. 5a,d), who demonstrated a

relatively close psychometric-neurometric match

in each region. Voxels were selected within these
anatomically defined regions which showed either

greater activity for trials involving the largest

objective amount of the delayed reward than for

trials involving the smallest amount, or greater

activity for trials involving the shortest delay to

the delayed reward than for those involving the

longest delay. (b–d) A psychometric-neurometric

comparison is shown for each ROI for this

subject. Mean neural activity and standard error,

summed over the 6–10-s window, are plotted as

a function of the imposed delay to the delayed

reward. The red line represents average predicted

activity at each delay, from the fit of the

subjective value regression using the subject’s

behavioral discount rate (k ¼ 0.0042). This

regression is also used to scale the y-axis across

ROIs (see Methods). The black line represents average predicted activity at each delay, from the fit of a nonlinear version of the subjective value regression

where the discount rate is allowed to vary. The discount rates estimated from the neural data are 0.0052 in the ventral striatum, 0.0010 in the medial

prefrontal cortex and 0.0099 in the posterior cingulate cortex.

b c d
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regions—particularly the ventral striatum, medial prefrontal cortex
and posterior cingulate cortex—tracks the revealed subjective value of
delayed monetary rewards. Activity in these regions increases as the
objective amount of a reward increases and decreases as the imposed
delay to a reward increases. Furthermore, across subjects, the neural
tradeoffs between amount and delay that are captured by the neuro-
metric discount functions match the behavioral tradeoffs between these
variables that are captured by the psychometric discount functions.
These results indicate that choosing between immediate and delayed
monetary rewards involves, at a physical level, comparing neurally
encoded subjective values.

Our suggestion that the ventral striatum, medial prefrontal cortex
and posterior cingulate cortex help to value immediate and delayed
outcomes is consistent with a large body of existing evidence. The
medial prefrontal and posterior cingulate cortices are part of a ‘baseline’
cortical system that is important for behavior mediated by internal
goals40,41. Furthermore, all three regions show increased activity after
subjects receive a reward or immediately before an expected reward.
This reward-related activity correlates with reward size and probabil-
ity6–16, and is greater for more preferred rewards than for less preferred
rewards17,18,20,21. In reinforcement learning tasks, activity in the medial
prefrontal cortex is correlated with the predicted reward value esti-
mated from behavioral models22,24. In choice tasks, these three areas
show greater activity during choices that involve large gains than during
choices that involve small gains13,23,42,43, as well as greater activity
during choices that involve small losses than during choices that involve
large losses44. Our results extend these findings in two ways. First, we
show that the ventral striatum, medial prefrontal and posterior
cingulate cortex also participate in the subjective valuation of delayed
rewards, rather than just of immediate gains and losses. Second, by
quantitatively estimating both behavioral and neural discount func-
tions, we show that activity in these regions precisely tracks the

subjective value of possible rewards during choice — in other words,
these regions exhibit a psychometric-neurometric match.

Our findings falsify a hypothesis regarding the neurobiological basis
of intertemporal choice35. In ref. 35, the authors hypothesized that these
same three regions — the ventral striatum, medial prefrontal cortex and
posterior cingulate cortex — form an impulsive neural system that
exclusively or primarily values immediate rewards. Drawing an analogy
to a valuable economic model32, they suggested that hyperbolic-like
discounting resulted from the action of this impulsive (b) system
working with a more patient (d) system, based in the lateral prefrontal
cortex and posterior parietal cortex. This conclusion was based princi-
pally on the finding that these three areas showed greater activity for
choices that involved an immediate reward than for choices that
involved only delayed rewards. However, this empirical finding, which
our current results do not challenge, is also compatible with the
hypothesis that activity in these regions represents the subjective value
of rewards at all delays, as the subjective value of immediate rewards is
greater than that of delayed rewards. Our observation that activity in
these regions varies when only the delayed reward changes falsifies the
hypothesis that these regions exclusively value immediate rewards.
Furthermore, our finding that neural activity in these regions tracks
changes in the subjective value of the delayed reward (determined by
subject-specific behavioral discount functions) shows that these regions
do not even primarily value immediate rewards, as the value implied by
neural activity is not more impulsive than the person’s behavior, as the
b�d hypothesis requires.

The fact that the ventral striatum, medial prefrontal cortex and
posterior cingulate cortex encode the subjective value of delayed
monetary rewards, whether those rewards are selected by pressing a
button or by taking no action, indicates that these regions are involved
in the valuation of reward outcomes rather than in movement control. If
this is correct, then these areas might provide input to structures that
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Figure 8 Neural activity tracks subjective value,

and not a more impulsive (b) or more patient (d)
estimate of value. (a,b) Difference between the

neural (single exponential) discount rate and the

behavioral (single exponential) discount rate,

calculated separately for each ROI in each

subject. The difference between neural and

behavioral discount rates is centered on zero

for both (a) ROIs defined on the basis of the

subjective value regression and (b) value ROIs

defined in an unbiased manner. (c,d) Difference

between the neural (single exponential) discount

rate and b, the steeper exponential from the sum

of exponentials discount function estimated

behaviorally. On average, b is larger than the

neural discount rate for both (c) subjective value
ROIs and (d) unbiased value ROIs. (e,f) Difference

between the neural (single exponential) discount

rate and d, the shallower exponential from the

sum of exponentials discount function estimated

behaviorally. On average, the neural discount rate

is larger than d for both (e) subjective value ROIs

and (f) unbiased value ROIs. Colored triangles in

each panel indicate the medians for each ROI

separately. These data exclude two subjects (six

subject-ROI pairs) for which the fit of the b-d
model collapsed to a single exponential function

(that is, b ¼ d). Panels b,d and f also exclude two

subject-ROI pairs for which no discount rate

accounted for a significant amount of variance in

neural activity (see Methods).
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encode the subjective value of particular actions, such as the movement-
related areas of the posterior parietal cortex5,19,45,46. Consistent with this
notion, activity in the parietal cortex was correlated with subjective
value in one analysis (Supplementary Table 2). Future studies should
more closely examine the interaction between outcome (or goods-
based23) and action values, as well as the process by which value signals
affect choice. The three regions we have focused on might carry out
different roles in this process, and such investigations might also shed
light on the function of other regions (such as the temporal-parietal
junction and insula) that were identified in some of our analyses.

A few issues suggest some caution when interpreting our results.
First, unlike ref. 35, we did not include an experimental condition that
involved choices between two delayed rewards. Future studies should
include such choices to verify that these regions do not encode
subjective value in a categorically different manner when an immediate
reward is not available. By varying both rewards, such studies could also
address how activity in these regions reflects the combination of
subjective values from multiple rewards presented simultaneously. In
this experiment, as one option was always constant, areas that imple-
mented different combination rules (addition, subtraction, division) or
that encoded the subjective value of the chosen option would all show
similar patterns of activity in our analyses. In addition, we only scanned
individuals with stable discount functions. It remains unknown what
activity in these regions looks like for individuals who show a different
kind of choice behavior — for example, those who follow a simple
heuristic or cut-off rule.

In the current study we adapted the method of psychometric-
neurometric comparisons, which has been widely used in perceptual
neurophysiology, for use with fMRI. Although this approach is related
to previous model-based fMRI studies22,24,25, few studies have directly
estimated neurometric functions from fMRI data. Our results indicate
that such psychometric-neurometric comparisons should prove fruitful
in studying the neural mechanisms of decision-making, and hold
promise for contributing to both neuroscience and economics. For
neuroscience, this method can link the function of different neural
systems with the hidden processes that are posited in quantitative
models of decision-making. For economics, this method provides
preliminary evidence that the physical mechanism that underlies inter-
temporal choice is strikingly similar to the most general class of revealed
preference models, resting on a continuous underlying scale for sub-
jective value. Although this similarity does not prove or disprove
theoretical models that make no predictions about the physical mechan-
isms of choice, it does underline the conviction of many that theoretical
models resting on a demonstrable physiological foundation will prob-
ably prove more robust than those that lack such a foundation.

METHODS
Subjects. Twelve paid volunteers participated in the experiment (7 women,

5 men, all right-handed, mean age ¼ 21.7 years). Ten (6 women, 4 men, mean

age ¼ 21.2 years) participated in both behavioral and scanning sessions. The

remaining two participated only in behavioral sessions, as their intertemporal

preferences were not stable. One of these subject’s choices reversed more than

once as the delayed amount increased, precluding estimation of an indifference

point; the other had significantly different discount rates in their last two

behavioral sessions. All participants gave informed consent in accordance with

the procedures of the University Committee on Activities Involving Human

Subjects of New York University.

Task. On each trial, subjects chose between a smaller amount of money paid

immediately and a larger amount paid at a later time (Fig. 1). The smaller

immediate amount was $20 on all trials. To simplify the display, only the

variable delayed option was presented on each trial. This option was

constructed using one of six delays (6 h–180 d) and one of six amounts

($20.25–$110). Thus there were 36 unique choices in each session. Each of these

was presented four times, for a total of 144 trials. Delays were the same for every

subject, but changed across sessions; amounts were chosen individually for each

subject on the basis of their behavior in previous sessions (and thus also varied

across sessions) to ensure that an approximately equal number of immediate

and delayed options were chosen. Subjects were not told how options would

change across sessions, and we did not observe any systematic shifts in subject’s

choices in response to these changes (Supplementary Fig. 1). Subjects indicated

their choices by releasing a button. For half of each session, subjects released the

button to select the fixed immediate reward, and for the other half subjects

released the button to select the variable delayed reward. A button release was

used, rather than a button press, to keep subjects alert on trials in which their

choice did not require a response. All subjects participated in three 1-h

behavioral sessions, and ten participated in one or two 2-h scanning sessions.

Sessions were completed over 1–6 months, with consecutive sessions separated

by at least 3 d. As people’s decisions involving real gains might differ from those

involving hypothetical gains47–49, subjects were paid according to four randomly

selected trials per session (except for the first behavioral session, which involved

only hypothetical choices), using commercially available pre-paid debit cards

(see Supplementary Methods online for details).

Imaging. Imaging data were collected with a Siemens Allegra 3T head-only

scanner equipped with a head coil from Nova Medical. T2*-weighted func-

tional images were collected using an EPI sequence (TR ¼ 2 s, TE ¼ 30 ms,

35 axial slices acquired in ascending interleaved order, 3 � 3 � 3 mm, 64 � 64

matrix in a 192-mm field of view). Each scan consisted of 236 images. The first

two images were discarded to avoid T1 saturation effects. There were eighteen

choice trials during each scan; each trial lasted 14 s with a 12-s inter-trial

interval (Fig. 1). Each subject completed 8–16 scans over 1–2 sessions, with

most subjects (n ¼ 7) completing eight scans in one session. High-resolution,

T1-weighted anatomical images were also collected using an MPRAGE

sequence (TR ¼ 2.5 s, TE ¼ 3.93 ms, TI ¼ 900 ms, flip angle ¼ 81,

144 sagittal slices, 1 � 1 � 1 mm, 256 � 256 matrix in a 256-mm field of view).

Data analysis. Functional imaging data were analyzed using BrainVoyager QX

(Brain Innovation), with additional analyses performed in MATLAB (Math-

Works). Functional images were sinc-interpolated in time to adjust for

staggered slice acquisition, corrected for any head movement by realigning all

volumes to the first volume of the scanning session using six-parameter rigid-

body transformations, and de-trended and high-pass filtered (cutoff of 3 cycles

per scan, or 0.0064 Hz) to remove low-frequency drift in the fMRI signal.

Images were then co-registered with each subject’s high-resolution anatomical

scan, rotated into the AC-PC plane, and normalized into Talairach space using

piecewise affine Talairach grid scaling. All spatial transformations of the

functional data used trilinear interpolation. For group-level random effects

analyses only, data were also spatially smoothed with a gaussian kernel of 8 mm

(full-width half-maximum).

Single-subject analyses were performed using multiple linear regression,

estimated with ordinary least-squares. As we did not want to assume a priori

where in a trial subjective value might have effects, we used a variant of a

‘finite-impulse response’ or ‘deconvolution’ model. This model included twelve

covariates that fit the mean activity, across all trials, for each of the first twelve

time points in a trial, and twelve covariates that fit the deviations from the

mean at each time point that were correlated with the subjective value of the

delayed reward across trials. Additional models (Supplementary Tables 3–11)

replaced the subjective value terms with an alternative variable (see Supple-

mentary Methods).

We performed group random-effects analyses using the summary statistics

approach, which tests whether the mean effect at each voxel is significantly

different from zero across subjects. On the basis of previous reports22,35, we

hypothesized a priori that the ventral striatum, medial prefrontal cortex and

posterior cingulate cortex would contribute to valuation during intertemporal

choice. Accordingly, we considered any activation in these regions significant if

it exceeded P o 0.001 (uncorrected), spatial extent 4 100 mm3. For display

purposes only, contrast maps were interpolated to 1 � 1 � 1 mm, and

thresholded at P o 0.005 (uncorrected), spatial extent 4 100 mm3.
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We defined anatomical ROIs in individual subjects in the medial prefrontal

cortex, posterior cingulate cortex and ventral striatum. Voxels were selected

within each ROI according to their functional responsiveness in single-subject

analyses. For the subjective value ROIs, all voxels were selected that exhibited a

subjective value effect at time points 4–6 of P o 0.05 (uncorrected). For the

unbiased value ROIs, all voxels were selected that exhibited greater activity

(time points 4–6, P o 0.05, uncorrected) for either the largest amount

compared to the smallest amount of the delayed reward across all delays, or

the shortest delay compared to the longest delay to the delayed reward across all

amounts. ROIs where no voxels met these functional criteria (n ¼ 3/60) were

omitted from further analyses.

Activity was averaged across all selected voxels within an ROI and summed

over time points 4–6 for each trial. The resulting data were regressed separately

against the objective amount of the larger delayed reward or the imposed delay

to the larger delayed reward, and also fit with a nonlinear version of the

subjective value regression to estimate the neural discount rate. For the

regression analyses in Figure 6, both the ratio of the delay and amount

regression coefficients and the neural discount rates were log transformed

because of their skewed distribution. Because the log transformation only

permits positive values, any negative values were replaced with the smallest

observed positive value. All negative values were close to zero, so constraining

values to be positive in this manner only reduced the range of ratios by less than

2.5% and the range of neural discount rates by less than 1%. ROIs for which the

amount regression coefficient was negative (n ¼ 2/57) or where no discount

rate accounted for a significant amount of the variance in neural activity (n ¼
5/57) were omitted from further analyses. Fits to the ROI data and the

regression analyses in Figure 6 both used robust regression to minimize the

effect of outliers. Robust regression was performed in MATLAB, which uses an

iteratively re-weighted least-squares algorithm with the weights at each iteration

determined by applying a bi-square function to the residuals from the previous

iteration. Greater detail regarding the statistical analyses of the fMRI data are

provided in the Supplementary Methods.

Note: Supplementary information is available on the Nature Neuroscience website.
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