5

THE RANDOM ENERGY MODEL

The random energy model (REM) is probably the simplest statistical physics
model of a disordered system which exhibits a phase transition. It is not supposed
to give a realistic description of any physical system, but it provides a workable
example on which various concepts and methods can be studied in full details.
Moreover, due the its simplicity, the same mathematical structure appears in a
large number of contexts. This is witnessed by the examples from information
theory and combinatorial optimization presented in the next two chapters. The
model is defined in Sec. 5.1 and its thermodynamic properties are studied in
Sec. 5.2. The simple approach developed in these section turns out to be useful in
a large varety of problems. A more detailed (and also more involved) study of the
low temperature phase is given in Sec. 5.3. Section 5.4 provides an introduction to
the so-called annealed approximation, which will be useful in more complicated
models.

5.1 Definition of the model

A statistical mechanics model is defined by a set of configurations and an energy
function defined on this space. In the REM there are M = 2V configurations
(like in a system of N Ising spins) to be denoted by indices 7, 7, -- € {1,...,2V}.
The REM is a disordered model: the energy is not a deterministic function but
rather a stochastic process. A particular realization of such a process is usually
called a sample (or instance). In the REM, one makes the simplest possible
choice for this process: the energies { E;} are i.i.d. random variables (the energy
of a configuration is also called an energy level). For definiteness we shall keep
here to the case where they have Gaussian distribution with zero mean and
variance N/2, but other distributions could be studied as well?. The pdf for the
energy I; of the state i is thus given by

P(E) = \/% e BN (5.1)

Given an instance of the REM, which consists of the 2V real numbers E;
drawn from the pdf (5.1), one assigns to each configuration ¢ a Boltzmann prob-
ability p; in the usual way:

by = % exp (~HE)) (52)

9The scaling with N of the distribution should be chosen in such a way that thermodynamic
potentials are extensive
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where 8 = 1/T is the inverse of the temperature, and the normalization factor
Z (the partition function) equals:

2N

Z =Y exp(—BE;) . (5.3)

Jj=1

Notice that Z depends upon the temperature 3, the ‘sample size’ N, and the
particular realization of the energy levels Fj ... Ey;. We dropped all these de-
pendecies in the above formula.

It is important not to be confused by the existence of two levels of probabili-
ties in the REM, as in all disordered systems. We are interested in the properties
of a probability distribution, the Boltzmann distribution (5.2), which is itself a
random object because the energy levels are random variables.

Physically, a particular realization of the energy function corresponds to a
given sample of some substance whose microscopic features cannot be controlled
experimentally. This is what happens, for instance, in a metallic alloy: only the
proportions of the various components can be controlled. The precise positions
of the atoms of each species are described as random variables. The expectation
value with respect to the sample realization will be denoted in the following by
E(-). For a given sample, Boltzmann’s law (5.2) gives the probability of occupying
the various possible configurations, according to their energies. The average with
respect to Boltzmann distribution will be denoted by (). In experiments one
deals with a single (or a few) sample(s) of a given disordered material. One
could therefore be interested in computing the various thermodynamic potential
(free energy Fy, internal energy Uy , or entropy Sy) for this given sample.
This is an extremely difficult task. However, we shall see that, as N — oo,
the probability distributions of intensive thermodynamic potentials concentrate
around their expected values:

. XN Xn
_ R > = .
J\}l—rgoP[N IE(N)‘_Q} 0 (5.4)

for any potential X (X = F,S,U,...) and any tolerance 6 > 0. The quantity X
is then said to be self-averaging. This essential property can be summarized
plainly by saying that almost all large samples “behave” in the same way '°.
Often the convergence is exponentially fast in N (this happens for instance in
the REM): this means that the expected value E Xy provide a good description
of the system already at moderate sizes.

5.2 Thermodynamics of the REM
In this Section we compute the thermodynamic potentials of the REM in the
thermodynamic limit N — oo. Our strategy consists first in estimating the

10T his is the reason why different samples of alloys with the same chemical composition have
the same thermodynamic properties

{eq:rem_zdef}
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microcanonical entropy density, which has been introduced in Sec. 2.4. This
knowledge is then used for computing the partition function Z to exponential
accuracy at large N.

5.2.1 Direct evaluation of the entropy

Let us consider an interval of energies Z = [Ne, N (e + 6)], and call N (g,e + d)
the number of configurations 7 such that E; € Z. Each energy ‘level’ E; belongs
to Z independently with probability:

N e+o
Pr= ,/f/ e N2 g (5.5)
™ £

Therefore N (e, + ¢) is a binomial random variable, and its expectation and
variance are given by:

EN(e,e+6)=2"Pr, VarN(e,e +0)=2" Pr[l — P1], (5.6)

Because of the appropriate scaling with N of the interval Z, the probability Pz
depends exponentially upon V. To exponential accuracy we thus have

EN(g,e+0) = exp {N max sa(x)} , (5.7)
z€[e,e+6]
VarN (e,e +9) .
EXG 2T op = o Y s o) (58)

where s,(z) = log2 — 22. Notice that s,(z) > 0 if and only if z € [—¢,, £.], with
e« = /log2.

The intuitive content of these equalities is the following: When ¢ is outside
the interval [—e,,e,], the typical density of energy levels is exponentially small
in N: for a generic sample there is no configuration at energy E; ~ Ne. On the
contrary, when e €] — &,,¢,[, there is an exponentially large density of levels,
and the fluctuations of this density are very small. This result is illustrated by
a small numerical experiment in Fig. 5.1. We now give a more formal version of
this statement.

Proposition 5.1 Define the entropy function

_ [sale) —log2 -2 if e[ <<,
s(e) = { —00 if le| > ex. (5.9)

Then, for any couple € and &, with probability one:

1
lim —logN(e,e+40)= sup s(z) . (5.10)
N—oo N z€e,e+4]

Proof: The proof makes a simple use of the two moments of the number of
energy levels in Z, found in (5.7,5.8).

{se:MicroREM}
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Fi1G. 5.1. Histogram of the energy levels for three samples of the random energy
model with increasing sizes: from left to right N = 10,15 and 20. Here we plot
N~1log N (e, e+ 6) versus ¢, with § = 0.05. The dashed curve gives the N — oo
analytical prediction (5.9).

Let us first assume that the interval [, e + ] is disjoint from [—e,, e.]. Then
EN(g,e +8) = e AV | with A = — SUP,cc o t6] Sa(®) > 0. As N(e,e +0) is an
integer, we have the simple inequality

PN (e,e +0) > 0] < EN(e, e +0) = e 4V, (5.11)

In words, the probability of having an energy level in any fixed interval outside
[—£., €4] is exponentially small in V. The inequality of the form (5.11) goes under
the name of Markov inequality, and the general strategy is sometimes called
the first moment method. A general introduction to this approach is provided

Assume now that the intersection between [e,e + §] and [—¢,,&.] is a finite
length interval. In this case N (g, & + §) is tightly concentrated around its expec-
tation EN (e,e + §) as can be shown using Chebyshev inequality. For any fixed

C > 0 one has
N(e,e +9) B VarN(e,e +0)2 . _pn
P{ EN(e,e+9) 1‘ g C} S CENGetoE ¢ 0 1Y

with B = sup,¢c . 44] Sa(2) > 0. A slight variation of the above reasoning is often
referred to as the second moment method, and will be further discussed in
App. 7777.

Finally, the statement (5.10) follows from the previous estimates through a
straightfoward application of Borel-Cantelli Lemma. [

Exercise 5.1 Large deviations: let Nyu:(d) be the total number of configu-
rations j such that |E;| > N(e, + 6), with ¢ > 0. Use Markov inequality to
show that the fraction of samples in which there exist such configurations is
exponentially small.

Besides being an interesting mathematical statement, Proposition 5.1 pro-
vides a good quantitative estimate. As shown in Fig. 5.1, already at N = 20, the
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outcome of a numerical experiment is quite close to the asymptotic prediction.
Notice that, for energies in the interval | — ., £, [, most of the discrepancy is due
to the fact that we dropped subexponential factors in EN(g,e + 4). It is easy
to show that this produces corrections of order ©(log N/N) to the asymptotic
behavior (5.10). The contribution due to fluctuations of N(e,e + ) around its
average is instead exponentially small in N.

5.2.2  Thermodynamics and phase transition
From the previous result on the microcanonical entropy density, we now com-

pute the partition function Zy(3) = Zf:l exp(—FE;). In particular, we are
interested in intensive thermodynamic potentials like the free entropy density
o(B) = limy_ oo [log Zn(B)]/N. We start with a fast (and loose) argument, using
the general approach outlined in Sec. 2.4. It amounts to discretizing the energy
axis using some step J, and counting the energy levels in each interval with
(5.10). Taking in the end the limit 6 — 0 (after the limit N — o0), one expects
to get, to leading exponential order:

Zn() = [ e exp [N (sa(e) - fe)] - (5.13)

—Ey

The rigorous formulation of the result can be obtained in analogy'! with the
general equivalence relation stated in Proposition 2.6. We find the free entropy
density:

¢(B) = max [sa(e) — B, (5.14)
EE[—Ex,Ex]

Notice that although every sample of the REM is a new statistical physics system,
which might have its own thermodynamic potentials, we have found that almost
all samples have the same free entropy density (5.14), and thus the same energy
,entropy, and free energy densities. More precisely, for any fixed tolerance 6 > 0,
we have |(1/N)log Zn(8) — ¢(B)| < 6 with probability approaching one as N —
00.

Let us now discuss the physical content of the result (5.14). The optimization
problem on the right-hand side can be solved through the geometrical construc-
tion illustrated in Fig. 5.2. One has to find a tangent to the curve s, () = log 2—e?
with slope 3 > 0. Call e,(8) = —0/2 the abscissa of the tangent point. If
€a(f) € [—€x,e4], then the max in Eq. (5.14) is realized in £,(5). In the other
case €,(f) < —e. (because 8 > 0) and the max is realized in —¢,. Therefore:

Proposition 5.2 The free energy of the REM, f(8) = —¢(B)/5, is equal to:

_lp ;
f(B) = {_@Og 2/8 Zg E gz: where 3. =2y/log2 . (5.15)

M The task is however more difficult here, because the density of energy levels (e, e + §) is
a random function whose fluctuations must be controlled.

{eq:rem_zcanon}
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Fic. 5.2. The ‘annealed’ entropy density s.(e) of the REM as a function of
the energy density €, see Eq. (5.14). The canonical entropy density s(3) is the
ordinate of the point with slope ds,/de = 8 when this point lies within the in-
terval [—e.,e,] (this is for instance the case at € = &1 in the plot), and s(58) =0
otherwise. This gives rise to a phase transition at g. = 24/log2. In the ‘an-
nealed’ approximation, the phase transition is not seen, and the s,(g) < 0 part
of the curve is explored, due to the contribution of rare samples to the partition
function, see Sec. 5.4.

This shows that a phase transition (i.e. a non-analyticity of the free energy den-
sity) takes place at the inverse critical temperature 8. = 1/T. = 2v/log2. Tt is
a second order phase transition in the sense that the derivative of f(/3) is con-
tinuous, but because of the condensation phenomenon which we will discuss in
Sec. 5.3 it is often called a ‘random first order’ transition. The other thermody-
namic potentials are obtained through the usual formulas, cf. Sec. 2.2. They are
plotted in Fig. 5.3.

The two temperature regimes -or ‘phases’- , § < or > [, have distinct quali-
tative properties which are most easily characterized through the thermodynamic
potentials.

e In the high temperature phase T > T, (or, equivalently, 8 < f.), the
energy and entropy densities are given by: u(8) = —3/2 and s(8) = log2—
(3% /4. the configurations which are relevant in Boltzmann’s measure are
those with energy E; ~ —N[3/2. There is an exponentially large number of
configurations having such an energy density (the microcanonical entropy
density s(g) is strictly positive at e = —(3/2), and the Boltzmann measure
is roughly equidistributed among such configurations.

In the high temperature limit 7 — oo (8 — 0) Boltzmann’s measure
becomes uniform, and one finds as expected u() — 0 (because nearly all

{fig:rem_sde}
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Fic. 5.3. Thermodynamics of the REM: the free energy density (full line),
the energy density (dashed line) and the entropy density (dotted line) are
plotted versus temperature T = 1/3. The phase transition takes place at
T, = 1/(2/Iog2) ~ 0.6005612.

configurations have an energy E;/N close to 0) and s — log 2.

e In the low temperature phase T' < T, (8 > f3.), the thermodynamic poten-
tials are constant: u(8) = —e, and s(3) = 0. The relevant configurations
are the ones with the lowest energy density, namely with E;/N ~ —e,. The
thermodynamics becomes dominated by a relatively small set of configura-
tions, which is not exponentially large in N (the entropy density vanishes).

Exercise 5.2 From the original motivation of the REM as a simple version
of a spin glass, one can define a generalization of the REM in the presence of
a magnetic field B. The 2V configurations are divided in N + 1 groups. Each
group is labelled by its ‘magnetization’ M € {—-N,—-N+2,...,N—2, N}, and
includes < N

(N+M)/2
Gaussian variables with variance y/N/2 as in (5.1), and mean EE; = —MB
which depends upon the group j belongs to. Show that there exists a phase
transition line 8.(B) in the plane 8, B such that:

lIEM [ tanh [B] when < (.(B),
N ~ | tanh [8.(B)B] when S > (.(B),

) configurations. Their energies {E;} are indipendent

(5.16)

=0 versus T' = 1/0.

and plot the magnetic susceptibility %| =
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Exercise 5.3 Consider a generalization of the REM where the pdf of energies,
instead of being Gaussian, is P(E) o« exp [—~C|E|°], where § > 0. Show that,
in order to have extensive thermodynamic potentials, one should scale C' as
C = N'7°C (i.e. the thermodynamic limit N — oo should be taken at fixed

C). Compute the critical temperature and the ground state energy density.
What is the qualitative difference between the cases 6 > 1 and 6 < 17

5.3 The condensation phenomenon

In the low temperature phase a smaller-than-exponential set of configurations
dominates Boltzmann’s measure: we say that the measure condensates onto
these configurations. This is a scenario that we will encounter again in some
other glass phases 2, and it usually leads to many difficulties in finding the
relevant configurations. In order to quantify the condensation, one can compute
a participation ratio Yy (/) defined from Boltzmann’s weights (5.2) as:

—2

2N
YnB) =D pd = Y e Y e (5.17)
J=1 J J

One can think of 1/Yy(0) as giving some estimate of the ‘effective’ number of
configurations which contribute to the measure. If the measure were equidis-
tributed on r levels, one would have Yy (5) = 1/r.

The participation ratio can be expressed as Y (3) = Zn(28)/Zn(5)?, where
Zn(0) is the partition function at inverse temperature $. The analysis in the
previous Section showed that Zn(8) = exp[N(log2 + 3?/4)] with very small
fluctuations (see discussion at the end of Sec. 5.2.1) when 3 < f3., while Zy () =
exp[NG+v/1og2] when > [.. This indicates that Yy (3) is exponentially small
in N for almost all samples in the high temperature phase 8 < (., in agreement
with the fact that the measure is not condensed at high temperatures. In the
low temperature phase, on the contrary, we shall see that Yy (3) is finite and
fluctuates from sample to sample.

The computation of EY (we drop hereafter its arguments N and () in the
low temperature phase is slightly involved. It requires having a fine control of
the energy levels E; with E;/N ~ —¢e,. We sketch here the main lines of com-
putation, and leave the details to the reader as an exercise. Using the integral
representation 1/Z2 = [ dt texp(—tZ), one gets (with M = 2~):

0o M
EY = M]E/ dt texp|[—20E;] exp [—tZe‘ﬁEi] = (5.18)
0 i=1
= M/Oodt ta(t) [1 —bH)M1, (5.19)
0

12We also call the low temperature phase of the REM a glass phase, by analogy with similar
situations that we will encounter later on
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where
/ dP(E) exp [-28E —te "F] (5.20)
b(t) = /dP(E) [1 — exp(—te PP, (5.21)
and P(FE) is the Gaussian distribution (5.1). For large N the leading contribu-

tions to EY come from the regions E = —Neg+u and t = 0 exp(—Nfeg), where
u and 6 are finite as N — oo, and we defined

€0 = €« (5.22)
Notice that £y has been fixed by the condition 2V P(—Ngy) = 1 and can be
thought as a refined estimate for the energy density of the lowest energy config-
uration. In the region E = —Ngg + u, the function P(E) can be substituted by
2= Nebfet  One gets:

1 ang T Beu—apu—zepu _ €O Be/B—2
a(t) ~ E“/ du ePeu—2Pu—ze 70 — BT I - B/B),
1
Beu _ —Bu - _ Be/B _
M/ du e’ [1 — exp(—=z )] M3 z r'(—p./8), (5.23)

where I'(z) is Euler’s Gamma function. Notice that the substitution of 27V e/
to P(E) is harmless because the resulting integrals (5.23) and (5.23) converge at
large u.

At large N, the expression [1 — b(¢)]®~1 in (5.19) can be approximated by
e~ Mb(") " and one finally obtains:

[ee]
EY = M/ dt ta(t) e”Mb® = (5.24)
0

:%F <2—>/dz ZPe/B—1 exp {;F (—%) zﬂc/ﬂ =1-05./8,

where we used the approximate expressions (5.23), (5.23) and equalities are un-
derstood to hold up to corrections which vanish as N — oo.
We obtain therefore the following:

Proposition 5.3 In the REM, the expectation value of the participation ratio

EY — {0 when T > T, (5.25)

1 -T/T. when T < T.

This gives a quantitative measure of the degree of condensation of Boltzmann’s
measure: when T decreases, the condensation starts at the phase transition Tt

{prop:condensation_rem}
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temperature. At lower temperatures the participation ratio Y increases, meaning
that the measure concentrates onto fewer and fewer configurations, until at 7' =0
only one configuration contributes and Y = 1.

With the participation ratio we have a first qualitative and quantitative char-
acterization of the low temperature phase. Actually the energies of the relevant
configurations in this phase have many interesting probabilistic properties, to
which we shall return in Chapter ?7.

5.4 A comment on quenched and annealed averages

In the previous section we have found that the self-averaging property holds in
the REM, which allowed us to discuss the thermodynamics of a generic sample.

Self-averaging of the thermodynamic potentials is a very frequent property,
but in more complicated systems it is often difficult to compute them exactly.
We discuss here an approximation which is frequently used in such cases, the
so-called annealed average. When the free energy density is self averaging, the
value of fx is roughly the same for almost all samples and can be computed as
its expectation, called the quenched average fy q:

T
vaq = EfN = 7NE10g ZN (526)

Since fy is proportional to the logarithm of the partition function, this average
is in general hard to compute and a much easier task is to compute the annealed
average:

INa= f% log(E Z) (5.27)

Let us compute it for the REM. Starting from the partition function (8.1), we
find:

2N
EZy=E e PP = oVEe PP = oNNOY/A (5.28)
=1

vielding fx.a(8) = —5/4 — log2/f.

Let us compare this with the correct free energy density found in (5.15).
The annealed free energy density f,(0) is always smaller than the correct one,
as it should because of Jensen inequality (remember that the logarithm is a
concave function). In the REM, and a few other particularly simple problems,
it gives the correct result in the high temperature phase T" > T, but fails to
identify the phase transition, and predicts wrongly a free energy density in the
low temperature phase which is the analytic prolongation of the one at T" > T..
In particular, it finds a negative entropy density s,(3) = log2 — 3%/4 for T < T,
(see Fig. 5.2).

A negative entropy is impossible in a system with finite configuration space,
as can be seen from the definition of entropy. It thus signals a failure, and the
reason is easily understood. For a given sample with free energy density f, the
partition function behaves as Zny = exp(—fN fn). Self-averaging means that fy
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has small sample to sample fluctuations. However these fluctuations exist and are
amplified in the partition function because of the factor N in the exponent. This
implies that the annealed average of the partition function can be dominated by
some very rare samples (those with an anomalously low value of fy). Consider
for instance the low temperature limit. We already know that in almost all
samples the configuration with the lowest energy density is found at E; ~ —Ne,.
However, there exist exceptional samples with one configuration with a smaller
minimum FE; = —Ne, € > e,. These samples are exponentially rare (they occur
with a probability = 2Ve~N¢"), they are irrelevant as far as the quenched average
is concerned, but they dominate the annealed average.

Let us add a short semantic note. The terms ‘quenched’ and ‘annealed’ orig-
inate in the thermal processing of materials used for instance in metallurgy of
alloys: a quench corresponds to preparing a sample by bringing it suddenly from
high to low temperatures. Then the position of the atoms do not move: a given
sample is built from atoms at some random positions (apart from some small
vibrations). On the contrary in an annealing process one gradually cools down
the alloy, and the various atoms will find favorable positions. In the REM, the
energy levels E; are quenched: for each given sample, they take certain fixed
values (like the positions of atoms in a quenched alloy). In the annealed approx-
imation, one treats the configurations ¢ and the energies F; on the same footing:
they adopt a joint probability distribution which is given by Boltzmann’s dis-
tribution. One says that the E; variables are thermalized (like the positions of
atoms in an annealed alloy).

In general, the annealed average can be used to find a lower bound on the
free energy in any system with finite configuration space. Useful results can be
obtained for instance using the two simple relations, valid for all temperatures
T =1/0 and sizes N:

INg(T) > fna(T) d%i‘}m <0. (5.29)
The first one follows from Jensen as mentioned above, while the second can be
obtained from the positivity of canonical entropy, cf. Eq. (2.22), after averaging
over the quenched disorder.
In particular, if one is interested in optimization problems (i.e. in the limit
of vanishing temperature), the annealed average provides the general bound:

Proposition 5.4 The ground state energy density

un (T = 0) = %E Lrgg}v E(x)] . (5.30)

satisfies the bound un(0) > maxre(o,o0) fN,a(T)

Proof: Consider the annealed free energy density fn o(T) as a function of the
temperature T = 1/3. For any given sample, the free energy is a concave function
of T because of the general relation (2.23). It is easy to show that the same

{eq:IneqAnnealed}

{propo:annealed_bound}
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property holds for the annealed average. Let T, be the temperature at which
In,a(T) achieves its maximum, and fy , be its maximum value. If T\, = 0, then
un(0) = fnq(0) > fX .- It T >0, then

UN(O) = qu(O) 2 fN,q(T*) Z fa(T*) (531)

where we used the two inequalities (5.29). O
In the REM, this result immediately implies that w(0) > maxg[—3/4 —
log2/0] = —/log 2, which is actually a tight bound.

5.5 Notes
Notes

The REM was invented by Derrida in 1980 (Derrida, 1980), as an extreme case
of some spin glass system. Here we have followed his original solution which
makes use of the microcanonical entropy. Many more detailed computations can
be found in (Derrida, 1981), including the solution to Exercise 2.

The condensation formula (5.3) appears first in (Gross and Mézard, 1984) as
an application of replica computations which we shall discuss in Chapter ??. The
direct estimate of the participation ratio presented here and its fluctuations were
developed in (Mézard, Parisi and Virasoro, 1985) and (Derrida and Toulouse,
1985). We shall return to some fascinating (and more detailed) properties of the
condensed phase in Chapter 77.

Exercise 3 shows a phase transition which goes from second order for § > 1
to first order when § < 1. Its solution can be found in (Bouchaud and Mézard,
1997).

As a final remark, let us notice that in most of the physics litterature, peo-
ple don’t explicitely write down all the rigorous mathematical steps leading for
instance to Eq. (5.13), preferring a smoother presentation which focuses on the
basic ideas. In much more complicated models it may be very difficult to fill the
corresponding mathematical gaps. The recent book by Talagrand (Talagrand,
2003) adopts a fully rigorous point of view, and it starts with a presentation of
the REM which nicely complements the one given here and in Chapter ?7.
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RANDOM CODE ENSEMBLE

As already explained in Sec. 1.6, one of the basic problem of information theory
consists in communicating reliably through an unreliable communication chan-
nel. Error correcting codes achieve this task by systematically introducing some
form of redundancy in the message to be transmitted. One of the major break-
through accomplished by Claude Shannon was to understand the importance
of codes ensembles. He realized that it is much easier to construct ensembles
of codes which have good properties with high probability, rather than exhibit
explicit examples achieving the same performances. In a nutshell: ‘stochastic’
design is much easier than ‘deterministic’ design.

At the same time he defined and analyzed the simplest of such ensembles,
which has been named thereafter the random code ensemble (or, sometimes,
Shannon ensemble). Despite its great simplicity, the random code ensemble has
very interesting properties, and in particular it achieves optimal error correcting
performances. It provides therefore a prove of the ‘direct’ part of the channel
coding theorem: it is possible to communicate with vanishing error probability
as long as the communication rate is smaller than the channel capacity. Fur-
thermore, it is the prototype of a code based on a random construction. In the
following Chapters we shall explore several examples of this approach, and the
random code ensemble will serve as a reference.

We introduce the idea of code ensembles and define the random code ensemble
in 6.1. Some properties of this ensemble are described in Sec. 6.2, while its
performances over the BSC are worked out in Sec. 6.3. We generalize these
results to a general discrete memoryless channel in Sec. 6.4. Finally, in Sec. 6.5
we show that the random code ensemble is optimal by a simple sphere-packing
argument.

6.1 Code ensembles

An error correcting code is defined as a couple of encoding and decoding maps.
The encoding map is applied to the information sequence to get an encoded
message which is transmitted through the channel. The decoding map is ap-
plied to the (noisy) channel output. For the sake of simplicity, we shall assume
throughout this Chapter that the message to be encoded is given as a sequence
of M bits and that encoding produces a redundant sequence N > M of bits.
The possible codewords (i.e. the 2 points in the space {0, 1} which are all the
possible outputs of the encoding map) form the codebook €x. On the other
hand, we denote by ) the output alphabet of the communication channel. We
use the notations

105
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z:{0,1}™ — {0,1}  encoding map, (6.1)

z4: YV - {0,1}" decoding map. (6.2)

Notice that the definition of the decoding map is slightly different from the
one given in Sec. 1.6. Here we consider only the difficult part of the decoding
procedure, namely how to reconstruct from the received message the codeword
which was sent. To complete the decoding as defined in Sec. 1.6, one should get
back the original message knowing the codeword, but this is supposed to be an
easy task (encoding is assumed to be injective).

The customary recipe for designing a code ensemble is the following: (i)
Define a subset of the space of encoding maps (6.1); (i4) Endow this set with
a probability distribution; (¢#¢) Finally, for each encoding map in the ensemble,
define the associated decoding map. In practice, this last step is accomplished
by declaring that one among a few general ‘decoding strategies’ is adopted. We
shall introduce a couple of such strategies below.

Our first example is the random code ensemble (RCE). Notice that there
exist 2V2" possible encoding maps of the type (6.1): one must specify N bits
for each of the 2™ codewords. In the RCE, any of these encoding maps is picked
with uniform probability. The code is therefore constructed as follows. For each
of the possible information messages m € {0,1}, we obtain the corresponding

(m) _.(m) (m))

codeword z(™ = (xy 7,y 7, ...,xy ') by throwing N times an unbiased coin:

the i-th outcome is assigned to the i-th coordinate acgm).

Exercise 6.1 Notice that, with this definition the code is not necessarily in-
jective: there could be two information messages m; # ms with the same
codeword: (™) = £(™2)_ This is an annoying property for an error correcting
code: each time that we send either of the messages m; or ms, the receiver will
not be able to distinguish between them, even in the absence of noise. Happily
enough these unfortunate coincidences occur rarely, i.e. their number is much
smaller than the total number of codewords 2". What is the expected number
of couples m1, mgy such that (™) = z("2)? What is the probability that all
the codewords are distinct?

Let us now turn to the definition of the decoding map. We shall introduce here
two among the most important decoding schemes: word MAP (MAP stands here
for maximum a posteriori probability) and symbol MAP decoding, which can be
applied to most codes. In both cases it is useful to introduce the probability
distribution P(z|y) for z to be the channel input conditional to the received
message y. For a memoryless channel with transition probability Q(y|z), this
probability has an explicit expression as a consequence of Bayes rule:

Plaly) = Q(yilz:) Po(z) . (6.3)

||::2
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Here Z(y) is fixed by the normalization condition ), P(z|y) =1, and Py(z) is
the a priori probability for z to be the transmitted message. Throughout this
book, we shall assume that the sender choses the codeword to be transmitted
with uniform probability. Therefore Py(z) = 1/2™ if z € €y and Py(z) = 0
otherwise. In formulas

Py(x) (zely). (6.4)

1
=1
€|
It is also useful to define the marginal distribution P (z;|y) of the i-th bit of the
transmitted message conditional to the output message. This is obtained from

the distribution (6.3) by marginalizing over all the bits z; with j # i:

PO (xily) = Plaly), (6.5)

Z\;

where we introduced the shorthand z,; = {z; : j # i}. Word MAP decod-

ing outputs the most probable transmitted codeword, i.e. it maximizes' the
distribution (6.3)

% (y) = arg max P(zly). (6.6)

A strongly related decoding strategy is maximum-likelihood decoding. In this
case one maximize Q(y|z) over z € €y. This coincide with word MAP decoding
whenever the a priori distribution over the transmitted codeword Py (2) is taken
to be uniform as in Eq. (6.4).

Symbol (or bit) MAP decoding outputs the sequence of most probable
transmitted bits, i.e. it maximizes the marginal distribution (6.5):

£() = (sgmax POl g PV oxly)) - (6)

Exercise 6.2 Consider a code of block-length N = 3, and codebook size |€| =
4, with codewords z(M = 001, 2z = 101, 2z = 110, 2z = 111. What
is the code rate? This code is used to communicate over a binary symmetric
channel (BSC) with flip probability p < 0.5. Suppose that the channel output
is y = 000. Show that the word MAP decoding finds the codeword 001. Now
apply symbol MAP decoding to decode the first bit #1: Show that the result
coincides with the one of word MAP decoding only when p is small enough.

It is important to notice that each of the above decoding schemes is optimal
with respect a different criterion. Word MAP decoding minimizes the average

13We do not specify what to do in case of ties (i.e. if the maximum is degenerate), since
this is irrelevant for all the coding problems that we shall consider. The scrupulous reader can
chose his own convention in such cases.
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block error probability Py already defined in Sec. 1.6.2. This is the probability,
with respect to the channel distribution Q(y|z), that the decoded codeword z(y)
is different from the transmitted one, averaged over the transmitted codeword:

= g ZIP’ (6.8)

zel

Bit MAP decoding minimizes the bit error probability, or bit error rate
(BER) Py,. This is the fraction of incorrect bits, averaged over the transmitted
codeword:

= 1q Z Z y) # ;] . (6.9)

zGC =1

We leave to the reader the easy exercise to show that word MAP and symbol
MAP decoding are indeed optimal with respect to the above criteria.

6.2 Geometry of the Random Code Ensemble

We begin our study of the random code ensemble by first working out some of its
geometrical properties. A code from this ensemble is defined by the codebook, a
set €y of 2M points (all the codewords) in the Hamming space {0, 1}. Each
one of these points is drawn with uniform probability over the Hamming space.
The simplest question one may ask on €y is the following. Suppose you sit on
one of the codewords and look around you. How many other codewords are there
at a given Hamming distance!4?

This question is addressed through the distance enumerator N, (d) with
respect to a codeword z, € €y, defined as the number of codewords in z € €y
whose Hamming distance from z, is equal to d: d(z, z,) = d.

We shall now compute the typical properties of the weight enumerator for
a random code. The simplest quantity to look at is the average distance enu-
merator EN,, ( ), the average being taken over the code ensemble. In general
one should further specify which one of the codewords is z,. Since in the RCE
all codewords are drawn independently, and each one with uniform probability
over the Hamming space, such a specification is irrelevant and we can in fact
fix z, to be the all zeros codeword, z, = 000 --00. Therefore we are asking
the following question: take 2™ — 1 point at random with uniform probability in
the Hamming space {0, 1}V; what is the average number of points at distance d
form the 00 - -- 0 corner? This is simply the number of points (2 — 1), times the

fraction of the Hamming space ‘volume’ at a distance d from 000---0 (2= (1;[))

ENg, (d) = @M —1)27N (‘Z) = QNIR-14+H209)] (6.10)

14The Hamming distance of two points z,y € {0,1}¥ is the number of coordinates in
which they differ.
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Fi1c. 6.1. Growth rate of the distance enumerator for the random code ensemble
with rate R = 1/2 as a function of the Hamming distance d = N§.

In the second expression we introduced the fractional distance 6 = d/N and
the rate R = M/N, and considered the N — oo asymptotics with these two
quantities kept fixed. In Figure 6.1 we plot the function R — 1 + H2(6) (which
is sometimes called the growth rate of the distance enumerator). For ¢ small
enough, § < gy, the growth rate is negative: the average number of codewords
at small distance from z, vanishes exponentially with N. By Markov inequality,
the probability of having any codeword at all at such a short distance vanishes as
N — oo. The distance dgv (R), called the Gilbert Varshamov distance, is the
smallest root of R—14H2(d) = 0. For instance we have dgyv(1/2) ~ 0.110278644.

Above the Gilbert Varshamov distance, § > dgv, the average number of
codewords is exponentially large, with the maximum occurring at 6 = 1/2:
E NG, (N/2) = 2N = 2M Tt is easy to show that the weight enumerator NV (d)
is sharply concentrated around its average in this whole regime dgy < § <
1 — dgv, using arguments similar to those developed in Sec.5.2 for the random
energy model (REM configurations become codewords in the present context
and the role of energy is played by Hamming distance; finally, the Gaussian dis-
tribution of the energy levels is replaced here by the binomial distribution). A
pictorial interpretation of the above result is shown in Fig. 6.2 (notice that it is
often misleading to interpret phenomena occurring in spaces with a large num-
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F1c. 6.2. A pictorial view of a typical code from the random code ensemble. The
codewords are random points in the Hamming space. If we pick a codeword at
random from the code and consider a ball of radius IN§ around it, the ball will not
contain any other codeword as long as ¢ < dgv(R), it will contain exponentially
many codewords when ¢ > dgv(R)

ber of dimensions using finite dimensional images: such images must be handled
with care!).

Exercise 6.3 The random code ensemble can be easily generalized to other
(non binary) alphabets. Consider for instance a g-ary alphabet, i.e. an alphabet
with letters {0, 1, 2,...,q — 1} = A. A code €y is constructed by taking 2
codewords with uniform probability in AY. We can define the distance between
any two codewords d,(z, y) to be the number of positions in which the sequence
x, y differ. The reader will easily show that the average distance enumerator is
now

]ENz (d) 2 2N[R—log2 g+6logs(qg—1)+H2(6)] (6 11)
Lo ’ °

with § = d/N and R = M/N. The maximum of the above function is no longer
at 6 = 1/2. How can we explain this phenomenon in simple terms?

6.3 Communicating over the Binary Symmetric Channel

We shall now analyze the performances of the RCE when used for communicating
over the binary symmetric channel (BSC) already defined in Fig. 1.4. We start by
considering a word MAP (or, equivalently, maximum likelihood) decoder, and we
analyze the slightly more complicated symbol MAP decoder afterwards. Finally,
we introduce another generalized decoding strategy inspired by the statistical
physics analogy.
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Fic. 6.3. A pictorial view of word MAP decoding for the BSC. A codeword
z, is chosen and transmitted through a noisy channel. The channel output is y.
If the distance between z, and y is small enough (left frame), the transmitted
message can be safely reconstructed by looking for the closest codeword to y. In
the opposite case (right frame), the closest codeword z; does not coincide with
the transmitted one.

6.3.1 Word MAP decoding

For a BSC, both the channel input z and output y are sequences of bits of length
N. The probability for the codeword z to be the channel input conditional to
the output y, defined in Egs. (6.3) and (6.4), depends uniquely on the Ham-
ming distance d(z,y) between these two vectors. Denoting by p the channel flip
probability, we have

P(aly) = %pd(ﬁ’ﬂ)(l —p)"TIEVI(z € €), (6.12)
C being a normalization constant which depends uniquely upon y. Without loss
of generality, we can assume p < 1/2. Therefore word MAP decoding, which
prescribes to maximize P(x|y) with respect to a, outputs the codeword which is
the closest to the channel output.

We have obtained a purely geometrical formulation of the original commu-
nication problem. A random set of points €y is drawn in the Hamming space
{0,1}" and one of them (let us call it z,) is chosen for communicating. The
noise perturbs this vector yielding a new point y. Decoding consists in finding
the closest to i among all the points in €y and fails every time this is not z.
The block error probability is simply the probability for such an event to occur.
This formulation is illustrated in Fig. 6.3.

This description should make immediately clear that the block error proba-
bility vanishes (in the N — oo limit) as soon as p is below some finite threshold.
In the previous Section we saw that, with high probability, the closest code-
word 2’ € €x\z, to z, lies at a distance d(z’,z,) ~ Ndgv(R). On the other
hand y is obtained from z, by flipping each bit independently with probability
p, therefore d(y,zy) ~ Np with high probability. By the triangle inequality z,

{fig:RCEMaxLikelihood}
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is surely the closest codeword to y (and therefore word MAP decoding is suc-
cessful) if d(zy,y) < d(zg,2")/2. If p < dav(R)/2, this happens with probability
approaching one as N — oo, and therefore the block error probability vanishes.

However the above argument overestimates the effect of noise. Although
about Ndogy(R)/2 incorrect bits may cause an unsuccessful decoding, they must
occur in the appropriate positions for y to be closer to 2’ than to z,. If they
occur at uniformly random positions (as it happens in the BSC) they will be
probably harmless. The difference between the two situations is most significant
in large-dimensional spaces, as shown by the analysis provided below.

The distance between z(®) and y is the sum of N ii.d. Bernoulli variables
of parameter p (each bit gets flipped with probability p). By the central limit
theorem, N(p —¢) < d(z(o),g) < N(p + €) with probability approaching one in
the N — oo limit, for any & > 0. As for the remaining 2" —1 codewords, they are
completely uncorrelated with z(©) and, therefore, with y: {y7g(1), e ,g(QM_l)}
are 2™ iid random points drawn from the uniform distribution over {0, 1}"V. The
analysis of the previous section shows that with probability approaching one as
N — o0, none of the codewords {z(), -+, 22" =1} lies within a ball of radius
N¢ centered on y, when 6 < dgy(R). In the opposite case, if 6 > dgv(R), there
is an exponential (in N) number of these codewords within a ball of radius N4.

The performance of the RCE is easily deduced (see Fig. 6.4) : If p < dgv(R),
the transmitted codeword x(® lies at a shorter distance than all the other ones
from the received message y: decoding is successful. At a larger noise level,
p > dgv(R) there is an exponential number of codewords closer to y than the
transmitted one: decoding is unsuccessful. Note that the condition p < dgv(R)
can be rewritten as R < Cpgc(p), where Cpsc(p) = 1 — Ha(p) is the capacity of
a BSC with flip probability p.

6.3.2  Symbol MAP decoding

In symbol MAP decoding, the i-th bit is decoded by first computing the marginal
PO (z;]y) and then maximizing it with respect to ;. Using Eq. (6.12) we get

xz|y ZP zly) = 7 Zexp{ 2Bd(z,y)}, (6.13)
zy, Ty,

where we introduced the parameter

1 1-—
B=>log (p) , (6.14)
and the normalization constant

Z= Y exp{-2Bd(z,y)}. (6.15)

zely

Equation (6.13) shows that the marginal distribution P(z;|y) gets contributions
from all the codewords, not only from the one closest to y. This makes the
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Fic. 6.4. Logarithm of the distance enumerator /Vy (d) (counting the number of
codewords at a distance d = N¢ from the received rrﬂessage) divided by the block-
-length N. Here the rate is R = 1/2. We also show the distance of the transmitted
codeword for two different noise levels: p = 0.03 < dgv(1/2) ~ 0.110278644 (left)
and p = 0.3 > dgv(R) (right). The tangent lines with slope 2B = log[(1 — p)/p]
determine which codewords dominate the symbol MAP decoder.

analysis of symbol MAP decoding slightly more involved than the word MAP
decoding case.

Let us start by estimating the normalization constant Z. It is convenient to
separate the contribution coming from the transmitted codeword z(® from the
one of the incorrect codewords (1), ..., z2" -1 .

N
7 — o—2Bd®y) i Z Ay(d) e2Bl=g g (6.16)
d=0

where we denoted by /Vy(d) the number of incorrect codewords at a distance d
from the vector y. The contribution of z(°) in the above expression is easily esti-
mated. By the central limit theorem d(g(o), y) =~ Np and therefore Zc,,. is close
to e 2VBP with high probability. More precisely, for any ¢ > 0, e~ N(2Brte) <
Zeore < e~ N(ZBP=2) with probability approaching one in the N — oo limit.

As for Z,,,, one proceeds in two steps: first compute the distance enumerator
./Vy(d), and then sum over d. The distance enumerator was already computed
in Sec. 6.2. As in the word MAP decoding analysis, the fact that the distances
are measured with respect to the channel output y and not with respect to a
codeword does not change the result, because y is independent from the incorrect
codewords ) - - -§(2M_1). Therefore J\A/'y(d) is exponentially large in the interval
dav(R) <6 =d/N < 1—day(R), while it vanishes with high probability outside

0.6
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the same interval. Moreover, if dgv(R) < 6 < 1 — dav(R), J\A/'y(d) is tightly
concentrated around its mean given by Eq. (6.10). The summation over d in
Eq. (6.16) can then be evaluated by the saddle point method. This calculation
is very similar to the estimation of the free energy of the random energy model,
cf. Sec. 5.2. Roughly speaking, we have

N o 1-éav
Zerr — y(d) 6_23d ~ N eN[(R—l)log 24H(6)2BJ) ds = 6N¢e,.r ,(617)
=0 dav
where
Gerr = max  [(R—1)log2+ H(5) — 2BJ]. (6.18)

dedav,1-dav]

The reader will easily complete the mathematical details of the above derivation
along the lines of Sec. 5.2. The bottom-line is that Z., is close to e¥% with
high probability as N — oo.

Let us examine the resulting expression (6.18) (see Fig. 6.4). If the maximum
is achieved on the interior of [dgv, 1 — dgv], its location 0, is determined by the
stationarity condition H’'(d,) = 2B, which implies d, = p. In the opposite case,
it must be realized at §. = dgy (remember that B > 0). Evaluating the right
hand side of Eq. (6.18) in these two cases, we get

_ 1-p i
e = | V(BB (2] itp <oy, (6.19)
(R—1)log2 —log(l — p) otherwise.

We can now compare Zeory and Zey. At low noise level (small p), the trans-
mitted codeword z(%) is close enough to the received one y to dominate the sum
in Eq. (6.16). At higher noise level, the exponentially more numerous incorrect
codewords overcome the term due to z(%). More precisely, with high probability
we have

—O(N)]
7 — { Zcorr[l +e ] if p < 5GVa (620)

Zewe[1 + e W] otherwise,

where the O(N) exponents are understood to be positive.
We consider now Eq. (6.13), and once again separate the contribution of the
transmitted codeword:

1

P(l) (xZ‘y) = E [Zcorr H(xz = xEO)) + Zerr,zi] s (621)
where we have introduced the quantity
Zerr,a:i = Z 672Bd(§"g) H(ZZ = $Z) . (622)
zeCn\z()

Notice that Zeyy z; < Zerr. Together with Eq. (6.20), this implies, if p < dgv(R):
PO (z; = xgo) ly) = 1—e ™) and PO (z; # xz(»o)\g) = ¢ 9 In this low p
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situation the symbol MAP decoder correctly outputs the transmitted bit cho).

It is important to stress that this result holds with probability approaching one
as N — oo. Concretely, there exists bad choices of the code €5 and particularly
unfavorable channel realizations y such that P (z; = x50)|y) < 1/2 and the
decoder fails. However the probability of such an event (i.e. the bit-error rate
Py,) vanishes as N — oo.

What happens for p > dgy(R)? Arguing as for the normalization constant
Z, it is easy to show that the contribution of incorrect codewords dominates the
marginal distribution (6.21). Intuitively, this suggests that the decoder fails. A
more detailed computation, sketched below, shows that the bit error rate in the
N — oo limit is:

_JO0 ifp<idav(R),
Po= {p if dgv(R) <p<1/2. (6.23)

Notice that, above the threshold dgy(R), the bit error rate is the same as if
the information message were transmitted without coding through the BSC: the
code is useless.

A complete calculation of the bit error rate Py in the regime p > dgy(R) is
rather lengthy (at least using the approach developed in this Chapter). We shall
provide here an heuristic, albeit essentially correct, justification, and leave the
rigorous proof as the exercise below. As already stressed, the contribution Z.q,, of
the transmitted codeword can be safely neglected in Eq. (6.21). Assume, without

loss of generality, that xgo) = 0. The decoder will be successful if Zerr 0 > Zerr 1
and fail in the opposite case. Two cases must be considered: either y; = 0 (this
happens with probability 1 — p), or y; = 1 (probability p). In the first case we
have

foa= ¥ im0y
zEQN\g(O)

Zera =28 N Tz =1) e 2Phw2) (6.24)
zeCn\z()

where we denoted by d;(z,y) the number of of positions j, distinct form 4, such
that z; # y;. The sums in the above expressions are independent identically
distributed random variables. Moreover they are tightly concentrated around
their mean. Since B > 0, this implies Zgro > Zer,n with high probability.
Therefore the decoder is successful in the case y; = 0. Analogously, the decoder
fails with high probability if y; = 1, and hence the bit error rate converges to
Py, = p for p > dav(R).
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Exercise 6.4 From a rigorous point of view, the weak point of the above
argument is the lack of any estimate of the fluctuations of Z,, o/1. The reader
may complete the derivation along the following lines:

o Define Xg = Zoyr o and X; = 25 Zerr,1- Prove that Xy and X, are inde-
pendent and identically distributed.

e Define the correct distance enumerators Ny 1 (d) such that a representa-
tion of the form X,/ = 3, No/1(d) exp(—2Bd) holds.

e Show that a significant fluctuation of No/;(d) from its average is highly
(more than exponentially) improbable (within an appropriate range of
d).

e Deduce that a significant fluctuation of X,,; is highly improbable (the
last two points can be treated along the lines already discussed for the
random energy model in Chap. 5).

6.3.3  Finite-temperature decoding

The expression (6.13) for the marginal P(z;|y) is strongly reminiscent of a
Boltzmann average. This analogy suggests a generalization which interpolates
between the two ‘classical’ MAP decoding strategies discussed so far: finite-
temperature decoding. We first define this new decoding strategy in the con-
text of the BSC context. Let § be a non-negative number playing the role of an
inverse temperature, and y € {0,1}" the channel output. Define the probability
distribution Pg(x) to be given by

1
—— e B I(z € gy), Z(B)

Z(B)

Py(z) = > ey (6.25)

z€elN

where B is always related to the noise level p through Eq. (6.14). This distri-
bution depends upon the channel output y: for each received message y, the
finite-temperature decoder constructs the appropriate distribution Pg(x). For

the sake of simplicity we don’t write this dependence explicitly. Let Péi)(xi) be
the marginal distribution of x; when z is distributed according to Pg(z). The
new decoder outputs

28 = (arg max Pﬁ(l)(xl) ,...,argmax PB(N)(.%N)) . (6.26)
T TN

As in the previous Sections, the reader is free to choose her favorite convention
in the case of ties (i.e. for those i’s such that Pﬁ(“(o) = Pﬂ(l)(l)).

Two values of [ are particularly interesting: 5 =1 and § = oco. If § =1 the
distribution Pg(z) coincides with the distribution P(z|y) of the channel input
conditional to the output, see Eq. (6.12). Therefore, for any y, symbol MAP

B=1 b

decoding coincides with finite-temperature decoding at 8 = 1: z; = = 2.
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Fic. 6.5. Phase diagram for the rate 1/2 rla)\ndom code ensemble under finite
temperature decoding. Word MAP and bit MAP decoding correspond (respec-
tively) to 1/8 = 0 and 1/ = 1. Notice that the phase boundary of the error-free
(ordered) phase is vertical in this interval of temperatures.

If 8 = oo, the distribution (6.25) concentrates over those codewords which
are the closest to y. In particular, if there is a unique closest codeword to ¥, finite-
temperature decoding at 8 = oo coincides with word MAP decoding: 27=> =
zV.
The performances of finite-temperature decoding for the RCE at any 3, in
the large N limit, can be analyzed using the approach developed in the previous
Section . The results are summarized in Fig. 6.5 which give the finite-temperature
decoding phase diagram. There exist three regimes which are distinct phases with

very different behaviors.

1. A ‘completely ordered’ phase at low noise (p < dgv(R)) and low temper-
ature (large enough (). In this regime the decoder works: the probability
distribution Ps(z) is dominated by the transmitted codeword z(®). More
precisely Pg(z(?)) = 1 —exp{—6(N)}. The bit and block error rates vanish
as N — oo.

2. A ‘glassy’ phase at higher noise (p > dgv(R)) and low temperature (large
enough f3). The transmitted codeword has a negligible weight Pjs(z(?)) =
exp{—O(N)}. The bit error rate is bounded away from 0, and the block er-
ror rate converges to 1 as N — co. The measure Pg(z) is dominated by the
closest codewords to the received message y (which are disctinct from the
correct one). Its Shannon entropy H (Pg) is sub-linear in N. This situation
is closely related to the ‘measure condensation’ phenomenon occurring in
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the low-temperature phase of the random energy model.

3. An ‘entropy dominated’ (paramagnetic) phase at high temperature (small
enough (). The bit and block error rates behave as in the glassy phase, and
Ps(z9) = exp{—O(N)}. However the measure Ps(z) is now dominated
by codewords whose distance d ~ N§, from the received message is larger
than the minimal one: §, = p?/[p? + (1 — p)?]. In particular §, = p if
B =1, and 6, = 1/2 if § = 0. In the first case we recover the result
already obtained for symbol MAP decoding. In the second one, Pg—o(x)
is the uniform distribution over the codewords and the distance from the
received message under this distribution is, with high probability, close to
N/2. In this regime, the Shannon entropy H(P3) is linear in V.

The definition of finite-temperature decoding is easily generalized to
other channel models. Let P(z|y) be the distribution of the transmitted mes-
sage conditional to the channel output, given explicitly in Eq. (6.3). For 8 > 0,
we define the distribution!®

Ps(a) = —— Plzly)’,  Z(8)=)_Plaly)”. (6.27)

Once more, the decoder decision for the i-th bit is taken according to the rule
(6.26). The distribution Pg(z) is a ‘deformation’ of the conditional distribution
P(z|y). At large 3, more weight is given to highly probable transmitted messages.
At small 3 the most numerous codewords dominate the sum. A little thought
shows that, as for the BSC, the cases § = 1 and 3 = oo correspond, respectively,
to symbol MAP and word MAP decoding. The qualitative features of the finite-
temperature decoding phase diagram are easily generalized to any memoryless
channel. In particular, the three phases described above can be found in such a
general context. Decoding is successful in low noise-level, large 3 phase.

6.4 Error-free communication with random codes

As we have seen, the block error rate Pg for communicating over a BSC with
a random code and word MAP decoding vanishes in the large blocklength limit
as long as R < Cgsc(p), with Csc(p) = 1 — Ha(p) the channel capacity. This
establishes the ‘direct’ part of Shannon’s channel coding theorem for the BSC
case: error-free communication is possible at rates below the channel capacity.
This result is in fact much more general. We describe here a proof for general
memoryless channels, always based on random codes.

For the sake of simplicity we shall restrict ourselves to memoryless chan-
nels with binary input and discrete output. These are defined by a transition
probability Q(y|z), € {0,1} and y € Y with Y a finite alphabet. In order to
handle this case, we must generalize the RCE: each codeword z(™) & {0,1}V,

15Notice that the partition function Z(3) defined here differs by a multiplicative constant
from the one defined in Eq. (6.25) for the BSC.



ERROR-FREE COMMUNICATION WITH RANDOM CODES 119

m=0,...,2M — 1, is again constructed independently as a sequence of N i.i.d.
bits mgm) e x%n). But xgm) is now drawn from an arbitrary distribution P(x),
x € {0,1} instead of being uniformly distributed. It is important to distinguish
P(z) (which is an arbitrary single bit distribution defining the code ensemble
and will be chosen at our convenience for optimizing it) and the a priori source
distribution Py(z), cf. Eq. (6.3) (which is a distribution over the codewords and
models the information source behavior). As in the previous Sections, we shall
assume the source distribution to be uniform over the codewords, cf. Eq. (6.4).
On the other hand, the codewords themselves have been constructed using the
single-bit distribution P(z).

We shall first analyze the RCE for a generic distribution P(x), under word
MAP decoding. The main result is:

Theorem 6.1 Consider communication over a binary input discrete memory-
less channel with transition probability Q(y|x), using a code from the RCE with
input bit distribution P(x) and word MAP decoding. If the code rate is smaller
than the mutual information Ix y between two random variables X,Y with joint
distribution P(x)Q(y|z), then the block error rate vanishes in the large block-
length limit.

Using this result, one can optimize the ensemble performances over the choice
of the distribution P(-). More precisely, we maximixe the maximum achievable
rate for error-free communication: Ix y. The corresponding optimal distribution
P*(-) depends upon the channel and can be thought as adapted to the channel.
Since the channel capacity is in fact defined as the maximum mutual information
between channel input and channel output, cf. Eq. (1.37), the RCE with input
bit distribution P*(-) allows to communicate error-free up to channel capacity.
The above Theorem implies therefore the ‘direct part’ of Shannon’s theorem 77.

Proof: Assume that the codeword z(©) is transmitted through the channel
and the message y € YV is received. The decoder constructs the probability for
z to be the channel input, conditional to the output y, see Eq. (6.3). Word MAP
decoding consists in minimizing the cost function

Z logy Q(yi|z:) (6.28)

over the codewords z € €y (note that we use here natural logarithms). Decod-
ing will be successful if and only if the minimum of E(z) is realized over the
transmitted codeword z(®). The problem consists therefore in understanding the
behavior of the 2M random variables E(z(?)), ..., E(z®"~1).

Once more, it is necessary to single out F(z(?)). This is the sum of N iid
random variables — log Q(yl|x( ))
mean

, and it is therefore well approximated by its

EE m(0 7fNZP Q(y|r)logy Qy|z) = NHy|x . (6.29)

{thm :GeneralDirectShannon_1len
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In particular (1 — e)NHy|x < E(z(®)) < (1 + &)NHy|x with probability ap-
proaching one as N — oo.

As for the 2™ — 1 incorrect codewords, the corresponding log-likelihoods
E(zM),..., E@@M_l)) are iid random variables. We can therefore estimate the
smallest among them by following the approach developed for the REM and
already applied to the RCE on the BSC. In Appendix 6.7, we prove the following
large deviation result on the distribution of these variables:

Lemma 6.2 Let e; = E(z®)/N. Then e1,...,eom_q are iid random variables

and their distribution satisfy a large deviation principle of the form P(e) =
2=NY(©)  The rate function is given by:

¢(e) = min [ZQ(y)D(pyIIP) : (6.30)

{py()}ems y

where the minimum is taken over the set of probability distributions {p,(-), y €
Y} in the subspace P, defined by the constraint:

e=—> Qy)py(z)log, Qlyla), (6.31)

and we defined Q(y) = >, Qy|z)P(x).

The solution of the minimization problem formulated in this lemma is obtained
through a standard Lagrange multiplier technique:

py(r) = —— P(2)Q(y|z)", (6.32)

where the (e dependent) constants z(y) and v are chosen in order to verify the
normalizations Yy : Y p,(x) =1, and the constraint (6.31).

The rate function ¥(e) is convex with a global minimum (corresponding
toy =0)at e. = =3  Px)Q(y)log, Q(y|lr) where its value is 1(e.) = 0.
This implies that, with high probability all incorrect codewords will have costs
E(g(i)) = Nein the range e min < € < €max, Emin and emax being the two solutions
of ¢(g) = R. Moreover, for any ¢ inside the interval, the number of codewords
with E(z() ~ Ne is exponentially large (and indeed close to 2VF=Nv(€)). The
incorrect codeword with minimum cost has a cost close to Nepin (with high
probability). Since the correct codeword has cost close to NHy|x, maximum
likelihood decoding will find it with high probability if and only if Hy|x < emin.

The condition Hy|x < €min is in fact equivalent to R < Ixy, as it can
be shown as follows. A simple calculation shows that the value ¢ = Hy|x is
obtained using v = 1 in Eq. (6.32) and therefore p,(z) = P(z)Q(y|z)/Q(y). The
corresponding value of the rate function is ¢/(¢ = Hy|x) = [Hy — Hy|x]| = Iy|x.
The condition for error free communication, Hy|x < €min, can thus be rewritten
as R <(Hy|x),or R<Ixy.O
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Example 6.3 Reconsider the BSC with flip probability p. We have

E(z) = —(N —d(z,y)) log(1 —p) — d(z,y) logp. (6.33)

Up to a rescaling the cost coincides with the Hamming distance from the re-
ceived message. If we take P(0) = P(1) = 1/2, the optimal types are, cf.
Eq. (6.32),

p'y

1)=1—-—po(0) = ——F—, 6.34
po(1) Po(0) d—p) +p ( )

and analogously for p;(z). The corresponding cost is
e=—(1—-9)log(l —p)—dlogp, (6.35)

where we defined 6 = p7/[(1 — p)? + p?]. The large deviations rate function is
given, parametrically, by 1 (e) = log2 — H(9). The reader will easily recognize
the results already obtained in the previous Section.

Exercise 6.5 Consider communication over a discrete memoryless channel
with finite input output alphabets X', and Y, and transition probability Q(y|x),
z € X,y € ). Check that the above proof remains valid in this context.

6.5 Geometry again: sphere packing

Coding has a lot to do with the optimal packing of spheres, which is a general
problem of considerable interest in various branches of science. Consider for in-
stance the communication over a BSC with flip probability p. A code of rate
R and blocklength N consists of 2V® points {g(l) .- ~g(2NR)} in the hypercube
{0,1}¥. To each possible channel output y € {0,1}", the decoder associates
one of the codewords z(9). Therefore we can think of the decoder as realizing a
partition of the Hamming space in 2V% decision regions @), i {1...2NFY,
each one associated to a distinct codeword. If we require each decision region
{D(i)} to contain a sphere of radius p, the resulting code is guaranteed to cor-
rect any error pattern such that less than p bits are flipped. One often defines
the minimum distance of a code as the smallest distance between any two
codewords'®. If a code has minimal distance d, the Hamming spheres of radius
p = [(d—1)/2] don’t overlap and the code can correct p errors, whatever are
their positions.

We are thus led to consider the general problem of sphere packing on the
hypercube {0,1}". A (Hamming) sphere of center z, and radius r is defined
as the set of points z € {0,1}", such that d(x,z,) < r. A packing of spheres

16This should not be confused with the minimal distance from one given codewords to all
the other ones

{se:Packing}
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of radius r and cardinality Ns is specified by a set of centers z,... v Zprg €
{0,1}¥, such that the spheres of radius 7 centered in these points are disjoint.
Let N**(5) be the maximum cardinality of a packing of spheres of radius N in
{0,1}". We define the corresponding rate as R (§) = N~ ! log, N2#%(§) and

would like to compute this quantity in the infinite-dimensional limit

R™*(§) = lim sup RN*(9). (6.36)

N—oc0

The problem of determining the function R™**(4) is open: only upper and lower
bounds are known. Here we shall derive the simplest of these bounds:

Proposition 6.4
1 —H2(20) < R™¥(0) <1 —Ha(0) (6.37)

The lower bound is often called the Gilbert-Varshamov bound, the upper bound
1s called the Hamming bound.

Proof: Lower bounds can be proved by analyzing good packing strategies. A
simple such strategy consists in taking the sphere centers as 2V random points
with uniform probability in the Hamming space. The minimum distance between
any couple of points must be larger than 2N¢. It can be estimated by defining
the distance enumerator Ms(d) which counts how many couples of points have
distance d. It is straightforward to show that, if d = 2NJ and § is kept fixed as
N — o0:

oNR N
E My(d) = ( ) )2N (d) = gNER-1+H2(29)] (6.38)

Aslong as R < [1 —"H2(20)]/2, the exponent in the above expression is negative.
Therefore, by Markov inequality, the probability of having any couple of centers
ar a distance smaller than 2§ is exponentially small in the size. This implies that

R™(5) > ~[1 — Ha(20)]. (6.39)

DN | =

A better lower bound can be obtained by a closer examination of the above
(random) packing strategy. In Sec. 6.2 we derived the following result. If 2V
points are chosen from the uniform distribution in the Hamming space {0,1}",
and one of them is considered, with high probability its closest neighbour is
at a Hamming distance close to Ndgy(R). In other words, if we draw around
each point a sphere of radius ¢, with § < dgv(R)/2, and one of the spheres is
selected randomly, with high probability it will not intersect any other sphere.
This remark suggests the following trick (sometimes called expurgation in cod-
ing theory). Go through all the spheres one by one and check if it intersects any
other one. If the answer is positive, simply eliminate the sphere. This reduces the
cardinality of the packing, but only by a fraction approaching 0 as N — oo: the
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F1c. 6.6. Upper and lower bounds on the maximum packing rate R™**(¢) of
Hamming spheres of radius N§. Random packing and expurgated random pack-
ing provide lower bounds. The Hamming and linear programming bounds are
upper bounds.

packing rate is thus unchanged. As dgv(R) is defined by R = 1 — Ha(dgv(R)),
this proves the lower bound in (6.37).

The upper bound can be obtained from the fact that the total volume occu-
pied by the spheres is not larger than the volume of the hypercube. If we denote
by Ay () the volume of an N-dimensional Hamming sphere of radius NJ, we
get Ns An(8) < 2V . Since Ay (8) = 2VM2(9) this implies the upper bound in
(6.37). O

Better upper bounds can be derived using more sophisticated mathematical
tools. An important result of this type is the so-called linear programming bound:

R™(8) < Ha(1/2 — 1/20(1 — 20)), (6.40)

whose proof goes beyond our scope. On the other hand, no better lower bound
than the Gilbert-Varshamov result is known. It is a widespread conjecture that
this bound is indeed tight: in high dimension there is no better way to pack
spheres than placing them randomly and expurgating the small fraction of them
that are ‘squeezed’. The various bounds are shown in Fig. 6.6.

{fig:HammingSpheres}
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Exercise 6.6 Derive two simple alternative proofs of the Gilbert-Varshamov
bound using the following hints:

1. Given a constant d, let’s look at all the ‘dangerous’ couples of points
whose distance is smaller than 2N¢. For each dangerous couple, we can
expurgate one of its two points. The number of points expurgated is
smaller or equal than the number of dangerous couples, which can be
bounded using E My (d). What is the largest value of ¢ such that this
expurgation procedure does not reduce the rate?

2. Construct a packing z; ...z as follows. The first center z; can be placed
anywhere in {0,1}¥. The second one is everywhere outside a sphere of
radius 2V centered in z. In general the i-th center z, can be at any
point outside the spheres centered in z; ...z, ;. This procedures stops
when the spheres of radius 2NJ cover all the space {0,1}V, giving a
packing of cardinality N equal to the number of steps and radius N§.

Let us now see the consequences of Proposition 6.4 for coding over the BSC.
If the transmitted codeword in z(, the channel output will be (with high prob-
ability) at a distance close to Np from z(*). Clearly R < R™#*(p) is a necessary
and sufficient condition for existence of a code for the BSC which corrects any
error pattern such that less than Np bits are flipped. Notice that this correction
criterion is much stronger than requiring a vanishing (bit or block) error rate.
The direct part of Shannon theorem shows the existence of codes with a vanish-
ing (at N — oo) block error probability for R < 1—"Ha(p) = Csc(p). As shown
by the linear programming bound in Fig. 6.6 Cgsc(p) lies above R™**(p) for
large enough p. Therefore, for such values of p, there is a non-vanishing interval
of rates R™**(p) < R < Cpsc(p) such that one can correct Np errors with high
probability but one cannot correct any error pattern involving that many bits.

Let us show, for the BSC case, that the condition R < 1—Ha(p) is actually a
necessary one for achieving zero block error probability (this is nothing but the
converse part of Shannon channel coding theorem ?7).

Define Pg(k) the block error probability under the condition that k bits
are flipped by the channel. If the codeword z() is transmitted, the channel
output lies on the border of a Hamming sphere of radius k centered in z(:

Bi(k)={z : dl(z, Q(i)) = k}. Therefore

" (@)
Pg(k) = 2NR Z [ W = (6.41)

\Q(Z
2NR Z OB (6.42)

Since {D@} is a partition of {0,1}", 3", |D®| = 2N, Moreover, for a typical
channel realization k is close to Np, and [0B;(Np)| = 2V"2(?). We deduce that,

| \/
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for any € > 0, and large enough N:
Pg > 1 — 2NA-R-Ta(p)+e) (6.43)
and thus reliable communication is possible only if R < 1 — Ha(p).

6.6 Other random codes

A major drawback of the random code ensemble is that specifying a particular
code (an element of the ensemble) requires N2V bits. This information has to be
stored somewhere when the code is used in practice and the memory requirement
is soon beyond the hardware capabilities. A much more compact specification is
possible for the random linear code (RLC) ensemble. In this case encoding is
required to be a linear map, and any such map is equiprobable. Concretely, the
code is fully specified by a N x M binary matrix G = {G;;} (the generating
matrix) and encoding is left multiplication by G:

z:{0,1}M — {0, 1}V, (6.44)
z— Gz, (6.45)

where the multiplication has to be carried modulo 2. Endowing the set of linear
codes with uniform probability distribution is equivalent to assuming the entries
of G to be i.i.d. random variables, with G;; = 0 or 1 with probability 1/2. Notice
that only M N bits are required for specifying an element of this ensemble.

Exercise 6.7 Consider a linear code with N = 4 and |€| = 8 defined by
¢ = {(21 (&) 22, 22 (&) 23, 21 (&) 23, 21 D 29 P Zg) | 21,%2,23 € {O, 1}}, (646)

where we denoted by @ the sum modulo 2. For instance (0110) € € because
we can take z; = 1, 25 = 1 and 23 = 0, but (0010) ¢ €. Compute the distance
enumerator for z, = (0110).

It turns out that the RLC has extremely good performances. As the original
Shannon ensemble, it allows to communicate error-free below capacity. Moreover,
the rate at which the block error probability Pp vanishes is faster for the RLC
than for the RCE. This justifies the considerable effort devoted so far to the
design and analysis of specific ensembles of linear codes satisfying additional
computational requirements. We shall discuss some among the best ones in the
following Chapters.

6.7 A remark on coding theory and disordered systems

We would like to stress here the fundamental similarity between the analysis
of random code ensembles and the statistical physics of disordered systems. As
should be already clear, there are several sources of randomness in coding;:

{se:RCEConsiderations}
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e First of all, the code used is chosen randomly from an ensemble. This was
the original idea used by Shannon to prove the channel coding theorem.

e The codeword to be transmitted is chosen with uniform probability from
the code. This hypothesis is supported by the source-channel separation
theorem.

e The channel output is distributed, once the transmitted codeword is fixed,
according to a probabilistic process which accounts for the channel noise.

e Once all the above elements are given, one is left with the decoding prob-
lem. As we have seen in Sec. 6.3.3, both classical MAP decoding strategies
and finite-temperature decoding can be defined in a unified frame. The de-
coder constructs a probability distribution Ps(z) over the possible channel

inputs, and estimates its single bit marginals Pﬁ(i)(:ci). The decision on the
i-th bit depends upon the distribution Pﬁ(z)(xl)

The analysis of a particular coding system can therefore be regarded as the anal-
ysis of the properties of the distribution Pg(z) when the code, the transmitted
codeword and the noise realization are distributed as explained above.

In other words, we are distinguishing two levels of randomness'”: on the first
level we deal with the first three sources of randomness, and on the second level
we use the distribution Pg(z). The deep analogy with the theory of disordered
system should be clear at this point. The code, channel input, and noise real-
ization play the role of quenched disorder (the sample), while the distribution
Pg(x) is the analogous of the Boltzmann distribution. In both cases the problem
consists in studying the properties of a probability distribution which is itself a
random object.

Notes

The random code ensemble dates back to Shannon (Shannon, 1948) who used it
(somehow implicitely) in his proof of the channel coding thorem. A more explicit
(and complete) proof was provided by Gallager in (Gallager, 1965). The reader
can find alternative proofs in standard textbooks such as (Cover and Thomas,
1991; Csiszar and Korner, 1981; Gallager, 1968).

The distance enumerator is a feature extensively investigated in coding the-
ory. We refer for instance to (Csiszar and Korner, 1981; Gallager, 1968). A treat-
ment of the random code ensemble in analogy with the random energy model
was presented in (Montanari, 2001). More detailed results in the same spirit can
be found in (Barg and G. David Forney, 2002). The analogy between coding the-
ory and the statistical physics of disordered systems was put forward by Sourlas
(Sourlas, 1989). Finite temperature decoding has been introduced in (Rujan,
1993).

17Further refinements of this point of view are possible. One could for instance argue that the
code is not likely to be changed at each channel use, while the codeword and noise realization
surely change. This remark is important, for instance, when dealing with finite-length effects
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A key ingredient of our analysis was the assumption, already mentioned in
Sec. 1.6.2, that any codeword is a priori equiprobable. The fundamental motiva-
tion for such an assumption is the source-channel separation theorem. In simple
terms: one does not loose anything in constructing an encoding system in two
blocks. First a source code compresses the data produced by the information
source and outputs a sequence of i.i.d. unbiased bits. Then a channel code adds
redundancy to this sequence in order to contrast the noise on the channel. The
theory of error correcting codes (as well as the present Chapter) focuses on the
design and analysis of this second block, leaving the first one to source coding.
The interested reader may find a proofs of the separation theorem in (Cover and
Thomas, 1991; Csiszar and Korner, 1981; Gallager, 1968).

Sphere packing is a classical problem in mathematics, with applications in
various branches of science. The book by Conway and Sloane (Conway and
Sloane, 1998) provides both a very good introduction and some far reaching
results on this problem and its connections, in particular to coding theory. Find-
ing the densest packing of spheres in R” is an open problem when n > 4.

Appendix: Proof of Lemma 6.2

We estimate (to the leading exponential order in the large N limit) the prob-
ability Py (g) for one of the incorrect codewords, z, to have cost E(z) = Ne.
The channel output y = (y1 - - yn) is a sequence of N i.i.d. symbols distributed
according to B

=) Qylz)P(=), (6.47)

and the cost can be rewritten as:

N

N
E(z) = - logQ(yilx;) = —NZQ )og Q(yl) - ZH = z,; <G8)

i=1 i=1

There are approximatively NQ(y) positions i such that y; = y, for y € Y. We
assume that there are exactly NQ(y) such positions, and that NQ(y) is an integer
(of course this hypothesis is in general false: it is a routine exercise, left to the
reader , to show that it can be avoided with a small technical etour). Furthermore
we introduce

=, Y =Y). (6.49)

uMz

py(2)

Under the above assumptions the function p,(z) is a probability distribution
over z € {0,1} for each y € ). Looking at the subsequence of positions ¢ such
that y; = y, it counts the fraction of the x;’s such that x; = z. In other words

{se:apShannonl}
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py(+) is the type of the subsequence {z;]y; = y}. Because of Eq. (6.48), the cost
is written in terms of these types as follows

=—NZQ y)py(z) log Q(y|z) . (6.50)

Therefore E(z) depends upon z uniquely through the types {p,(:) : v € Y},
and this dependence is linear in p,(x). Moreover, according to our definition
of the RCE, z1,...,2y are i.i.d. random variables with distribution P(z). The
probability P(g) that E(x)/N = e can therefore be deduced from the Corollary
4.5. To the leading exponential order, we get

P(e) = exp{—Nv(g)log 2}, (6.51)

) = min ZQ D(py||P) st. e =— ZQ Y)py () log, Q(ylz) | (6.52)

Py (+)
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NUMBER PARTITIONING

Number partitioning is one of the most basic optimization problems. It is very
easy to state: “Given the values of N assets, is there a fair partition of them into
two sets?”. Nevertheless it is very difficult to solve: it belongs to the NP-complete
category, and the known heuristics are often not very good. It is also a problem
with practical applications, for instance in multiprocessor scheduling.

In this Chapter, we shall pay special attention to the partitioning of a list
of iid random numbers. It turns out that most heuristics perform poorly on
this ensemble of instances. This motivates their use as a benchmark for new
algorithms, as well as their analysis. On the other hand, it is relatively easy to
characterize analytically the structure of random instances. The main result is
that low cost configurations (the ones with a small unbalance between the two
sets) can be seen as independent energy levels: the model behaves pretty much
like the random energy model of Chap. 5.

7.1 A fair distribution into two groups?

An instance of the number partitioning problem is a set of N positive integers
S={ai,...,ay} indexed by i € [N] ={1,..., N}. One would like to partition
the integers in two subsets {a; : i € A} and {a; : i € B =[N]\.A} in such a way
as to minimize the discrepancy among the sums of elements in the two subsets.
In other words, a configuration is given by .4 C [N], and its cost is defined as

o) ()

A perfect partition is such that the total number in each subset equilibrate,
which means E4 < 1 (actually E4 = 0if ). a; is even, or E4 = 1if ), a; is
odd). As usual, one can define several versions of the problem, among which: i)
The decision problem: Does there exist a perfect partition? ) The optimization
problem: Find a partition of lowest cost.

There are also several variants of the problem. So far we have left free the
size of A. This is called the unconstrained version. On the other hand one can
study a constrained version where one imposes that the cardinality difference
|A| — |B| of the two subsets is fixed to some number D. Here for simplicity we
shall mainly keep to the unconstrained case.
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Exercise 7.1 As a small warm-up, the reader can show that (maybe writing
a simple exhaustive search program):

The set S; = {10, 13,23,6,20} has a perfect partition.

The set Sy = {6,4,9,14,12,3,15,15} has a perfect balanced partition.

In the set S3 = {93, 58,141,209, 179, 48, 225, 228}, the lowest possible cost
is 5.

In the set Sy = {2474, 1129, 1388, 3752, 821, 2082, 201, 739}, the lowest pos-
sible cost is 48.

7.2 Algorithmic issues
7.2.1  An NP-complete problem

In order to understand the complexity of the problem, one must first measure its
size. This is in turn given by the number of characters required for specifying a
particular instance. In number partitioning, this depends crucially on how large
the integers can be. Imagine that we restrict ourselves to the case:

ai€{1,....2M} vie{1,...,N} (7.2)

so that each of the N integers can be encoded with M bits. Then the entire
instance can be encoded in N M bits. It turns out that no known algorithm solves
the number partitioning problem in a time upper bounded by a power of N M.
Exhaustive search obviously finds a solution in 2V operations for unbounded
numbers (any M). For bounded numbers there is a simple algorithm running in
a time of order N22M™ (hint: look at all the integers between 1 and N 2™ and
find recursively which of them can be obtained by summing the k first numbers
in the set). In fact, number partitioning belongs to the class of NP-complete
problems and is even considered as a fundamental problem in this class.

7.2.2 A simple heuristic and a complete algorithm

There is no good algorithm for the number partitioning problem. One of the
best heuristics, due to Karmarkar and Karp (KK), uses the following idea. We
start from a list a1, ...,ay which coincides with the original set of integers, and
reduce it by erasing two elements a; and a; in the list, and replacing them by the
difference |a; — a;l, if this difference is non-zero. This substitution means that a
decision has been made to place a; and a; in two different subsets (but without
fixing in which subset they are). One then iterates this procedure as long as the
list contains two or more elements. If in the end one finds either an empty list
or the list {1}, then there exists a perfect partitioning. In the opposite case,
the remaining integer is the cost of a particular partitioning, but the problem
could have better solutions. Of course, there is a lot of flexibility and ingenuity
involved in the best choice of the elements a; and a; selected at each step. In
the KK algorithm one picks up the two largest numbers.

{ex:8_warmup}
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Fic. 7.1. A complete search algorithm: Starting from a list, one erases the two
largest numbers a; and a; and generate two new lists: the left one contains
la; — aj|, the right one contains a; + a;. At the bottom of the tree, every leaf
contains the cost of a valid partition. In the search for a perfect partition the tree
can be pruned at the dashed leaves because the largest number is bigger than
the sum of others: the dash-dotted lists are not generated. The KK heuristics
picks up only the left branch. In this example it is successful and finds the unique

perfect partition.

Example 7.1 Let us see how it works on the first list of exercise 7.1:
{10, 13,23,6,20}. At the first iteration we substitute 23 and 20 by 3, giving
the list {10, 13,6, 3}. The next step gives {3, 6,3}, then {3, 3}, then (), showing
that there exists a perfect partition. The reader can find out how to systemat-
ically reconstruct the partition.

A modification due to Korf transforms the KK heuristic into a complete
algorithm, which will return the best partitioning (eventually in exponential
time). Each time one eliminates two elements a; and a;, two new lists are built:
a ‘left’ list which contains |a; —a;| (it corresponds to placing a; and a; in different
groups) and a right one which contains a; + a; (it corresponds to placing a; and
a; in the same group). Iterating in this way one constructs a tree with oN—1
terminal nodes, containing each the cost of a valid partition. Vice-versa, the cost
of each possible partition is reported at one of the terminal nodes (notice that
each of the 2%V possible partitions A is equivalent to its complement [N]\ A). If
one is interested only in the decision: ‘is there a perfect partition?’, the tree can
be pruned as follows. Each time one encounters a list whose largest element is
larger than the sum of all other elements plus 1, this list cannot lead to a perfect
partition. One can therefore avoid to construct the sub-tree whose root is such
a list. Figure 7.1 shows a simple example of application of this algorithm.

{fig:numpart_ex}
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FiG. 7.2. Numerical study of randomly generated sets, Where a; are uniformly
distributed in {1,...2M}, with }, a; even. The fraction of samples with a perfect
balanced partition is plotted versus N (left plot: from left to right M = 8,16, 24),
and versus kK = M/N (right plot). In the limit N — oo at fixed &, it turns out
that the probability becomes a step function, equal to 1 for kK < 1, to 0 for K > 1
(see also Fig. 7.4).

7.3 Partition of a random list: experiments

A natural way to generate random instances of number partitioning is to choose
the N input numbers a; as iid. Here we will be interested in the case where they
are uniformly distributed in the set {1,...,2M}. As we discussed in Chap. 3,
one can use these random instances in order to test typical performances of
algorithms, but we will also be interested in natural probabilistic issues, like the
distribution of the optimal cost, in the limits where N and M go to occ.

It is useful to first get an intuitive feeling of the respective roles of N (size of
the set) and M (number of digits of each a; - in base 2). Consider the instances
S, 83,84 of example 1. Each of them contains N = 8 random numbers, but
they are randomly generated with M = 4, M = 8, M = 16 respectively. Clearly,
the larger M, the larger is the typical value of the a;’s, and the more difficult
it is to distribute them fairly. Consider the costs of all possible partitions: it is
reasonable to expect that in about half of the partitions, the most significant bit
of the cost is 0. Among these, about one half should have the second significant
bit equal to 0. The number of partitions is 2V =1, this qualitative argument can
thus be iterated roughly N times. This leads one to expect that, in a random
instance with large N, there will be a significant chance of having a perfect
partition if N > M. On the contrary, for N < M, the typical cost of the best
partition should behave like 2™~

This intuitive reasoning turns out to be essentially correct, as far as the
leading exponential behavior in NV and M is concerned. Here we first provide
some numerical evidence, obtained with the complete algorithm of Sec. 7.2.2 for
relatively small systems. In the next Section, we shall validate our conclusions
by a sharper analytical argument.

Figure 7.2 shows a numerical estimate of the probability ppers(INV, M) that a

{se:numpart_rand_exp}
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(Iog_2 R)/(N-1)

FiG. 7.3. Left plot: average of log, R, where R is the 8ize of the search tree.
The three curves correspond to M = 8,16, 24 (from left to right). The size grows
exponentially with N, and reaches a maximum for N = M. Right plot: the
average of logy R/(N — 1) is plotted versus kK = M/N.

randomly generated instance has a perfect partition, plotted versus N. This has
been obtained by sampling ng;.t instances of the problem for each considered
pair N,M (here ngtay = 10000, 1000, 100 when M = 8,16, 24 respectively), and
solving each instance by simple enumeration. The probability ppers(IV, M) was
estimated as the fraction of the sampled instances for which a perfect partitioning
was found. The standard deviation of such an estimate is \/ Dpert (1 — Dpert) /Nstat -

For a fixed value of M, ppet(IN, M) crosses over from a value close to 0 at
small N to a value close to 1 at large N. The typical values of N where the
crossover takes place seem to grow proportionally to M. It is useful to look at
the same data from a slightly different perspective by defining the ratio

(7.3)

k=90
and considering pperr as a function of N and . The plot of pyerr (s, N) versus &
at fixed N shows a very interesting behavior, cf. Fig. 7.2, right frame. A careful
analysis of the numerical data '® indicates that limy_ oo ppert(, N) = 1 for
k < 1,and = 0 for kK > 1. We stress that the limit N — oo is taken with &
kept fixed (and therefore letting M — oo proportionally to N). As we shall see
in the following, we face here a typical example of a phase transition, in the
sense introduced in Chap. 2. The behavior of a generic large instance changes
completely when the control parameter x crosses a critical value k. = 1. For
k < 1 almost all instances of the problem have a perfect partition (in the large
N limit), for k > 1 almost none of them can be partitioned perfectly. This
phenomenon has important consequences on the computational difficulty of the
problem. A good measure of the performance of Korf’s complete algorithm is
the number R of lists generated in the tree before finding the optimal partition.

181n order to perform this analysis, guidance from the random cost model or from the exact
results of the next sections is very useful.

{fig:nump_statlbis}

{eq:np_kappa_def}
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In Fig. 7.3 we plot the quantity log, R averaged on the same instances which
we had used for the estimation of pper in Fig. 7.2. The size of the search tree
first grows exponentially with N and then reaches a maximum around N ~ M.
Plotted as a function of x, one sees a clear peak of log, R, somewhere around
Kk = k. = 1: problems close to the critical point are the hardest ones for the
algorithm considered. A similar behavior is found with other algorithms, and in
fact we will encounter it in many other decision problems like e.g. satisfiability
or coloring. When a class of random instances presents a phase transition as a
function of one parameter, it is generally the case that the most difficult instances
are found in the neighborhood of the phase transition.

7.4 The random cost model
7.4.1 Definition of the model

Consider as before the probability space of random instances constructed by
taking the numbers a; to be iid uniformly distributed in {1,...,2M}. For a given
partition A, the cost E 4 is a random variable with a probability distribution Py.
Obviously, the costs of two partitions A and A’ are correlated random variables.
The random cost approximation consists in neglecting these correlations. Such
an approximation can be applied to any kind of problem, but it is not always a
good one. Remarkably, as discovered by Mertens, the random cost approximation
turns out to be ‘essentially exact’ for the partitioning of iid random numbers.
In order to state precisely the above mentioned approximation, one defines
a random cost model (RCM), which is similar to the REM of Chapter 5. A
sample is defined by the costs of all the 2V~! ‘partitions’ (here we identify the
two complementary partitions A and [N]\.A). The costs are supposed to be iid
random variables drawn from the probability distribution P. In order to mimic
the random number partitioning problem, P is taken to be the same as the
distribution of the cost of a random partition A in the original problem:

1
P= oN-T ZPA. (7.4)
A

Here P4 is the distribution of the cost of partition A in the original number
partitioning problem.

Let us analyze the behavior of P for large N. We notice that the cost of a
randomly chosen partition in the original problem is given by | ). 0;a;|, where o;
are iid variables taking value 1 with probability 1/2. For large N, the distribu-
tion of )", 0;a; is characterized by the central limit theorem, and P is obtained
by restricting it to the positive domain. In particular, the cost of a partition will
be, with high probability, of order \/Na3,, where

1

1
oz?wEEa22§22M+

1
—oM 4 .
3 +6 (7.5)

Moreover, for any 0 < x1 < xo:
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E 2 [T 2
P | —= € [r1, 2] :1/—/ e " 2 da .
VN3, T o

Finally, the probability of a perfect partition P(E = 0) is just the probability
of return to the origin of a random walk with steps o;a; € {—2M,... -1} U
{1,...,2M}. Assuming for simplicity that Y, a; is even, we get:

1 /| 6
~2— ~y [ —27M .

where 1/4/2mNa3, is the density of a normal random variable of mean 0 and
variance Na3, near the origin, and the extra factor of 2 comes from the fact that
the random walk is on even integers only.

As we will show in the next Sections, the RCM is a good approximation for
the original number partitioning problem. Some intuition for this property can
be found in the exercise below.

Exercise 7.2 Consider two random, uniformly distributed, independent parti-
tions A and A’. Let P(FE, E’) denote the joint probability of their energies when
the numbers {a;} are iid and uniformly distributed over {1,...,2}. Show that
P(E,E') = P(E)P(E')[1 + o(1)] in the large N, M limit, if E, E’ < C2M for
some fixed C.

7.4.2 Phase transition

We can now proceed with the analysis of the RCM. We shall first determine the
phase transition, then study the phase x > 1 where typically no perfect partition
can be found, and finally study the phase x < 1 where an exponential number
of perfect partitions exist.

Consider a random instance of the RCM. The probability that no perfect
partition exist is just the probability that each partition has a strictly positive
cost. Since, within the RCM, the 2V ! partitions have iid costs with distribution
P, we have:

1 — ppest (s, N) = [1 = P(0)]2" . (7.7)

In the large N limit with fixed k, the zero cost probability is given by Eq. (7.6).
In particular P(0) < 1. Therefore:

3 2N(1—)€)

Ppert(k, N) =1— exp[—QN_lp(O)] +o(l)=1—exp Y

+o(1).

(7.8)
This expression predicts a phase transition for the RCM at k. = 1. Notice in fact
that imy oo Ppert(k, N) = 1 if K < 1, and = 0 if £ > 1. Moreover, it describes
the precise behavior of ppers(k, V) around the critical point k. for finite N: Let

{ex:8_remlike}

{eq:pperf_pred}
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Fiac. 7.4. The data of Fig. 7.2 ig replotted, showing the (estimated)
probability of perfect partition ppers(N,M) versus the rescaled variable
x = N(k — k¢) + (1/2)logy N. The agreement with the theoretical prediction
(7.9) is very good.

us define the variable x = N(k — k) + (1/2)log, N. In the limit N — oo and
K — K¢ at fized x, one finds the crossover behavior:

. /3 .
]\171_1}; pperf(’ivN) =1—exp [ % 2 ] : (79)

K—HKe

This is an example of finite-size scaling behavior.

In order to compare the above prediction with our numerical results for the
original number partitioning problem, we plot in Fig. 7.4 pyers(k, N) versus the
scaling variable x. Here we use the same data presented in Fig. 7.2, just changing
the horizontal axis from N to x. The good collapse of the curves for various values
of M provides evidence for the claim that the number partitioning problem is
indeed asymptotically equivalent to the RCM and presents a phase transition at
k=1

Exercise 7.3 Notice that the argument before assume that »", a; is even. This
is the condition was imposed in the simulation whose results are presented
in Fig. 7.4. How should one modify the estimate of P(0) in Eq. (7.6) when
> a; is odd? Show that, in this case, if one keeps the definition z = N(x —
Ke) + (1/2) log, N, the scaling function becomes 1 — exp [—2\ /2 2_1}. Run a
simulation to check this prediction.

7.4.3 Study of the two phases

Let us now study the minimum cost in the phase x > 1. The probability that all
configurations have a cost larger than F is:

{eq:NPfss}
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P(VA: Eq>E)= (1 -3 P(E’)) : (7.10)

This probability is non trivial (i.e. different form 0 or 1) if Zg/:o P(E") =
O(27N). It is easy to show that this sum can be estimated by substituting®
P(E') — P(0), which gives the condition E ~ 1/(P(0)2¥~1) ~ 2M=N /N We
therefore get, from Eq. (7.10):

. _ 5 g
A}gnoo]? (VA. Ey > P(O)2N1) e *I(e>0). (7.11)

In particular the mean of the distribution on the right hand side is equal to 1.
This implies that the expectation of the lowest cost in the problem is E Eys =

@2]\7 (v=1)  These predictions also fit the numerical results for number par-

titioning very well.

Exercise 7.4 Show that the probability density of the k-th lowest cost con-
figuration, in the rescaled variable ¢, is e¥~!/(k — 1)! exp(—¢) I(e > 0). This is
a typical case of extreme value statistics for bounded iid variables.

In the phase k < 1 we already know that, for almost all samples, there exists
at least one configuration with zero cost. It is instructive to count the number
of zero cost configurations. Since each configuration has zero cost independently
with probability P(0), the number Z of zero cost configurations is a binomial
random variable with distribution

N—1 _
P(Z) = (2 , ) PO)Z [1-PO)> 7. (7.12)
In particular, for large N, Z concentrates around its average value Z, = 2N1=#)
One can define an entropy density of the ground state as:
1
Sgs = log, Z . (7.13)

The RCM result (7.12) predicts that for £ < 1 the entropy density is close 1 — K
with high probability. Once again, numerical simulations on the original number
partitioning problem confirm this expectation.

19As the resulting value of E is much smaller than the scale over which P(FE) varies signifi-
cantly, cf. Eq. (7.6), the substitution of P(0) to P(E’) is indeed consistent

{ex:8_extreme}

{eq:RCMdegeneracy}

{eq:rcm_entrop}
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Exercise 7.5 Using the integral representation of the logarithm:

t —tlog?2 =
d o T 14
10g2 T = /0 _t (6 —€ ) s (7 )

compute E s, directly. It will be useful to notice that the ¢ integral is dominated
by very small values of ¢, of order 1/(2¥~1P(0)). Then one easily finds E sy ~
(1/N)log,(2N=1P(0)) ~ 1 — k.

7.5 Partition of a random list: rigorous results

A detailed rigorous characterization of the phase diagram in the partitioning
of random numbers has been obtained by Borgs, Chayes and Pittel. Basically it
confirms the predictions of the RCM. We shall first state some of the exact results
known for the balanced partitioning of N numbers. For definiteness we keep as
before to the case where a; are iid uniformly distributed in {1,...,2™}, and
both N and Zfil a; are even. The following results hold in the ‘thermodynamic
limit’ N, M — oo with fixed k = M/N,

Theorem 7.2 There is a phase transition at k = 1. For v < 1, with high
probability, a randomly chosen instance has a perfect balanced partition. For
k > 1, with high probability, a randomly chosen instance does not have a perfect
balanced partition.

Theorem 7.3 In the phase k < 1, the entropy density (7.13) of the number of
perfect balanced partitions converges in probability to s =1 — k.

Theorem 7.4 Define E = 2NV=D /27xN/3 and let B, < --- < Ej, be the
k lowest costs, with k fixed. Then the k-uple (51 =E/E,...ex = Ek/E) con-
verges in distribution to (W1, Wi+Wa, ..., Wi+... Wy), where W; are iid random
variables with distribution P(W;) = e=Wi I(W, > 0). In particular the (rescaled)
optimal cost distribution converges to P(e1) = et I(e; > 0).

Note that these results all agree with the RCM. In particular, Theorem 7.4 states
that, for fixed £ and N — oo, the lowest k costs are iid variables, as assumed in
the RCM. This explains why the random cost approximation is so good.

The proofs of these theorems (and of more detailed results concerning the
scaling in the neighborhood of the phase transition point x = 1), are all based
on the analysis of an integral representation for the number of partitions with a
given cost which we will derive below. We shall then outline the general strategy
by proving the existence of a phase transition, cf. Theorem 7.2, and we refer the
reader to the original literature for the other proofs.

7.5.1 Integral representation

For simplicity we keep to the case where ). a; is even, similar results can be
obtained in the case of an odd sum (but the lowest cost is then equal to 1).

{ex:8_integlog}

{eq:log_int_rep}
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Proposition 7.5 Given a set S = {a1,...,an} with ), a; even, the number Z
of partitions with cost E =0 can be written as:
T dr 4y
Z =2N"1 / — ). 7.15
i jl;[lcos(ajsc) (7.15)

Proof: We represent the partition A by writing o; = 1if i € A, and 0; = —1
if i € B=[N]\ A. One can write: Z = %Zgl’”_,gN I (ZN

=1 0505 = O) , where
the factor 1/2 comes from the A — B symmetry (the same partition is repre-
sented by the sequence o1,...,0x and by —o1,...,—oyn). We use the integral

representations valid for any integer number a:

I(a =0) = /ﬂ dv iva (7.16)

_p2m
which gives:

1 Tdx
7 = 5 Z / % e, 0505) (7.17)
01,...,O0N -

The sum over o;’s gives the announced integral representation (7.15) OJ

Exercise 7.6 Show that a similar representation holds for the number of par-
tition with cost E > 1, with an extra factor 2 cos(Ez) in the integrand. For the
case of balanced partitions, find a similar representation with a two-dimensional
integral.

The integrand of (7.15) is typically exponential in N and oscillates wildly.
It is thus tempting to compute the integral by the method of steepest descent.
This strategy yields correct results in the phase £ < 1, but it is not easy to
control it rigorously. Hereafter we use simple first and second moment estimates
of the integral which are powerful enough to derive the main features of the
phase diagram. Finer control gives more accurate predictions which go beyond
this presentation.

7.5.2 Moment estimates

We start by evaluating the first two moments of the number of perfect partitions
Z.

Proposition 7.6 In the thermodynamic limit the first moment of Z behaves as:

EZ = QN(H)‘/Q%V(H@WN)) (7.18)

Proof: The expectation value is taken over choices of a; where ), a; is even.
Let us use a modified expectation, denoted by E;, over all choices of aq, ..., an,
without any parity constraint, so that a; are iid. Clearly E;Z = (1/2)E Z, because

{ex:8_highercost}

{propo:np_1}

{eq:np_moml_res}
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a perfect partition can be obtained only in the case where ", a; is even, and this
happens with probability 1/2.

Because of the independence of the a; in the expectation E;, one gets from
(7.15)

EZ = 2E;Z = 2N / 217 [E; cos(arz)]™ . (7.19)
g 2m
The expectation of the cosine is:
sin(2M 2 /2
E; cos(ayz) = 27 cos (g(2M + 1)) M =g(x). (7.20)

A little thought shows that the integral in (7.19) is dominated in the thermo-
dynamic limit by values of x very near to 0. Precisely we rescale the variable
as x = /(2™ +/N). Then one has g(x) = 1 — 22/(6N) + ©(1/N?). The leading
behavior of the integral (7.20) at large N is thus given by:

1 32 3
EZ =2N"M / - — ) =M 21
exp | = 5N (7.21)

up to corrections of order 1/N. [J

Exercise 7.7 Show that, for E even, with E < C2M | for a fixed C, the number
of partitions with cost E is also given by (7.18) in the thermodynamic limit.

Proposition 7.7 When k < 1, the second moment of Z behaves in the thermo-
dynamic limit as:
EZ?=[EZ]’ (1+6O(1/N)). (7.22)

Proof: We again release the constraint of an even ), a;, so that:

d d
EZ? = 22N-1 / an / ar2 [E cos(ayx1) cos(arza)]™ (7.23)
The expectation of the product of the two cosines is:

Lot + o)) (7.24)

E cos(aixy) cos(ajzs) = 5

where x4+ = x1 £+ x2. In order to find out which regions of the integration domain
are important in the thermodynamic limit, one must be careful because the
function g(z) is 27 periodic. The double integral is performed in the square
[, +7]%. The region of this square where g can be very close to 1 are the ‘center’
where x1, 20 = ©(1/(2M+/N)), and the four corners, close to (£, £7), obtained
from the center by a +27 shift in 24 or in x_. Because of the periodicity of g(z),
the total contribution of the four corners equals that of the center. Therefore
one can first compute the integral near the center, using the change of variables

{eq:np_m1_1}
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Ty2) = :%1(2)/(2M\/N). The correct value of E Z? is equal to twice the result
of this integral. The remaining part of the computation is straightforward, and
gives indeed EZ2 o~ 22N(=r) 5

In order for this argument to be correct, one must show that the contributions
from outside the center are negligible in the thermodynamic limit. The leading
correction comes from regions where z, = O(1/(2™+/N)) while x_ is arbitrary.
One can explicitly evaluate the integral in such a region by using the saddle point
approximation. The result is of order @(2NV(=%)/N). Therefore, for x < 1 the
relative contributions from outside the center (or the corners) are exponentially
small in N. A careful analysis of the above two-dimensional integral can be found
in the literature. O

Propositions 7.6 and 7.7 above have the following important implications.
For k > 1, EZ is exponentially small in N. Since Z is a non-negative integer,
this implies (first moment method) that, in most of the instances Z is indeed 0.
For k < 1, E Z is exponentially large. Moreover, the normalized random variable
Z/E Z has a small second moment, and therefore small fluctuations. The second
moment method then shows that Z is positive with high probability. We have
thus proved the existence of a phase transition at k. = 1, i.e. Theorem 7.2.

Exercise 7.8 Define as usual the partition function at inverse temperature 3
as Z(3) = Y. 4 e PP4. Using the integral representation

_ Cdx 1
e lUl:/ — T v (7.25)

and the relation Y, ., 1/(1+22k?) = 7/(z tanh(r/z)), show that the ‘annealed
average’ for iid numbers a; is

E;(Z) = 2N0=%), %ma + ©(1/N)) (7.26)

Notes

A nice elementary introduction to number partitioning is the paper by Hayes
(Hayes, 2002). The NP-complete nature of the problem is a classical result which
can be found in textbooks like (Papadimitriou, 1994; Garey and Johnson, 1979).
The Karmarkar Karp algorithm was introduced in the technical report (Kar-
markar and Karp, 1982). Korf’s complete algorithm is in (Korf, 1998).

There has been a lot of work on the partitioning of random iid numbers.
In particular, the large » limit, after a rescaling of the costs by a factor 2=M,
deals with the case where a; are real random numbers, iid on [0, 1]. The scaling
of the cost of the optimal solution in this case was studied as soon as 1986 by
Karmarkar, Karp, Lueker and Odlyzko (Karmarkar, Karp, Lueker and Odlyzko,
1986). On the algorithmic side this is a very challenging problem. As we have
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seen the optimal partition has a cost O(\/]V 2N however all known heuristics
perform badly on this problem. For instance the KK heuristics finds solution with
a cost O(exp [—.72(log N)?| which is very far from the optimal scaling (Yakir,
1996).

The phase transition was identified numerically by Gent and Walsh (Gent and
Walsh, 1998), and studied through statistical physics methods by Ferreira and
Fontanari (Ferreira and Fontanari, 1998) and Mertens (Mertens, 1998), who also
introduced the random cost model (Mertens, 2000). His review paper (Mertens,
2001) provides a good summary of these works, and helps to solve the Exercises
7.2,7.4, and 7.7. The parity questions discussed in exercise 7.3 have been studied
in (Bauke, 2002).

Elaborating on these statistical mechanics treatments, Borgs, Chayes and
Pittel were able to establish very detailed rigorous results on the unconstrained
problem (Borgs, Chayes and Pittel, 2001), and more recently, together with
Mertens, on the constrained case (Borgs, Chayes, Mertens and Pittel, 2003).
These result go much beyond the Theorems which we have stated here, and the
interested reader is encouraged to study these papers. She will also find there all
the technical details needed to fully control the integral representation used in
Section 7.5, and the solutions to Exercises 7.5 and 7.6.
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INTRODUCTION TO REPLICA THEORY

In the past 25 years the replica method has evolved into a rather sophisticated
tool for attacking theoretical problems as diverse as spin glasses, protein folding,
vortices in superconductors, combinatorial optimization, etc. In this book we
adopt a different (but equivalent and, in our view, more concrete) approach: the
so-called ‘cavity method’. In fact, the reader can skip this Chapter without great
harm concerning her understanding of the rest of this book.

It can be nevertheless instructive to have some knowledge of replicas: the
replica method is an amazing construction which is incredibly powerful. It is
not yet a rigorous method: it involves some formal manipulations, and a few
prescriptions which may appear arbitrary. Nevertheless these prescriptions are
fully specified, and the method can be regarded as an ‘essentially automatic’
analytic tool. Moreover, several of its most important predictions have been
confirmed rigorously through alternative approaches. Among its most interesting
aspects is the role played by ‘overlaps’ among replicas. It turns out that the subtle
probabilistic structure of the systems under study are often most easily phrased
in terms of such variables.

Here we shall take advantage of the simplicity of the Random Energy Model
(REM) defined in Chapter 5 to introduce replicas. This is the topic of Sec. 8.1. A
more complicated spin model is introduced and discussed in Sec. 8.2. In Sec. 8.3
we discuss the relationship between the simplest replica symmetry breaking
scheme and the extreme value statistics. Finally, in the Appendix we briefly
explain how to perform a local stability analysis in replica space. This is one of
the most commonly used consistency checks in the replica method.

8.1 Replica solution of the Random Energy Model

As we saw in Sec. 5.1, a sample (or instance) of the REM is given by the values
of 2V energy levels E;, with j € {1,...,2"V}. The energy levels are iid Gaussian
random variables with mean 0 and variance N/2. A configuration of the REM
is just the index j of one energy level. The partition function for a sample with
energy levels {E; ..., Eon} is

2N

Z =Y exp(-BE;) , (8.1)

j=1

and is itself a random variable (in the physicist language ‘Z fluctuates from sam-
ple to sample’). In Chapter 5 we argued that intensive thermodynamic potentials
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are self-averaging, meaning that their distribution is sharply concentrated around
the mean value in the large-/N limit. Among these quantities, a prominent role
is played by the free energy density f = —1/(8N) log Z. Other potentials can in
fact be computed from derivatives of the free energy. Unlike these quantities, the
partition function has a broad distribution even for large sizes. In particular, its
average is dominated (in the low temperature phase) by extremely rare samples.
In order to have a fair description of the system, one has to compute the average
of the log-partition function, Elog Z, which, up to a constant, yields the average
free energy density.

It turns out that computing integer moments of the partition function E Z™,
with n € N, is much easier than computing the average log-partition function
E log Z. This happens because Z is the sum of a large number of ‘simple’ terms.

If, on the other hand, we were able to compute E Z" for any real n (or, at
least, for n small enough), the average log-partition function could be determined
using, for instance, the relation

E log Z = liml log(EZ™) . (8.2)
n—0n
The idea is to carry out the calculation of E Z™ ‘as if’ n were an integer. At a
certain point (after having obtained a manageable enough expression), we shall
‘remember’ that n has indeed to be a real number and take this into account.
As we shall see this whole line of approach has some flavor of an analytic con-
tinuation but in fact it has quite a few extra grains of salt...
The first step consists in noticing that Z™ can be written as an n-fold sum

2N

Z"= Y exp(-BE;, —---—fE;) . (8.3)

i1ein=1

This expression can be interpreted as the partition function of a new system.
A configuration of this system is given by the n-uple (i1,...,4,), with i, €
{1,...,2N} and its energy is E;, ; = E;, +---+ E; . In other words, the new
system is formed of n statistically independent (in the physicist language: non-
interacting) copies of the original one. We shall refer to such copies as replicas.

In order to evaluate the average of Eq. (8.3), it is useful to first rewrite it as:

z"= Y []exp |-BE; (Z]I(ia:j)>] . (8.4)

i1ein=1j=1
Exploiting the linearity of expectation, the independence of the E;’s, and their
Gaussian distribution, one easily gets:

2N

EZ"= Y  exp BZN > T(ia =1p) | - (8.5)

i1.in=1 a,b=1
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E Z™ can also be interpreted as the partition function of a new ‘replicated’ sys-
tem. As before, a configuration is given by the n-uple (i1,...,4,), but now its
energy is Ei, i, = —NB/43°0 ,_ 1(ia = ip).

This replicated system has several interesting properties. First of all, it is no
longer a disordered system: the energy is a deterministic function of the config-
uration. Second, replicas do interact: the energy function cannot be written as
a sum of single replica terms. The interaction amounts to an attraction between
different replicas. In particular, the lowest energy configurations are obtained
by setting iy = -+ = i,,. Their energy is E;, ; = —Nfn?/4. Third: the energy
depends itself upon the temperature, although in a very simple fashion. Its effect
will be stronger at low temperature.

The origin of the interaction among replicas is easily understood. For one
given sample of the original problem, the Boltzmann distribution concentrates
at low temperature (8 > 1) on the lowest energy levels: all the replicas will
tend to be in the same configuration with large probability. When averaging
over the distribution of samples, we do not see any longer which configuration
i € {1...2"} has the lowest energy, but we still see that the replicas prefer
to stay in the same state. There is no mystery in these remarks. The elements
of the n-uple (i;...i,) are independent conditional on the sample, that is on
realization of the energy levels E;, j € {1...2"}. If we do not condition on the
realization, (i1 ...4,) become dependent.

Given the replicas configurations (i; ...4,), it is convenient to introduce the
n x n matrix Q. = I(i, = ), with elements in {0,1}. We shall refer to this
matrix as the overlap matrix. The summand in Eq. (8.5) depends upon the
configuration (i ... i,) only through the overlap matrix. We can therefore rewrite
the sum over configurations as:

2 n
B2 =Y Mv(@ esp [ 25 Qu (36)
Q

4
a,b=1

Here Ny (Q) denotes the number of configurations (i1 . ..i,) whose overlap ma-
trix is @ = {Qap}, and the sum ), runs over the symmetric {0, 1} matrices
with ones on the diagonal. The number of such matrices is 2"("~1/2 while the
number of configurations of the replicated system is 2V™. It is therefore natural
to guess that the number of configurations with a given overlap matrix satisfies
a large deviation principle of the form Ny (Q) = exp(Ns(Q)):

Exercise 8.1 Show that the overlap matrix always has the following form:
There exists a partition Gi, Ga, ..., Gy, of the n replicas (this means that
G1UGaU---UG, ={l...n} and G;NG; = () into ng groups such that Qg = 1
if a and b belong to the same group, and @, = 0 otherwise. Prove that Ny (Q)
satisfies the large deviation principle described above, with s(Q) = ng log 2.
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Using this form of Ny (Q), the replicated partition function can be written
as:

Y en(u@) i a(Q)= 0=2% Qu+s@ (8.7)

a,b=1

The strategy of the replica method is to estimate the above sum using the saddle
point method?°. The ‘extrapolation’ to non-integer values of n is discussed after-
ward. Let us notice that this program is completely analogous to the treatment
of the Curie-Weiss model in Sec. 2.5.2 (see also Sec. 4.3 for related background),
with the extra step of extrapolating to non-integer n.

8.1.1 Replica symmetric saddle point

The function ¢(Q) is symmetric under permutation of replicas: Let = € S,, be
a permutation of n objects, and denote by @™ the matrix with elements Q7, =
Qr(a)rv)- Then g(Q™) = ¢(Q). This is a simple consequence of the fact that
the n replicas were equivalent from the beginning. This symmetry is called the
replica symmetry, and is a completely generic feature of the replica method.

When the dominant saddle point possesses this symmetry (i.e. when Q™ = Q
for any permutation 7) one says that the system is replica symmetric (RS).
In the opposite case replica symmetry is spontaneously broken in the large N
limit, in the same sense as we discussed in chapter 2 (see Sec. 2.5.2).

In view of this permutation symmetry, the simplest idea is to seek a replica
symmetric saddle point. If @ is invariant under permutation, then necessarily
Qua = 1, and Qup = qo for any couple a # b. We are left with two possibilities:

e The matrix Qrs,o is defined by go = 0. In this case Ny (Qrs,0) = 2V (2V —

{eq:ReplicatedPartitionFuncti

1)...(2Y —n+1), which yields s(Qrs,0) = nlog 2 and g(Qrs,0) = n (8?/4 + log 2).

e The matrix Qrs,1 is defined by gy = 1. This means that iy = -+ = i,.
There are of course Ny (Qrs,1) = 2V choices of the n-uple (ij ...4i,) com-
patible with this constraint, which yields s(Qrs,1) = log2 and ¢(Qrs,1) =
n?3?/4 + log 2.

Keeping for the moment to these RS saddle points, one needs to find which one
dominates the sum. In Figure 8.1 we plot the functions go(n, 5) = g(Qrs,0) and
g1(n,B) = g(Qrs,1) for n = 3 and n = 0.5 as a functions of T" = 1/3. Notice
that the expressions we obtained for go(n,3) and g;(n, 3) are polynomials in n,
which we can plot for non-integer values of n.

When n > 1, the situation is always qualitatively the same as the one shown in
the n = 3 case. If we let S.(n) = y/4log2/n, we have ¢1(3,n) > go(83,n) for 5 >
Be(n), while g1(3,n) < go(B,n) for 3 < Bc(n). Assuming for the moment that
the sum in Eq. (8.7) is dominated by replica symmetric terms, we have E Z" =

208peaking of ‘saddle points’ is a bit sloppy in this case, since we are dealing with a discrete
sum. By this, we mean that we aim at estimating the sum in Eq. (8.7) through a single
‘dominant’ term.
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Q)
N

Fic. 8.1. Rate function g(Q) for the REM, cf. Eq. (8.7) versus temperature.
9(Q) is evaluated here on the two replica-symmetric saddle points Qgrs,o (con-
tinuous curves) and Qrs (dashed curves), in the cases n = 3 and n = 0.5.

exp{N max[go(3,n),¢1(5,n)]}. The point S.(n) can therefore be interpreted as
a phase transition in the n replicas system. At high temperatures (6 < (.(n))
the go = 0 saddle point dominates the sum: replicas are essentially independent.
At low temperature the partition function is dominated by gy = 1: replicas are
locked together. This fits nicely within our qualitative discussion of the replicated
system in the previous Section.

The problems appear when considering the n < 1 situation. In this case
we still have a phase transition at (.(n) = y/4log2/n, but the high and low
temperature regimes exchange their roles. At low temperature (8 > [.(n))
one has ¢g1(8,n) < go(B,n), and at high temperature (8 < B.(n)) one has
91(8,n) > go(B,n). If we applied the usual prescription and pick up the saddle
point which maximizes ¢g(Q), we would obtain a nonsense, physically (replicas
become independent at low temperatures, and correlated at high temperatures,
contrarily to our general discussion) as well as mathematically (for n — 0, the
function E Z™ does not go to one, because g1(83,n) is not linear in n at small n).
As a matter of fact, the replica method prescribes that, in this regime n < 1, one
must estimate the sum (8.7) using the minimum of g(Q)! There is no mathemat-
ical justification of this prescription in the present context. In the next example
and the following Chapters we shall outline some of the arguments employed by
physicists in order to rationalize this choice.
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Example 8.1 In order to get some understanding of this claim, consider the
following toy problem. We want to apply the replica recipe to the quantity
Zioy(n) = (2r/N)""=D/4 (for a generic real n). For n integer, we have the
following integral representation:

Ztoy(n) = /6_% Z(ab) Qib H anb = /eNg(Q) H anb7 (8.8)

(ad) (ad)

where (ab) runs over all the un-ordered couples of indices a,b € {1...n} with
a # b, and the integrals over @, run over the real line. Now we try to evaluate
the above integral by the saddle point method, and begin with the assumption
that is dominated by a replica symmetric point @7, = qo for any a # b, yielding
9(Q*) = —n(n — 1)g?/2. Next, we have to fix the value of gy € R. It is clear
that the correct result is recovered by setting go = 0, which yields Zioy(n) = 1.
Moreover this is the unique choice such that g(Q*) is stationary. However, for
n < 1, go = 0 corresponds to a minimum, rather than to a maximum of g(Q*).
A formal explanation of this odd behavior is that the number of degrees of
freedom, the matrix elements Q. with a # b, becomes negative for n < 1.

This is one of the strangest aspects of the replica method, but it is unavoid-
able. Another puzzle which we shall discuss later concerns the exchange of order
of the N — oo and n — 0 limits.

Let us therefore select the saddle point gy = 0, and use the trick (8.2) to
evaluate the free energy density. Assuming that the N — oo and n — 0 limits
commute, we get the RS free energy:

2
—-8f = ngn@%ﬂl log Z = ngnoorllli% ﬁ log(EZ™) = Tlliir%)%go(n,ﬁ) = %—Hogl
(8.9)
Comparing to the correct free energy density, cf. Eq. (5.15), we see that the
RS result is correct, but only in the high temperature phase § < 8. = 2+1/log 2.
It misses the phase transition. Within the RS framework, there is no way to get
the correct solution for 5 > f..

8.1.2  One step replica symmetry breaking saddle point

For 8 > (., the sum (8.7) is dominated by matrices () which are not replica
symmetric. The problem is to find these new saddle points, and they must make
sense in the n — 0 limit. In order to improve over the RS result, one may try
to enlarge the subspace of matrices to be optimized over (i.e. to weaken the
requirement of replica symmetry). The replica symmetry breaking (RSB)
scheme initially proposed by Parisi in the more complicated case of spin glass
mean field theory, prescribes a recursive procedure for defining larger and larger
spaces of ) matrices where to search for saddle points.



{fig:RemRSB}

REPLICA SOLUTION OF THE RANDOM ENERGY MODEL 149

5
4+
£
E 3
S
=
gof
[=2)
1 -
oM@ mB) .| m075)
0 05 1 15 2 25 3
m

F1c. 8.2. The rate function ¢(Q), cf. Eq. (8.7), evaluated on the one-step replica
symmetry breaking point, as a function of the replica-symmetry breaking param-
eter m.

The first step of this procedure, is called one step replica symmetry
breaking (1RSB). In order to describe it, let us suppose that n is a multiple
of m, and divide the n replicas into n/m groups of m elements each, and set:

Qaa = ]-,
Qab = ¢1  if a and b are in the same group, (8.10)
Qup = qo if a and b are in different groups.

Since in the case of the REM the matrix elements are in {0, 1}, this Ansatz is
distinct from the RS one only if g1 = 1 and gg = 0. This corresponds, after an
eventual relabeling of the replica indices, to i1 = -+ = i,y typp1 = - -+ = G2m, etc.
The number of choices of (i1, .. .%,) which satisfy these constraints is Ny (Q) =
2NN —1)...(2Y — n/m + 1), and therefore we get s(Q) = (n/m)log?2. The
rate function in Eq. (8.7) is given by g(Qrss) = grss(08,n,m):

32 n
grsB (B, n,m) = [ m + - log2 . (8.11)

Following the discussion in the previous Section, we should minimize grsp (3, n, m)
with respect to m, and then take the n — 0 limit. Notice that Eq. (8.11) can be
interpreted as an analytic function both in n and in m # 0. We shall therefore
forget hereafter that n and m are integers with n a multiple of m. The first
derivative of grsp (3, n, m) with respect to m, vanishes if m = mg(3), where

2y/log2 B

p B
Substituting in Eq. (8.11), and assuming again that we can commute the limits
n — 0 and N — oo, we get

ms(3) = (8.12)

{eq:REMReplicaSymmetryBroken]
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1
—Bf = lin}) - min grsp (8,1, m) = B+/log 2, (8.13)

which is the correct result for § > (5.: f = —y/log2. In fact we can recover the
correct free energy of the REM in the whole temperature range if we accept that
the inequality 1 < m < n, valid for n, m integers, becomes n =0 < m < 1 in the
limit n — 0 (we shall see later on other arguments supporting this prescription).
If the minimization is constrained to m € [0, 1], we get a fully consistent answer:
m = (./0 is the correct saddle point in the phase § > (., while for 8 < (.
the parameter m sticks to the value m = 1. In Fig. 8.2 we sketch the function
grsp(B,n,m)/n for a few values of the temperature 3.

8.1.3 Comments on the replica solution

One might think that the replica method is just a fancy way of reconstructing a
probability distribution from its integer moments. We know how to compute the
integer moments of the partition function E Z", and we would like to infer the
full distribution of Z, and in particular the value of E log Z. This is a standard
topic in probability theory: the probability distribution can be reconstructed
if its integer moments don’t grow too fast as n — oo. A typical result is the
following.

Theorem 8.2. (Carleman) Let X be a real random wvariable with moments
wn, =EX™ such that

’u;n1/2n =00. (8.14)
n=1
Then any variable with the same moments is distributed identically to X.

For instance, if the moments don’t grow faster than exponentially, E X™ ~ e®™
their knowledge completely determines the distribution of X.

Let us try to apply the above result to the REM case treated in the previous
pages. The replica symmetric calculation of Sec. 8.1.1 is easily turned into a
lower bound:

EZ" > e"9(Qrs,0) > 6N52n2/4. (8.15)

Therefore the sum in Eq. (8.14) converges and the distribution of Z is not nec-
essarily fixed by its integer moments.

Exercise 8.2 Assume Z = ¢ ¥

probability density

, with F' a Gaussian random variable, with

p(F) = \/LQ_ﬁ e F/2 (8.16)

Compute the integer moments of Z. Do they verify the hypothesis of Carleman
Theorem? Show that the moments are unchanged if p(F') is replaced by the
density po(F) = p(F)[1 + asin(27F)], with |a| < 1 (from (Feller, 1968)).
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In our replica approach, there exist several possible analytic continuations to
non-integer n’s, and the whole issue is to find the correct one. Parisi’s Ansatz
(and its generalization to higher order RSB that we will discuss below) gives a
well defined class of analytic continuations, which turns out to be the correct
one in many different problems.

The suspicious reader will notice that the moments of the REM partition
function would not grow that rapidly if the energy levels had a distribution
with bounded support. If for instance, we considered F; to be Gaussian random
variables conditioned to E; € [—Fmax, Pmax], the partition function would be
upper bounded by the constant Z,., = 2V e#Fmax . Consequently, we would have
EZ" < Z@.., and the whole distribution of Z could be recovered from its integer
moments. In order to achieve such a goal, we would however need to know exactly
all the moments 1 < n < oo at fixed N (the system size). What we are instead
able to compute, in general, is the large N behavior at any fixed n. In most cases,
this information is insufficient to insure a unique continuation to n — 0.

In fact, one can think of the replica method as a procedure for computing
the quantity

o1 n
P(n) = J\;Enoo N logEZ™, (8.17)

whenever the limit exist. In the frequent case where f = —log Z/(8N) satisfies
a large deviation principle of the form Py (f) = exp[—NI(f)], then we have

EZ" = /df exp|—NI(f) — NfBnf] = exp{—Ninf[I(f) + Onf]}. (8.18)

Therefore ¢)(n) = —inf[I(f)+Bnf]. In turns, the large deviation properties of fx
can be inferred from (n) through the Gértner-Ellis theorem 4.12. The typical
value of the free energy density is given by the location of the absolute minimum
of I(f). In order to compute it, one must in general use values of n which go to
0, and one cannot infer it from the integer values of n.

8.1.4 Condensation

As we discussed in Chapter 5, the appearance of a low temperature ‘glass’ phase is
associated with a condensation of the probability measure on few configurations.
We described quantitatively this phenomenon by the participation ratio Y. For
the REM we obtained limy_ oo EY =1 — G./0 for any § > (. (see proposition
5.3). Let us see how this result can be recovered in just a few lines from a replica
computation.

The participation ratio is defined by Y = Z?il p?, where p; = e PEi /7 is
Boltzmann’s probability of the j'th energy level. Therefore:

{se:reprem_cond}
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2N
T n—2 —2BE; iy
EY = rlzlg%) E|Z Z; e [Definition of Y]
21\7
— 1 —B(Eiy++Ei,_,) —2B8E; .
}L%E Z e 1 2 z;e [Assume n € N]
i1.in—9 =
— 1 BB+ +Eu (5 | —
,ILIL%E [Z e 1 I(in—1 zn)]
21...Tn
1
= i% m ;}E 12; e B+t Eiy) I(ig = ib)] [Symmetrize]

E { 3 e~ B(Ei ++Eiy,) I(i, = Zb)]

81l

[Denom. — 1]
a#b E{ > eﬁ(Eil+”'+Ein):|

11...’in

i > (Qav)n » (8.19)

a#b
where the sums over the replica indices a,b run over a,b € {1,...,n}, while
the configuration indices i, are summed over {1,...,2V}. In the last step we

introduced the notation

N (O)e e T Qat
(F(Q)) = 2D NN (@ , (8.20)
ZQ NN(Q)ET >ap Qab

and noticed that the sum over iq,...,1%, can be split into a sum over the overlap
matrices @) and a sum over the n-uples i; ... 1%, having overlap matrix ). Notice
that (-),, can be interpreted as an expectation in the ‘replicated system’.

In the large N limit Ny (Q) = eV*(?), and the expectation value (8.20) is
given by a dominant?! (saddle point) term: (f(Q)), ~ f(Q*). As argued in the
previous Sections, in the low temperature phase 3 > ., the saddle point matrix
is given by the 1RSB expression (8.10).

21Tf the dominant term corresponds to a non-replica symmetric matrix Q*, all the terms
obtained by permuting the replica indices contribute with an equal weight. Because of this
fact, it is a good idea to compute averages of symmetric functions f(Q) = f(Q™). This is what
we have done in Eq. (8.19).
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1
EY = lim —— RSB Saddle point
n—0 n(ﬂ _ 1) GZ# b [ ]
zl—mzl—% [90 =0, ¢1 = 1].(8.21)

This is exactly the result we found in proposition 5.3, using a direct combina-
torial approach. It also confirms that the IRSB Ansatz (8.10) makes sense only
provided 0 < m < 1 (the participation ratio Y is positive by definition). Com-
pared to the computation in Sec. 5.3, the simplicity of the replica derivation is
striking.

At first look, the manipulations in Eq. (8.19) seem to require new assumptions
with respect to the free energy computation in the previous Sections. Replicas
are introduced in order to write the Z~2 factor in the participation ratio, as the
analytic continuation of a positive power Z”~2. It turns out that this calculation
is in fact equivalent to the one in (8.2). This follows from the basic observation
that expectation values can be obtained as derivatives of log Z with respect to
some parameters.

Exercise 8.3 Using the replica method, show that, for T' < T¢:

oN  _ Tr—-—m)  (r=1-m)(r—2-m)...(1—-m)
’ ;Pj S TOTA—m) (r—1)(r—2)...(1) , (8:22)

where I'(2) denotes Euler’s Gamma function.

Exercise 8.4 Using the replica method, show that, for T < T¢:

3 — 5m + 2m?

E(Y?) = 3

(8.23)

8.2 The fully connected p-spin glass model

The replica method provides a compact and efficient way to compute —in a
non rigorous way— the free energy density of the REM. The result proves to be
exact, once replica symmetry breaking is used in the low temperature phase.
However, its power can be better appreciated on more complicated problems
which cannot be solved by direct combinatorial approaches. In this Section we
shall apply the replica method to the so-called ‘p-spin glass’ model. This model
has been invented in the theoretical study of spin glasses. Its distinguishing
feature are interactions which involve groups p spins, with p > 2. It generalizes
ordinary spin glass models, cf. Sec. 2.6, in which interactions involve couples of

{ex:reml}

{se:PspinReplicas}
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spins (i.e. p = 2). This provides an additional degree of freedom, the value of p,
and different physical scenarios appear whether p = 2 or p > 3. Moreover, some
pleasing simplifications show up for large p.

In the p-spin model, one considers the space of 2%V configurations of N Ising
spins. The energy of a configuration o = {o1,...,0x} is defined as:

E(o) = - Z Jiy..ipTiy = Oy (8.24)

i1 <i2<...7p

where o; € {£1}. This is a disordered system: a sample is characterized by the
set of all couplings Jiy.ip, With 1 <47 < -+ <4 < N. These are taken as iid
Gaussian random variables with zero mean and variance E J2 i, =PI/(2N Py,
Their probability density reads:

p! NP1
P(J)= Nplexp<— ol J) (8.25)

The p-spin model is a so-called infinite range interaction model: there is no
notion of Euclidean distance between the positions of the spins. It is also called
a fully connected model since each spin interacts directly with all the others.
The last feature is at the origin of the special scaling of the variance of the J
distribution in (8.25). A simple criterion for arguing that the proposed scaling
is the correct one consists in requiring that a flip of a single spin generates an
energy change of order 1 (i.e. finite when N — 00). More precisely, let o the
configuration obtained from ¢ by reversing the spin i and define A; = [E(o()) —
E(0)]/2. 1t is easy to see that A; =3, . Jij..i,0i0% -+ 0i,. The sum is over
O(NP~1) terms, and, if o is a random configuration, the product o;0;, -+ 0y, in
each term is +1 or —1 with probability 1/2. The scaling in (8.25) insures that
A,; is finite as N — oo (in contrast, the p! factor is just a matter of convention).

Why is it important that the A; are of order 17 The intuition is that A;
estimates the interaction between a spin and the rest of the system. If A; were
much larger than 1, the spin ¢; would be completely frozen in the direction which
makes A; positive, and temperature wouldn’t have any role. On the other hand,
if A; were much smaller than one, the spin i would be effectively independent
from the others.

<lp

Exercise 8.5 An alternative argument can be obtained as follows. Show that,
at high temperature 8 < 1: Z = 2N[1+271 32 Zi1<~-~<ip Ji..ip +0(B%)]. This
implies N~1E log Z = log2 + Cnx3%/2 + O(B%), with Cy = 1. What would
happen with a different scaling of the variance? Which scaling is required in
order for C to have a finite N — oo limit?

The special case of p = 2 is the closest to the original spin glass problem and
is known as the Sherrington-Kirkpatrick (or SK) model.
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8.2.1 The replica calculation

Let us start by writing Z" as the partition function for n non-interacting replicas
o, withie {1,...,N}, ac {l,...,n}k

Z H exp (ﬁJ“ ZPZO’ZI lp) . (8.26)
{a’ }11< <ip

The average over the couplings J;
and the well known identity

1..i, 18 easily done by using their independence

EerX = e283 (8.27)

holding for a Gaussian random variable X with zero mean and variance E X? =
A. One gets:

EZ" = Z exXp %2]\[];!—1 Z Z 011011 012012 J?PJZ
{of}

i1<-<ip a,b

2 P
- {Z} exp %% zb: <Z afaf) (8.28)

where we have neglected corrections due to coincident indices i; = i in the first
term, since they are irrelevant to the leading exponential order. We introduce
for each a < b the variables A\, and Q. by using the identity

N
1 a d\gp  —Aab NQab—Zof‘af
1_/anb5<Qab_N;UiUg>—N/anb/ o e ( i )’

(8.29)
with all the integrals running over the real line. Using it in Eq. (8.28), we get

. NG | NB = 1,
Z :/HanbZexp<4n+22Qab> 5<Qab_N;UiJ?>

a<b {02} a<b
/ [1(dQab dray) e~ NE@A (8.30)
a<b

where we have introduced the function:

G(Q,N) = —n— - —ZQ Y A Qu —log | T e (8.31)

a<b a<b {oa}

which depends upon the n(n—1)/2+n(n—1)/2 variables Qap, Aap, 1 < a < b < n.

{eq:HubbardStrat}

{eq:ReplicatedPspin}

{eq:pspin_sp}

{eq:PspinAction}
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9(a)

q q

Fic. 8.3. Graphical solution of the RS equations for the p-spin model, with
p = 2 (SK model, left) and p = 3 (right). The various curves correspond to

inverse temperatures § =4, 3, 2, 1.5, 1, 0.5 (from top to bottom).

Exercise 8.6 An alternative route consists in noticing that the right hand
side of Eq. (8.28) depends upon the spin configuration only through the overlap
matrix Qup = N1 Y, 0%0?, with a < b. The sum can be therefore decomposed
into a sum over the overlap matrices and a sum over configurations with a given
overlap matrix:

. Np3? N2
EZ”:%:NN(Q) exp( f n+ 26 ;}ng)- (8.32)

Here Ny (Q) is the number of spin configurations with a given overlap matrix
Q. In analogy to the REM case, it is natural to guess a large deviations principle
of the form My (Q) = exp[Ns(Q)]. Use the Géartner-Ellis theorem 4.12 to obtain
an expression for the ‘entropic’ factor s(@). Compare the resulting formula for
E Z™ with Eq. (8.28).

Following our general approach, we shall estimate the integral (8.30) at large
N by the saddle point method. The stationarity conditions of G are most easily
written in terms of the variables i, = iAqp. By differentiating Eq. (8.31) with

respect to its arguments, we get Va < b

1 -
Hay = 582 Q7 Qab = (000} (8.:33)

where we have introduced the average within the replicated system

a<b a<b

{AlternativeAction}

<f(g)>71 = ﬁ Z f(U) exp (Z Mab0a0b> ) Z(:U’) = Z exp <Z Hab 0a0b> y
{o}

{oe}

(8.34)

for any function f(o) = f(o'...0").
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We start by considering a RS saddle point: Qup = q ; pap = p for any a # b.
Using the Gaussian identity (8.27), one finds that the saddle point equations
(8.33) become:

1 _
p=5pB ", g=E.tanh® (2y/h) , (8.35)

where E, denotes the expectation with respect to a Gaussian random variable
z of zero mean and unit variance. Eliminating p, we obtain an equation for the
overlap parameter: ¢ = 7(q), with r(¢) = E, tanh?(z+/pf2 ¢¢—1/2). In Fig. 8.3
we plot the function r(g) for p = 2,3 and various temperatures. The equations
(8.35) always admit the solution ¢ = p = 0. Substituting into Eq. (8.31), and
using the trick (8.2) this solution would yield a free energy density

fis = limy 2= G(Q™S,A) = —B/4— (1/8) log2. (8.36)

At low enough temperature, other RS solutions appear. For p = 2, a single
such solution departs continuously from 0 at 5. = 1, cf. Fig. 8.3, left frame. For
p > 3 a couple of non-vanishing solutions appear discontinuously for 5 > B.(p)
and merge as 3 | B.(p), cf. Fig. 8.3, right frame. However two arguments allow
to discard these saddle points:

e Stability argument: One can compute the Taylor expansion of G(Q,\)
around such RS saddle points. The saddle point method can be applied
only if the matrix of second derivatives has a defined sign. As discussed
in the Appendix, this condition does not hold for the non-vanishing RS
saddle points.

e Positivity of the entropy: As explained in Chap. 2, because of the positivity
of the entropy, the free energy of a physical system with discrete degrees
of freedom must be a decreasing function of the temperature. Once again,
one can show that this condition is not satisfied by the non-vanishing RS
saddle points.

On the other hand, the ¢ = 0 saddle point also violates this condition at
low enough temperature (as the reader can show from Eq. (8.36)).

The above arguments are very general. The second condition, in particular, is
straightforward to be checked and must always be satisfied by the correct saddle
point. The conclusion is that none of the RS saddle points is correct at low
temperatures. This motivates us to look for 1RSB saddle points. We partition
the set of n replicas into n/m groups of m replicas each and seek a saddle point
of the following 1RSB form:

Qab =q1, Map =1, if a and b belong to the same group,
Qab =0, MHab = Mo, if a and b belong to different groups. (8.37)

{eq:1RSBAnsatzPspin}



{eq:1RSBFreeEnergy}
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Fia. 8.4. Structure of the @4, matrix when replica symmetry is broken. Left:
1RSB Ansatz. The n(n — 1)/2 values of Qg are the non diagonal elements of a
symmetric n X n matrix. The n replicas are divided into n/m blocks of size m.
When a and b are in the same block, Q., = ¢1, otherwise Q4 = qo. Right: 2RSB
Ansatz: an example with n/mq = 3 and my/ms = 2.
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In practice one can relabel the replicas in such a way that the groups are
formed by successive indices {1...m}, {m+1...2m}, ..., {n—m +1...n}
(see Fig. 8.4)%2.

The computation of G(Q, A) on this saddle point makes repeated use of the
identity (8.27) and is left as an exercise.One gets:

IRSB | 1RSB pg* B , —
G(Q A ) = - + T (1 —m)qy +mql] — 5 [(1 = m)qup1 + maopo)
n n/m
+ 5”1 — log {EZO [Ezl (2 cosh(y/mo 20 + m21))’”] / }

(8.38)

where E,, and E,, denote expectations with respect to the independent Gaussian
random variables zy and z; with zero mean and unit variance.

22S0me of the other labellings of the replicas give distinct 1RSB saddle points with the same
value of G(Q, \). This is a general feature of RSB saddle points, that we already encountered
when studying the REM, cf. Sec. 8.1.4.

{fig:pspin_1rsb_Ansatz}
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Exercise 8.7 Show that the limit Girss(q, ;3 m) =
lim,, o n~! G(Q'RSB, A\1RSB) exists, and compute the function Girss (g, ;m).
Determine the stationarity condition for the parameters g, qo, 1, o and
m by computing the partial derivatives of Girsp(q, pu;m) with respect to
its arguments and setting them to 0. Show that these equations are always
consistent with gy = pg = 0, and that

1 1
G1RsBlyy yg=0 = — 152[1 - (1=m)qt] + Shll = (1 =m)q]

—% log E. [(2 cosh(y/m1 2))™] . (8.39)

Picking up the solution ¢y = po = 0, the stationarity conditions?? for the
remaining parameters ¢; and pp read

1 52 gt _E. [(2 cosh(\//le))m(tanh(\/;le))Q] (8.40)
P=5pPP d Q= E. [(2cosh(\//71z))m] . .
These equations always admit the solution ¢; = @1 = 0: this choice reduces in
fact to a replica symmetric Ansatz, as can be seen from Eq. (8.37). Let us now
consider the p > 3 case. At low enough temperature two non-vanishing solutions
appear. A local stability analysis shows that the largest one, let us call it mui®,
¢;*, must be chosen.

The next step consists in optimizing Girss (¢, p°P; m) with respect to m €
[0,1] (notice that Girsp depends on m both explicitly and through ¢°P, uP). Tt
turns out that a unique stationary point mg(3) exists, but ms(3) € [0,1] only
at low enough temperature 5 > (.(p). We refer to the literature for an explicit
characterization of f.(p). At the transition temperature (.(p), the free energy
of the 1RSB solution becomes equal to that of the RS one. There is a phase
transition from a RS phase for 5 < 5.(p) to a 1RSB phase for 8 > G.(p).

These calculations are greatly simplified (and can be carried out analytically)
in the large p limit. The leading terms in a large p expansion are:

Be(p) = 2¢/log2 + e~ ©®) | m (B) = ﬁcép) +e70W g =1—e9P (8.41)
The corresponding free energy density is constant in the whole low temperature
phase, equal to —+/log 2. The reader will notice that several features of the REM
are recovered in this large p limit. One can get a hint that this should be the
case from the following exercise:

23They are most easily obtained by differentiating Eq. (8.39) with respect to ¢1 and 1.
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Exercise 8.8 Consider a p-spin glass problem, and take an arbitrary configu-
ration ¢ = {0o1,...,0n}. Let P,(FE) denote the probability that this configura-
tion has energy E, when a sample (i.e. a choice of couplings .J;,..;,) is chosen
at random with distribution (8.25). Show that P,(F) is independent of o, and
is a Gaussian distribution of mean 0 and variance N/2. Now take two con-
figurations o and o', and show that the joint probability distribution of their
energies, respectively F and E’, in a randomly chosen sample, is:
(E+E)? (E-FE)

P E El
’ = —_— - .4
w0 (B, B') = Cexp 2N(1+zP) 2N(1 — zP) (8.42)

where 2 = (1/N) )", 0,0}, and C is a normalization constant. When |z| < 1
the energies of the two configurations become uncorrelated as p — oo, (i.e.
lim, .o Py o' (E,E") = P;(E)P,/(E")), suggesting a REM-like behavior.

In order to know if the 1RSB solution which we have just found is the correct
one, one should first check its stability by verifying that the eigenvalues of the
Hessian (i.e. the matrix of second derivatives of G(Q,\) with respect to its
arguments) have the correct sign. Although straightforward in principle, this
computation becomes rather cumbersome and we shall just give the result, due
Elizabeth Gardner. The 1RSB solution is stable only in some intermediate phase
Be(p) < B < Bu(p). At the inverse temperature 3,(p) there is a second transition
to a new phase which involves a more complex replica symmetry breaking scheme.

The 1RSB solution was generalized by Parisi to higher orders of RSB. His
construction is a hierarchical one. In order to define the structure of the Qg
matrix with two steps of replica symmetry breaking (2RSB), one starts from the
1RSB matrix of Fig. 8.4 (left panel). The off diagonal blocks with matrix elements
qo are left unchanged. The diagonal blocks are changed: take any diagonal block
of size my x my (we now call m = my). In the 1RSB case all its matrix elements
are equal to ¢;. In the 2RSB case the m; replicas are split into my /ms blocks of
mg replicas each. The matrix elements in the off diagonal blocks remain equal
to ¢1. The ones in the diagonal blocks become equal to a new number g2 (see
Fig. 8.4, right panel). The matrix is parametrized by 5 numbers: qo, g1, g2, m1, ms.
This construction can obviously be generalized by splitting the diagonal blocks
again, grouping ms replicas into ms/ms groups of ms replicas. The so-called
full replica symmetry breaking Ansatz (FRSB) Ansatz corresponds to
iterating this procedure R times, and eventually taking R to infinity. Notice
that, while the construction makes sense, for n integer, only when n > my; >
mo > -+ > mp > 1, in the n — 0 limit this order is reversed to 0 < mq; < mg <
--- < mp < 1. Once one assumes a R-RSB Ansatz, computing the rate function
G and solving the saddle point equations is a matter of calculus (special tricks
have been developed for R — o0). It turns out that, in order to find a stable
solution in the phase 8 > (3,(p), a FRSB Ansatz is required. This same situation
is also encountered in the case of the SK model, in the whole phase 3 > 1, but



THE FULLY CONNECTED P-SPIN GLASS MODEL 161

its description would take us too far.

8.2.2  Owerlap distribution

Replica symmetry breaking appeared in the previous Sections as a formal trick
for computing certain partition functions. One of the fascinating features of spin-
glass theory is that RSB has a very concrete physical (as well as probabilistic)
interpretation. One of the main characteristics of a system displaying RSB is
the existence, in a typical sample, of some spin configurations which are very
different from the lowest energy (ground state) configuration, but are very close
to it in energy. One gets a measure of this property through the distribution of

overlaps between configurations. Given two spin configurations o = {o1,...,0n}
and o’ = {01,...,0)}, the overlap between ¢ and o’ is:
| X
Goo’ = N ZUW; ’ (843)
i=1

so that N(1 — gyo)/2 is the Hamming distance between o and o’. For a given
sample of the p-spin glass model, which we denote by J, the overlap distribu-
tion P;(q) is the probability density that two configuration, randomly chosen
with the Boltzmann distribution, have overlap ¢:

/ q1PJ<q'> A = 3 3 exp[-GB() ~ OB 1o <0)  (844)

Let us compute the expectation of Py(¢) in the thermodynamic limit:
P(q) = lim EP;(q) (8.45)
using replicas. One finds:

q
/ T
[1P(Q)dq = lim > E

ol...on

I (QU102 < Q) (846)

exp (—ﬂZE(U“)

The calculation is very similar to the one of E (Z™), the only difference is that
now the overlap between replicas 1 and 2 is fixed to be < g. Following the same
steps as before, one obtains the expression of P(g) in terms of the saddle point
matrix @7%. The only delicate point is that there may be several RSB saddle
points related by a permutation of the replica indices. If Q = {Qa} is a saddle
point, any matrix (Q7),, = Qr(),x) (With 7 a permutation in S,,) is also a
saddle point, with the same weight: G(Q™) = G(Q). When computing P (q), we
need to sum up over all the equivalent distinct saddle points, which gives in the
end:

/ 1P(q/) d¢ = lim ! S I@B<q). (8.47)
_ o

n—0n(n—1)

{se:0verlap_distribution}
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In case of a RS solution one has:

/‘1 P(¢)dq =1 (qRS <q), (8.48)

-1

with ¢® the solution of the saddle point equations (8.35). In words: if two
configurations ¢ and ¢’ are drawn according to the Boltzmann distribution,
their overlap will be ¢®% with high probability. Since the overlap is the sum of
many ‘simple’ terms, the fact that its distribution concentrates around a typical
value is somehow expected.

In a 1RSB phase characterized by the numbers qg, q1, Ao, A1, m, one finds:

q
| P@)dd = (= mim <0 +ml@<a) - (8.49)
The overlap can take with finite probability two values: ¢y or ¢;. This has a
very nice geometrical interpretation. When sampling configurations randomly
chosen with the Boltzmann probability, at an inverse temperature 3 > f.(p),
the configurations will typically be grouped into clusters, such that any two
configurations in the same cluster have an overlap ¢, while configurations in
different clusters have an overlap ¢p < ¢1, and thus a larger Hamming distance.
When picking at random two configurations, the probability that they fall in the
same cluster is equal to 1 — m. The clustering property is a rather non-trivial
one: it would have been difficult to anticipate it without a detailed calculation.
We shall encounter later several other models where it also occurs. Although the
replica derivation presented here is non rigorous, the clustering phenomenon can
be proved rigorously.

In a solution with higher order RSB the P(q) function develops new peaks.
The geometrical interpretation is that clusters contain some sub-clusters, which
themselves contain sub-clusters etc...this hierarchical structure leads to the
property of ultrametricity. Consider the triangle formed by three indepen-
dent configurations drawn from the Boltzmann distribution, and let the lengths
of its sides be measured using to the Hamming distance. With high probability,
such a triangle will be either equilateral, or isosceles with the two equal sides
larger than the third one. In the case of full RSB, P(gq) has a continuous part,
showing that the clustering property is not as sharp, because clusters are no
longer well separated; but ultrametricity still holds.

Exercise 8.9 For a given sample of a p-spin glass in its 1RSB phase, define Y’
as the probability that two configurations fall into the same cluster. More pre-

cisely: Y = f Pj(q') dq’, where gy < ¢ < ¢q1. The previous analysis shows that
limy oo EY =1 — m. Show that, in the large N limit, E (YQ) = M
as in the REM. Show that all moments of Y are identical to those of the REM

The result depends only on the 1RSB structure of the saddle point, not on any
of its details.
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{se:ReplicaExtreme} 8.3 Extreme value statistics and the REM

Exercise 8.9 suggests that there exist universal properties which hold in the glass
phase, independently of the details of the model.

In systems with a 1RSB phase, this universality is related to the universality
of extreme value statistics. In order to clarify this point, we shall consider in
this Section a slightly generalized version of the REM. Here we assume the
energy levels to be M = 2% iid random variables admitting a probability density
function (pdf) P(F) with the following properties:

1. P(FE) is continuous.

2. P(E) is strictly positive on a semi-infinite domain —oco < E < Fj.

3. In the £ — —oo limit, P(F) vanishes more rapidly than any power law.
We shall keep here to the simple case in which

P(E) ~ Aexp (—B|E|6) as F — —o0, (8.50) {eq:gumbel_hyp}
for some positive constants A, B, §.

We allow for such a general probability distribution because we want to check
which properties of the corresponding REM are universal.

As we have seen in Chap. 5, the low temperature phase of the REM is con-
trolled by a few low-energy levels. Let us therefore begin by computing the dis-

tribution of the lowest energy level among Ej, ..., Ey (we call it Egy). Clearly,
o M
P[E., > E] = [/ P(x) dx} . (8.51)
E

Let E*(M) be the value of E such that P[E; < E] = 1/M for one of the energy
levels F;. For M — oo, one gets

~ logM
B

Let’s focus on energies close to E* (M), such that E = E*(M)+¢e/(BS|E*(M)|°~1),
and consider the limit M — oo with ¢ fixed. Then:

A _BIEI
~ gaEpTe o) =

[E*(M)[°

+ O(loglog M) . (8.52)

PIE; > E] =1

1 g
=1- e [1+0(1)] . (8.53)

Therefore, if we define the rescaled ground state energy through Eys = E*(M)+
5gS/(B(5|E*(M)|J_1)a we get

A}im [€gs > €] = exp(—e”) . (8.54)
In other words, the pdf of the rescaled ground state energy converges to P;(g) =
exp(e —e®). This limit distribution, known as Gumbel’s distribution, is universal.
The form of the energy level distribution P(E) only enters in the values of the
shift and the scale, but not in the form of P (¢). The following exercises show
that several other properties of the glass phase in the REM are also universal.
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Exercise 8.10 Let F; < Fy < --- < Ej be the k lowest energies. Show that
universality also applies to the joint distribution of these energies, in the limit
M — oo at fixed k. More precisely, define the rescaled energies 61 < --- <
e through E; = E*(M) + W. Prove that the joint distribution of
€1,...,6 admits a density which converges (as M — o0) to

Py(e1,...,ex) =exp(er 4+ +ep —e*) I(eg < -+ <gp) . (8.55)

Exercise 8.11 Consider a REM where the pdf of the energies satisfies the
hypotheses 1-3 above, and M = 2~. Show that, in order for the ground state
energy to be extensive (i.e. By ~ N in the large N limit), one must have B ~
N'=9. Show that the system has a phase transition at the critical temperature
T. = 6 (log2)©®—1/9,

Define the participation ratios Y, = 2511 pj. Prove that, for T < T, these
quantities signal a condensation phenomenon. More precisely:

L(r—m)

lim EY, = ——~
Novoo T(r)T(1 — m)

(8.56)
where m = (T/T;) min{d, 1}, as in the standard REM (see Sec. 8.3). (Hint:
One can prove this equality by direct probabilistic means using the methods
of Sec. 5.3. For § > 1, one can also use the replica approach of Sec. 8.1.4).

In the condensed phase only the configurations with low energies count, and
because of the universality of their distribution, the moments of the Boltzmann
probabilities p; are universal. These universal properties are also captured by
the 1RSB approach. This explains the success of this 1RSB in many systems
with a glass phase.

A natural (and fascinating) hypothesis is that higher orders of RSB corre-
spond to different universality classes of extreme values statistics for correlated
variables. The mathematical definition of these universality classes have not yet
been studied in the mathematical literature, to our knowledge.

8.4 Appendix: Stability of the RS saddle point

In order to establish if a replica saddle point is correct, one widely used criterion
is its local stability. In order to explain the basic idea, let us move a step backward
and express the replicated free energy as an integral over uniquely the overlap
parameters

Ez" =Y N0, (8.57)
Q

Such an expression can either be obtained from Eq. (8.30) by integrating over
{Aab}, or as described in Exercise 8.6. Following the last approach, we get
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~ g2 B »
GQ) = Ty ;b@ab —5(Q), (8.58)
where
Z abTa0b
5(Q) = — Z,uaanb +(p) , ¥(p) = log Z i ,(8.59)
a<b p=p*(Q) {oa}

and p*(Q) solves the equation Q. = %ﬁ“‘b ) In other words s(Q) is the Legendre
transform of ¢ (p) (apart from an overall minus sign). An explicit expression of
s(Q) is not available but we shall only need the following well known property

of Legendre transforms

9*s(Q)
ac?abaCQCd

d%P(p)
= Claey:  Clab)ed) = 73 —5 . (8.60)
e OttabOtca p=p*(Q)

where C~! is the inverse of C' in matrix sense. The right hand side is in turn easily
written down in terms of averages over the replicated system, cf. Eq. (8.34):

O(ab)(cd) = <aa0bac0d>7z - <0'a<7b>n<0'c0'd>n- (8.61)

Assume now that (Q®P, \*P) is a stationary point of G(Q, \). This is equivalent
to say that QP is a stationary point of G(Q) (the corresponding value of i coin-

cides with iA*P). We would like to estimate the sum (8.57) as EZ™ = NCG(Q@7) A
necessary condition for this to be correct is that the matrix of second derivatives
of G(Q) is positive semidefinite at @ = @Q°P. This is referred to as the local
stability condition. Using Egs. (8.58) and (8.61), we get the explicit condition

1 _ _
Mabyea) = | =540 = Q% * S(abytcd) T Crayeay | =0 (8.62)

where we use the symbol A > 0 to denote that the matrix A is positive semidef-
inite.

In this technical appendix we sketch this computation in two simple cases:
the stability of the RS saddle point for the general p-spin glass in zero magnetic
field, and the SK model in a field.

We consider first the RS saddle point Qup = 0, Agp = 0 in the p-spin glass.
In this case

(f(o)n = 2% > flo). (8.63)
{Ua}

It is then easy to show that M(ab)(cd) = 5(ab)7(cd) for p > 3 and M(ab)(cd) =
(1- /6’2)5((15)7(060 for p = 2. The situations for p = 2 and p > 3 are very different:
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e If p = 2 (the SK model) the RS solution is stable for 5 < 1, and unstable
for g > 1.
e When p > 3, the RS solution is always stable.

Let us now look at the SK model in a magnetic field. This is the p = 2 case but
with an extra term —B ), 0; added to the energy (8.24). It is straightforward to
repeat all the replica computations with this extra term. The results are formally
identical if the average within the replicated system (8.34) is changed to:

(f(o))n,B = ﬁ Z f(o) exp <Z Lab Ta0p + BB Zoa> (8.64)

{o2} a<b a

2(p) = Z exp (Z Lab Oa0p + BB Z Ua> ) (8.65)

{oa} a<b a
The RS saddle point equations (8.35) are changed to:

w=p3%q, q = E. tanh® (z\/i + B) . (8.66)

and the values of ¢,y are non-zero at any positive 3, when B # 0. This compli-
cates the stability analysis.

Since p = 2, we have M(apy(eay = —528(av)(ed) + Clapyeay- Lot {A;} be the
eigenvalues of C(qp)(cay- Since C' = 0, the condition M = 0 is in fact equivalent
to 1 — (3%); > 0, for all the eigenvalues \;.

The matrix elements C(qp)(cq) take three different forms, depending on the
number of common indices in the two pairs (ab), (cd):

2
Clav)(apy = 1 — [Eztanh? (2y/u+ BB)] = U
Clab)(ac) = E- tanh® (2\/i + BB) — [E. tanh?® (/i + 8B)]” = V
Clab)(ea) = E= tanh? (2y/7i + BB) — [E. tanh® (/i + BB)]* = W,

where b # ¢ is assumed in the second line, and all indices are distinct in the last
line. We want to solve the eigenvalue equation Z(cd) Clab)(cd)Ted = AT(ap)-

A first eigenvector is the uniform vector () = . Its eigenvalue is \; =
U+2(n—2)V+(n—2)(n—3)/2W. Next we consider eigenvectors which depend
on one special value 6 of the replica index in the form: z(,;) = = if a = 6 or
b =0, and x(,) = y in all other cases. Orthogonality to the uniform vector
is enforced by choosing x = (1 — n/2)y, and one finds the eigenvalue Ay =
U+ (n—4)V 4+ (3 — n)W. This eigenvalue has degeneracy n — 1. Finally we
consider eigenvectors which depend on two special values 6, v of the replica index:
T(o) = Ty T(0,a) = T(va) = Y, T(ah) = 2%, Where a and b are distinct form
0,v. Orthogonality to the previously found eigenvectors imposes = = (2 — n)y
and y = [(3 — n)/2]z. Plugging this into the eigenvalue equation, one gets the
eigenvalue A3 = U — 2V + W, with degeneracy n(n — 3)/2.
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In the limit n — 0, the matrix C' has two distinct eigenvalues: Ay = Ay =
U—4V 4+3W and A3 = U—-2V +W. Since V' > W, the most dangerous eigenvalue
is A3 (called the replicon eigenvalue). This implies that the RS solution of the
SK model is locally stable if and only if

E. [1— tanh® (2/i + 8B)]” < T2 (8.67)

The inequality is saturated on line in the plane T, B, called the AT line. which
behaves like T'=1 — (%)2/3 B?/3 4 o(B??) for B — 0 and like T ~ ﬁe‘Bzm
for B > 1.

Exercise 8.12 The reader who wants to test her understanding of these
replica computations computation can study the SK model in zero field
(B = 0), but in the case where the couplings have a ferromagnetic bias: J;; are
iid Gaussian distributed, with mean Jy/N and variance 1/N.

(¢) Show that the RS equations (8.35) are modified to:

w=p3?q ; q=E,tanh? (z2+/1t+ BJom) ; m = E, tanh (2\/p + BJom)
(8.68)
(#4) Solve numerically these equations. Notice that, depending on the values
of T and Jy, three types of solutions can be found: (1) a paramagnetic
solution m = 0,q = 0, (2) a ferromagnetic solution m > 0,q > 0, (3) a
spin glass solution m = 0,¢q > 0.
(797) Show that the AT stability condition becomes:

E. [1 — tanh? 2,/ + BJom)]* < T2 (8.69)

and deduce that the RS solution found in (i), (4¢) is stable only in the
paramagnetic phase and in a part of the ferromagnetic phase.

Notes

The replica solution of the REM was derived in the original work of Derrida
introducing the model (Derrida, 1980; Derrida, 1981). His motivation for intro-
ducing the REM came actually from the large p limit of p-spin glasses.

The problem of moments is studied for instance in (Shohat and Tamarkin,
1943).

The first universally accepted model of spin glasses was introduced by Ed-
wards and Anderson (Edwards and Anderson, 1975). The mean field theory
was defined by Sherrington and Kirkpatrick (Sherrington and Kirkpatrick, 1975;
Kirkpatrick and Sherrington, 1978), who considered the RS solution. The insta-
bility of this solution in the p = 2 case was found by de Almeida and Thouless
(de Almeida and Thouless, 1978), who first computed the location of the AT line.
The solution to exercise (8.12) can be found in (Kirkpatrick and Sherrington,
1978; de Almeida and Thouless, 1978).

{ex:SK_JO}

{eq:SK_JO_RS_SP}

{eq:SK_JO_RS_AT}
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Parisi’s Ansatz was introduced in a couple of very inspired works starting in
1979 (Parisi, 1979; Parisi, 1980b; Parisi, 1980a). His original motivation came
from his reflection on the meaning of the permutation group S,, when n < 1,
and particularly in the n — 0 limit. Unfortunately there has not been any math-
ematical developments along these lines. The replica method, in the presence of
RSB, is still waiting for a proper mathematical framework. On the other hand it
is a very well defined computational scheme, which applies to a wide variety of
problems. The physical interpretation of RSB in terms of condensation was found
by Parisi (Parisi, 1983), and developed in (Mézard, Parisi, Sourlas, Toulouse and
Virasoro, 1985), which discussed the distribution of weights in the glass phase
and its ultrametric organization. The p-spin model has been analyzed at large p
with replicas in (Gross and Mézard, 1984). The clustering phenomenon has been
discovered in this work. The finite p case was later studied in (Gardner, 1985).
A rigorous treatment of the clustering effect in the p-spin glass model was devel-
oped by Talagrand (Talagrand, 2000) and can be found in his book (Talagrand,
2003).

The connection between 1RSB and Gumbel’s statistics of extremes is dis-
cussed in (Bouchaud and Mézard, 1997). A more detailed presentation of the
replica method, together with some reprints of most of these papers, can be
found in (Mézard, Parisi and Virasoro, 1987).



