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BELIEF PROPAGATION

{ch:BP}

Consider the ubiquitous problem of computing marginals of a graphical model
with N variables x = (x1, . . . , xN ) taking values in a finite alphabet X . The
naive algorithm, summing over all configurations, takes a time of order |X |N .
The complexity can be reduced dramatically when the underlying factor graph
has some special structure. One extreme case is that of tree factor graphs. On
trees, marginals can be computed in a number of operations which grows lin-
early with N . This can be done through a ‘dynamic programming’ procedure
that recursively sums over all variables starting from the leaves and progressing
towards the ‘center’ of the tree.

Remarkably, such a recursive procedure can be recast as a distributed ‘mes-
sage passing’ algorithm. Message passing algorithms operate on ‘messages’ asso-
ciated with edges of the factor graph, and update them recursively through local
computations done at the vertices of the graph. The update rules that yield exact
marginals on trees have been discovered independently in several different con-
texts: statistical physics (under the name ‘Bethe Peierls approximation’), coding
theory (sum-product algorithm), and artificial intelligence (belief propagation -
BP). Here we will adopt the artificial intelligence terminology.

It is straightforward to prove that belief propagation exactly computes marginals
on tree factor graphs. However, it was found only recently that it can be ex-
tremely effective on loopy graphs as well. One of the basic intuitions behind this
success is that BP, being a local algorithm, should be successful whenever the
underlying graph is ‘locally’ a tree. Such factor graphs appear frequently, for
instance in error correcting codes, and BP turns out to be very powerful in this
context. However, even in such cases, its application is limited to distributions
such that far apart variables become uncorrelated. The onset of long range corre-
lations, typical of the occurrence of a phase transition, generically leads to poor
performances of BP. We shall see several applications of this idea in the next
chapters.

We introduce the basic ideas in Section 14.1 by working out a couple of simple
examples. The general BP equations are stated in Section 14.2, which also shows
how they provide exact results on tree factor graphs. Section 14.3 describes some
alternative message passing procedures, the Max-Product (equivalently, Min-
Sum) algorithms, which can be used in optimization problems. In Section 14.4
we discuss the use of BP in graphs with loops. In the study of random constraint
satisfaction problems, BP messages become random variables. The study of their
distribution provides a large amount of information on such instances and can
be used to characterize the corresponding phase diagram. The time evolution
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Fig. 14.1. Top: the factor graph of the one-dimensional Ising model in an exter-
nal field. Bottom: the three messages arriving on site j describe the contributions
to the probability distribution of σj , due to the left chain (ν̂→j), to the right chain
(ν̂j←) and to the external field B.

{fig:ising1dfg}

of these distributions is known under the name of density evolution, while their
fixed point analysis is the replica symmetric cavity method. Both are explained
in Section 14.6.

14.1 Two examples
{se:2examples}

14.1.1 Example 1: Ising chain

Consider the ferromagnetic Ising model on a line. The variables are spins (σ1, . . . , σN ) =
σ, with σi ∈ {+1,−1} and their joint distribution takes Boltzmann’s form

pβ(σ) =
1

Z
e−βE(σ) , E(σ) = −

N−1∑

i=1

σiσi+1 −B
N∑

i=1

σi . (14.1)

The corresponding factor graph is shown in Figure 14.1.1.
Let us now compute the marginal probability distribution p(σj) of spin σj .

We shall introduce three ‘messages’ arriving on spin j as the contributions to
p(σj) coming from each of the function nodes which are connected to i. More
precisely, let us define

ν̂→j(σj) =
1

Z→j

∑

σ1...σj−1

exp

{
β

j−1∑

i=1

σiσi+1 + βB

j−1∑

i=1

σi

}
,

ν̂j←(σj) =
1

Zj←

∑

σj+1...σN

exp



β

N−1∑

i=j+1

σiσi+1 + βB

N∑

i=j+1

σi



 . (14.2)

Messages are understood to be probability distributions and thus normalized. In
the present case, the constants Z→j , Zj← are set by the conditions ν̂→j(+1) +
ν̂→j(−1) = 1, and ν̂j←(+1) + ν̂j←(−1) = 1. In the following, when dealing
with normalized distributions, we shall avoid writing explicitly the normalization
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constants and use the symbol ∼= to denote ‘equality up to a normalization’. With
this notation, the first of the above equations can be rewritten as

ν̂→j(σj) ∼=
∑

σ1...σj−1

exp

{
β

j−1∑

i=1

σiσi+1 + βB

j−1∑

i=1

σi

}
. (14.3)

By rearranging the summation over spins σi, i 6= j, the marginal p(σj) can
be written as:

p(σj) ∼= ν̂→j(σj) e
βBσj ν̂j←(σj) . (14.4){eq:1dIsingMarginal}

In this expression we can interpret each of the three factors as a ‘message’ sent
to j from each of the three function nodes connected to the variable j. Each
message coincides with the marginal distribution of σj in a modified graphical
model. For instance, ν̂→j(σj) is the distribution of σj in the graphical model
obtained by removing all the factor nodes adjacent to j, except the one on its
left (cf. Fig. 14.1.1).

This decomposition is interesting because the various messages can be com-
puted iteratively. Consider for instance ν̂→i+1. It is expressed in terms of ν̂→i

as:
ν̂→i+1(σ) ∼=

∑

σ′

ν̂→i(σ
′) eβσ′σ+βBσ′

. (14.5){eq:mespas1dising}

Furthermore, ν̂→1 is the uniform distribution over {+1,−1}: ν̂→1(σ) = 1
2 for

σ = ±1. Equation (14.5) allows to compute all the messages ν̂→i, i ∈ {1, . . . , N},
in O(N) operations. A similar procedure yields ν̂i← starting from the uniform
distribution ν̂N← and computing recursively ν̂i−1← from ν̂i←. Finally, Eq. (14.4)
can be used to compute all the marginals p(σj) in linear time.

All the messages are distributions over binary variables and can thus be
parameterized by a single real number. One popular choice for such a parame-
terization is to use the log-likelihood ratio44

u→i ≡
1

2β
log

ν̂→i(+1)

ν̂→i(−1)
. (14.6)

In statistical physics terms u→i is an ‘effective (or local) magnetic field’: ν̂→i(σ) ∼=
eβu→iσ. Using this definition (and noticing that it implies ν̂→i(σ) = 1

2 (1 +
σ tanh(βu→i))), Eq. (14.5) becomes:

u→i+1 = f (u→i +B) , (14.7){eq:mespas1dising2}

where the function f(x) is defined as

f(x) =
1

β
atanh [tanh(β) tanh(βx)] . (14.8){eq:hudef}

The mapping u 7→ f(u + B) is differentiable with derivative bounded by
tanhβ < 1. Therefore the fixed point equation u = f(u + B) has a unique

44Notice that our definition differs by a factor 1/2β from the standard log-likelihood defini-
tions in Statistics. This factor is introduced to make contact with statistical physics definitions.
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Fig. 14.2. Left: A simple parity check code with 7 variables and 3 checks. Right:
the factor graph corresponding to the problem of finding the sent codeword, given
a received message.

{fig:treecode1}

solution u∗, and u→i → u∗ as i→∞. Consider a very long chain, and a node in
the bulk j ∈ [εN, (1 − ε)N ]. Then, as N → ∞, both u→j and uj← converge to
u∗, so that 〈σj〉 → tanh[β(2u∗ + B)]. This is the bulk magnetization. If on the
other hand we consider a spin on the boundary we get a smaller magnetization
〈σ1〉 = 〈σN 〉 → tanh[β(u∗ +B)].

Exercise 14.1 Use the recursion (14.7) to show that, when N and j go to
infinity, 〈σj〉 = M+O(λj , λN−j) where M = tanh(2u∗+B) and λ = f ′(u∗+B).
Compare this with the treatment of the one-dimensional Ising model in Section
2.5.

The above method can be generalized to the computation of joint distri-
butions of two or more variables. Consider for instance the joint distribution
p(σj , σk), for k > j. Since we already know how to compute the marginal p(σj),
it is sufficient to consider the conditional distribution p(σk|σj). For each of the
two values of σj , the conditional distribution of σj+1, · · · , σN takes a form anal-
ogous to Eq. (14.1) but with σj fixed. Therefore, the marginal p(σk|σj) can be
computed through the same algorithm as before. The only difference is in the
initial condition that becomes ν̂→j(+1) = 1, ν̂→j(−1) = 0 (if we condition on
σj = +1) and ν̂→j(+1) = 0, ν̂→j(−1) = 1 (if we condition on σj = −1).

Exercise 14.2 Compute the correlation function 〈σjσk〉, when j, k ∈
[Nε,N(1− ε)] and N →∞. Check that, when B = 0, 〈σjσk〉 = (tanhβ)|j−k|.
Find a simpler derivation of this last result.

14.1.2 Example 2: a tree-parity-check code

Our second example deals with a decoding problem. Consider the simple linear
code whose factor graph is reproduced in Fig. 14.1.2, left frame. It has block-
length N = 7 and codewords satisfy the 3 parity check equations:
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x0 ⊕ x1 ⊕ x2 = 0 , (14.9)

x0 ⊕ x3 ⊕ x4 = 0 , (14.10)

x0 ⊕ x5 ⊕ x6 = 0 . (14.11)

One of the codewords is sent through a BSC(p). Assume that the received mes-
sage is y = (1, 0, 0, 0, 0, 1, 0). The conditional distribution for x to be the trans-
mitted codeword, given the received y takes the usual form:

p(x|y) ∼=I(x0 ⊕ x1 ⊕ x2 = 0)I(x0 ⊕ x3 ⊕ x4 = 0)I(x0 ⊕ x5 ⊕ x6 = 0)
6∏

i=0

Q(yi|xi) ,

where Q(0|0) = Q(1|1) = 1 − p and Q(1|0) = Q(0|1) = p. The corresponding
factor graph is drawn in Fig. 14.1.2, right frame.

In order to implement symbol MAP decoding, cf. Chapter 6, we need to
compute the conditional distribution of each bit. The computation is straight-
forward but it is illuminating to recast it as a message passing procedure, similar
to the one in the Ising chain example. Consider for instance bit x0. We start
from the boundary. In the absence of the check a, the marginal of x1 would be
ν1→a = (1− p, p) (we use here the convention of writing distributions ν(x) over
a binary variable as two dimensional vectors (ν(0), ν(1))). This is interpreted as
a message sent from variable 1 to check a.

Variable 2 sends an analogous message ν2→a to a (in the present example,
this happens to be equal to ν1→a). Knowing these two messages, we can compute
the contribution to the marginal probability distribution of variable x0 coming
from the part of the factor graph containing the whole branch connected to x0

through the check a:

ν̂a→0(x0) ∼=
∑

x1,x2

I(x0 ⊕ x1 ⊕ x2 = 0) ν1→a(x1)ν2→a(x2) . (14.12){eq:BPCodeExample}

Clearly, ν̂a→0(x0) is the marginal distribution of x0 in the modified factor graph
that does not include either factor node b or c, and in which the received symbol
y0 has been erased. This is analogous to the messages ν̂→j(σj) used in the Ising
chain example. The main difference is that the underlying factor graph is no
longer a line, but a tree. As a consequence, the recursion (14.12) is no longer
linear in the incoming messages. Using the rule (14.12), and analogous ones for
ν̂b→0(x0), ν̂c→0(x0), we obtain:

ν̂a→0 = (p2 + (1− p)2, 2p(1− p)) ,
ν̂b→0 = (p2 + (1− p)2, 2p(1− p)) ,
ν̂c→0 = (2p(1− p), p2 + (1− p)2) .

The marginal probability distribution of the variable x0 is finally obtained by
taking into account the contributions of each subtree, together with the channel
output for bit x0:
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p(x0) ∼= Q(y0|x0) ν̂a→0(x0)ν̂b→0(x0)ν̂c→0(x0)
∼=
(
2p2(1− p)[p2 + (1− p)2]2, 4p2(1− p)3[p2 + (1− p)2]

)

In particular, the MAP symbol decoding of the symbol x0 is always x0 = 0 in
this case, for any p < 1/2.

An important fact emerges from this simple calculation. Instead of performing
a summation over 27 = 128 configurations, we were able to compute the marginal
at x0 doing 6 summations (one for every factor node a, b, c and for every value
of x0), each one over 2 summands, cf. Eq. (14.12). Such complexity reduction
was achieved by merely rearranging the order of sums and multiplications in the
marginal computation.

Exercise 14.3 Show that the message ν0→a(x0) is equal to (1/2, 1/2), and
deduce that p(x1) ∼= ((1− p)2, p2).

14.2 Belief Propagation on tree graphs
{se:BPtrees}

We shall define belief propagation and analyze it in the simplest possible setting:
tree graphical models. In this case it solves several computational problems in
an efficient and distributed fashion.

14.2.1 Three problems

Let us consider a graphical model such that the associated factor graph is a tree
(we shall call it a tree-graphical model). We use the same notations as in
Section 9.1.1. The model describes N random variables (x1, . . . , xN ) ≡ x taking
values in a finite alphabet X , whose joint probability distribution has the form

p(x) =
1

Z

M∏

a=1

ψa(x∂a) . (14.13)

where x∂a ≡ {xi | i ∈ ∂a}. The set ∂a ⊆ [N ], of size |∂a|, contains all variables
involved in constraint a. We always use indices i, j, k, . . . for the variables and
a, b, c, . . . for the function nodes. The set of indices ∂i involves all function nodes
a connected to i.

When the factor graph has no loop the following are among the basic problems
that can be solved efficiently with a message-passing procedure:

1. Compute the marginal distributions of one variable, p(xi), or the joint
distribution of a small number of variables.

2. Sample from p(x), i.e. draw independent random configurations x with
distribution p(x).

3. Compute the partition function Z, or equivalently, in statistical physics
language, the free-entropy.

These three tasks can be accomplished using belief propagation, which is the
obvious generalization of the procedure exemplified in the previous section.
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14.2.2 The BP equations

Belief propagation is an iterative ‘message passing’ algorithm. The basic variables
on which it acts are messages associated with directed edges on the factor graph.
For each edge (i, a) (where i is a variable node and a a function node) there

are, at the t-th iteration, two messages ν
(t)
i→a and ν̂

(t)
a→i. Messages take values in

the space of probability distributions over the single variable space X . Therefore

ν
(t)
i→a = {ν(t)

i→a(xi) : xi ∈ X}, with ν
(t)
i→a(xi) ≥ 0 and

∑
xi
ν

(t)
i→a(xi) = 1.

In tree-graphical models, the messages converge when t → ∞ to fixed point
values (see Theorem 14.1). These coincide with single variable marginals in mod-
ified graphical models, as we saw in the two examples of the previous section.

More precisely ν
(∞)
i→a(xi) is the marginal distribution of variable xi in a mod-

ified graphical model which does not include the factor a (i.e. the product in

Eq. (14.13) does not include a). Analogously ν̂
(∞)
a→i(xi) is the distribution of xi

in a graphical model where all factors in ∂i, except a, have been erased.
Messages are updated through local computations at the nodes of the factor

graph. By local we mean that a given node updates the outgoing messages on the
basis of incoming ones at the previous iterations. This is a characteristic feature
of message passing algorithms, while different algorithms in this family differ in
the precise form of the update equations. The belief propagation (BP), or
sum-product update rules, are:

ν
(t+1)
j→a (xj) ∼=

∏

b∈∂j\a

ν̂
(t)
b→j(xj) , (14.14)

ν̂
(t)
a→j(xj) ∼=

∑

x∂a\j

ψa(x∂a)
∏

k∈∂a\j

ν
(t)
k→a(xk) , (14.15)

where \ denotes set subtraction. It is understood that, when ∂j\a is an empty set,
νj→a(xj) is the uniform distribution. Similarly, if ∂a\j is empty, then ν̂a→j(xj) =
ψa(xj). A pictorial illustration of these rules is provided in Fig. 14.2.2. A BP

fixed point of these equations is a set of t-independent messages ν
(t)
i→a = νi→a,

ν̂
(t)
a→i = ν̂a→i which satisfy Eqs. (14.14), (14.15). From these one obtains 2|E|

equations (one equation for each oriented edge of the factor graph) relating
2|E| messages. We will often refer to these fixed point conditions as to the BP
equations.

After t iterations, one can estimate the marginal distribution p(xi) of variable
i using the set of all incoming messages. The BP estimate is:

ν
(t)
i (xi) ∼=

∏

a∈∂i

ν̂
(t−1)
a→i (xi) . (14.16)

In writing the update rules, we are assuming that the update is done in parallel
at all the variable nodes, then in parallel at all function nodes and so on. Clearly,
in this case, the iteration number must be incremented either at variable nodes or
at factor nodes, but not necessarily at both. This is what happens in Eqs. (14.14),
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Fig. 14.3. Left: portion of the factor graph involved in the computation of

ν
(t+1)
j→a (xj). This message is a function of the ‘incoming messages’ ν̂

(t)
b→j(xj), with

b 6= a. Right: portion of the factor graph involved in the computation of ν̂
(t)
a→j(xj).

This message is a function of the ‘incoming messages’ ν
(t)
k→a(xk), with k 6= j.

{fig:BPiter_gen}

(14.15). Other update schedules are possible and sometimes useful. For the sake
of simplicity we shall however stick to the parallel one introduced above.

In order to fully define the algorithm, we need to specify an initial condition.
It is a widespread habit to set initial messages to the uniform distribution over

X (i.e. ν
(0)
i→a(xi) = 1/|X |). On the other hand, it can be useful to explore several

distinct (random) initial conditions. This can be done defining some probability
measure P over the space M(X ) of distributions over X (i.e. the |X |-dimensional

simplex) and taking ν
(0)
i→a( · ) iid random variables with distribution P.

Among all message passing algorithms, BP is uniquely characterized by the
property of computing exact marginals on tree-graphical models.

{thm:BPtrees}
Theorem 14.1. (BP is exact on trees) Consider a tree-graphical model with
diameter t∗ (which means that t∗ is the maximum distance between any two
variable nodes). Then

1. Irrespective of the initial condition, the BP update (14.14), (14.15) con-
verges after at most t∗ iterations. In other words, for any edge (ia), and

any t > t∗ ν
(t)
i→a = ν∗i→a, ν̂

(t)
a→i = ν̂∗a→i.

2. The fixed point messages provide the exact marginals: for any variable node

i, and ant t > t∗, ν
(t)
i (xi) = p(xi).

Proof: As exemplified in the previous Section, on tree factor graphs BP is just
a clever way to organize the sum over configurations to compute marginals. In
this sense the theorem is obvious.

Let us sketch a formal proof, leaving a few details to the reader. Given a
directed edge u → v, we define T(u → v) as the sub-tree rooted on this edge.
This is the subtree containing all nodes w which can be connected to v by a
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non-reverting path whose last step is u → v. Let t∗(u → v) be the depth of
T(u→ v) (the maximal distance from a leaf to u). Consider the graphical model
obtained by retaining only nodes in the subtree T(u→ v) (if v is a factor node,
then it must be removed, and if it is a variable node, it must be retained). We
will show that, for any edge (u, v), and any number of iterations t > t∗(u→ v),

the message ν
(t)
u→v (or ν̂

(t)
u→v if u is a factor node) coincides with the marginal

distribution of the root variable with respect to this sub-tree graphical model.
In other words, for tree graphs the interpretation of BP messages in terms of
modified marginals is correct.

This claim is proved by induction on the tree depth t∗(u→ v). The base step
of the induction is trivial. Assume u = i to be a variable node, and v = a a factor
node. Then T(i → a) is the graph formed by the unique node i. By definition,

for any t ≥ 1, ν
(t)
i→a(xi) = 1/|X | is the uniform distribution, which coincides with

the marginal of the trivial graphical model associated to T(i→ a).
The induction step is easy as well. Assuming the claim to be true for t∗(u→

v) ≤ τ , one has to show that it holds when t∗(u→ v) = τ+1. To this end assume
again u = i to be a variable node and v = a a factor node, take any t > τ+1 and

compute ν
(t+1)
i→a (xi) using Eqs. (14.14), (14.15) in terms of messages ν

(t)
j→b(xj) in

the subtrees for b ∈ ∂i \ a and j ∈ ∂b \ i. By the induction hypothesis, and since

the depth of the sub-tree T (j → b) is at most τ , ν
(t)
j→b(xj) is the root marginal in

such a subtree. It turns out that, combining the marginals at roots of subtrees
T(j → b) using Eqs. (14.14), (14.15), one obtains the marginal at the root of
T(i→ a). This proves the claim. �

14.2.3 Correlations and energy

The use of BP is not limited to computing one variable marginals. Suppose we
want to compute the joint probability distribution p(xi, xj) of two variables xi

and xj . Since BP already enables to compute p(xi), this task is equivalent to
computing the conditional distribution p(xj | xi). Given a model that factorizes
as in Eq. (14.13), the conditional distribution of x = (x1, . . . , xN ) given xi = x
takes the form

p(x|xi = x) ∼=
M∏

a=1

ψa(x∂a) I(xi = x) . (14.17)

In other words, it is sufficient to add to the original graph a new function node
of degree 1 connected to variable node i, which fixes xi = x. One can then run

BP on the modified factor graph and obtain estimates ν
(t)
j (xj |xi = x) for the

conditional marginal of xj .
This strategy is easily generalized to the joint distribution of any number

m of variables. The complexity grows however exponentially in the number of
variables involved, since we have to condition over |X |m−1 possible assignments.

Happily, for tree-graphical models, the marginal distribution of any number
of variables admits an explicit expression in terms of messages. Let FR be a
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subset of function nodes, VR be the subset of variable nodes adjacent to FR,
R the induced subgraph, and xR the corresponding variables. Without loss of
generality, we shall assume R to be connected. Further, denote by ∂R the subset
of function nodes that are not in FR, but are adjacent to a variable node in VR.

Then, for a ∈ ∂R there exists a unique i ∈ ∂a ∩ VR, that we denote by i(a).
It then follows immediately from Theorem 14.1, and from the characterization
of messages proved there that the joint distribution of variables in R is

p(xR) =
1

ZR

∏

a∈FR

ψa(x∂a)
∏

a∈∂R

ν̂∗a→i(a)(xi(a)) , (14.18)

where ν̂∗a→i( · ) are the fixed point BP messages.

Exercise 14.4 Let us use the above result to write the joint distribution of
variables along a path in a tree factor graph. Consider two variable nodes i,
j, and let R = (VR, FR, ER) be the subgraph induced by nodes on the path
between i, and j. For any function node a ∈ R, denote by i(a), j(a) the variable
nodes in R that are adjacent to a. Show that the joint distribution of the
variables along this path, xR = {xl : l ∈ VR}, takes the form.

p(xR) =
1

ZR

∏

a∈FR

ψ̂a(xi(a), xj(a))
∏

l∈VR

ψ̂l(xl) . (14.19)

In other words p(xR) factorizes according to the subgraph R. Write expres-

sions for the compatibility functions ψ̂a( · , · ), ψ̂l( · ) in terms of the original
compatibility functions and of the messages to nodes in W .

A particularly useful case is the computation of the internal energy. In physics
problems, the compatibility functions in Eq. (14.13) take the form ψa(x∂a) =
e−βEa(x∂a), where β is the inverse temperature and Ea(x∂a) is the energy function
characterizing constraint a. Of course, any graphical model can be written in this
form (allowing for Ea(x∂a) = +∞ in the case of hard constraints), adopting for
instance the convention β = 1, that we will use hereafter. The internal energy U
is the expectation value of the total energy:

U = −
∑

x

p(x)

M∑

a=1

logψa(x∂a) . (14.20)

This can be computed in terms of BP messages using Eq. (14.18) with FR = {a}.
If we further use Eq. (14.14) to express products of check-to-variable messages
in terms of variable-to-check ones, we get

U = −
M∑

a=1

1

Za

∑

x∂a

ψa(x∂a) logψa(x∂a)
∏

i∈∂a

ν∗i→a(xj) , (14.21) {eq:BP_energy}



‘‘Info Phys Comp’’ Draft: November 9, 2007  --  ‘‘Info Phys Comp’’ Draft: November 9, 2007  --  

298 BELIEF PROPAGATION

where Za ≡
∑

x∂a
ψa(x∂a)

∏
i∈∂a ν

∗
i→a(xj). Notice that in this expression the

internal energy is a sum of ‘local’ terms, one for each compatibility function.
On loopy graph Eqs. (14.18) and (14.21) are no longer valid, and indeed

BP does not necessarily converge to fixed point messages {ν∗i→a, ν̂
∗
a→i}. However

one can replace fixed point messages with BP messages after any number t of
iterations and take these as definitions of the BP estimates for the corresponding
quantities. From Eq. (14.18) one obtains an estimate of the joint distribution of
a subset of variables, call it ν(t)(xR), and from (14.21) an estimate of the internal
energy.

14.2.4 Entropy
{sec:TreeVariational}

Remember that the entropy of a distribution p over X V is defined as H[p] =
−∑x p(x) log p(x). In a tree graphical model the entropy, like the internal en-
ergy, has a simple expression in terms of local quantities. This follows from an
important decomposition property. Let us denote by pa(x∂a) the marginal prob-
ability distribution of all the variables involved in the compatibility function a,
and by pi(xi) the marginal probability distribution of variable xi.

Theorem 14.2 In a tree graphical model, the joint probability distribution p(x)
of all the variables can be written in terms of the marginals pa(x∂a) and pi(xi)
as:

p(x) =
∏

a∈F

pa(x∂a)
∏

i∈V

pi(xi)
1−|∂i| . (14.22){eq:entrop_tree_thm}

Proof: A simple proof is by induction on the number M of factors. Relation
(14.22) holds for M = 1 (since the degrees ∂i are all equal to one). Let us
assume that it is valid for any factor graph with up to M factors, and consider a
specific factor graph G with M + 1 factors. Since G is a tree, it contains at least
one factor node such that all its adjacent variable nodes have degree 1, except
at most one of them. Call such a factor node a, and let i be the only neighbor
with degree larger than one (the case in which no such neighbor exists is treated
analogously). Further, let x∼ be the vector of variables in ∂a that are not in
∂a \ i. Then, the Markov property together with Bayes rule yields

P(x) = P(x∼)P(x|x∼) = P(x∼)P(x∂a\i|xi) = P(x∼)pa(x∂a)pi(xi)
−1 .(14.23)

It is easy to check that P(x∼) factorizes according to the subgraph obtained by
removing the factor node a as well as the variable nodes in ∂a\i. In fact it can be
written as the product of the compatibility function in G \a times an additional
factor due to the sum over x∂a\i. Since the degree of i in the reduced graph is
smaller by one, and using the induction hypothesis, we get

P(x∼) =
∏

b∈F\a

pb(x∂b)
∏

j∈V \i

pj(xj)
1−|∂j| pi(xi)

2−|∂i| . (14.24)

The proof is completed by putting together Eqs. (14.23) and (14.24). �
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As an immediate consequence of (14.22), the entropy of a tree graphical model
can be expressed as sums of local terms:

H[p] = −
∑

a∈F

pa(x∂a) log pa(x∂a)−
∑

i∈V

(1− |∂i|) pi(xi) log pi(xi) . (14.25){eq:BP_entropy}

It is also easy to express the free-entropy Φ = logZ in terms of local quanti-
ties. Recalling that Φ = H[p] − U [p] (U [p] is here the internal energy given by
Eq. (14.21)) we get Φ = F[p], where

F[p] = −
∑

a∈F

pa(x∂a) log

{
pa(x∂a)

ψa(x∂a)

}
−
∑

i∈V

(1− |∂i|)pi(xi) log pi(xi) .(14.26)

Expressing local marginals in terms of messages, via Eq. (14.18), we can in
turn write the free-entropy as a function of the fixed point messages. We shall
introduce the function F∗(ν), that computes the free-entropy in terms of 2|E|
messages ν = {νi→a( · ), ν̂a→i( · )}:

F∗(ν) =
∑

a∈F

Fa(ν) +
∑

i∈V

Fi(ν)−
∑

(ia)∈E

Fia(ν) (14.27) {eq:BP_free_entropy}

where:

Fa(ν) = log



∑

x∂a

ψa(x∂a)
∏

i∈∂a

νi→a(xi)


 , Fi(ν) = log

[
∑

xi

∏

b∈∂i

ν̂b→i(xi)

]
,

Fai(ν) = log

[
∑

xi

νi→a(xi)ν̂a→i(xi)

]
. (14.28) {eq:BP_free_entropy2}

It is not hard to show that, evaluating this functional on the BP fixed point
ν∗, one gets F∗(ν

∗) = F[p] = Φ thus recovering the correct free-entropy. The
function F∗(ν) defined in (14.27) is known as the Bethe free-entropy (when
multiplied by a factor −1/β, it is called the Bethe free energy). The above
observations are important enough to be highlighted in a Theorem.

Theorem 14.3. (Bethe free-entropy is exact on trees) Consider a tree graph-
ical model. Let {pa, pi} denote its local marginals, and ν∗ = {ν∗i→a, ν̂

∗
a→i} be the

fixed point BP messages. Then Φ = logZ = F[p] = F∗(ν
∗).

Notice that in the above statement we have used the correct local marginals in
F[ · ] and the fixed point messages in F∗( · ). In Section 14.4 we will reconsider the
Bethe free-entropy for more general graphical models, and regard it as functions
over the space of all ‘possible’ marginals/messages.

Exercise 14.5 Consider the satisfiability instance in Fig. 14.4, left. Show
by exhaustive enumeration that it has only two satisfying assignments, x =
(0, 1, 1, 1, 0) and (0, 1, 1, 1, 1). Re-derive this result using BP. Namely, compute
the entropy of the uniform measure over satisfying assignments, and check that
its value is indeed log 2. The BP fixed point is shown in Fig. 14.4, right.
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Fig. 14.4.
fig:BPSATsimple
Left: the factor graph of a small satisfiability instance with 5 vari-

ables and 5 clauses. A dashed line means that the variable appears negated in
the adjacent clause. Right: the set of fixed point BP messages for the uniform
measure over solutions of this instance. All messages are normalized, and we
show their weight on the value “True”. For any edge (a, i) (a being the clause
and i the variable), the weight corresponding to the message ν̂a→i is shown above
the edge, and the weight corresponding to νi→a below the edge.

{ex:BPPHI_mod}
Exercise 14.6 In many systems some of the function nodes have degree
1 and amount to a local redefinition of the reference measure over X .
It is then convenient to single out these factors. Let us write p(x) ∼=∏

a∈F ψa(x∂a)
∏

i∈V ψi(xi), where the second product runs over degree-1 func-
tion nodes (indexed by the adjacent variable node), while the factors ψa have
degree at least 2. In the computation of F∗, the introduction of ψi adds N ex-
tra factor nodes and subtracts N extra ‘edge’ terms corresponding to the edge
between the variable node i and the function node corresponding to ψi. Show
that these two effects cancel, and that the net effect is to replace the variable
node contribution in Eq. (14.27) with

Fi(ν) = log

[
∑

xi

ψi(xi)
∏

a∈∂i

ν̂a→i(xi)

]
. (14.29)

The problem of sampling from the distribution p(x) over the large-dimensional
space XN reduces to the one of computing one-variable marginals of p(x), con-
ditional on a subset of the other variables. In other words, if we have a black box
that computes p(xi|xU ) for any subset U ⊆ V , it can be used to sample a ran-
dom configuration x. The standard procedure for doing this is called sequential
importance sampling. Let us describe it in the case of tree-graphical models,
using BP as this ‘black box’:
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BP-Guided Sampling (Graphical model (G,ψ))
1: initialize BP messages;
2: initialize U = ∅;
3: for t = 1, . . . , N :
4: run BP until convergence;
5: choose i ∈ V \ U ;
6: compute the BP marginal νi(xi);
7: choose x∗i distributed according to νi;
8: fix xi = x∗i and set U ← U ∪ {i};
9: add a factor I(xi = x∗i ) to the graphical model;
10: end
11: return x∗.

14.2.5 Pairwise models {sec:Pairwise}

Pairwise graphical models, i.e. graphical models such that all factor nodes have
degree 2, form an important class. Such a model can be conveniently represented
as an ordinary graph G = (V,E) over variable nodes. An edge joins two vari-
able each time they are the arguments of the same compatibility function. The
corresponding probability distribution reads

p(x) =
1

Z

∏

(ij)∈E

ψij(xi, xj) . (14.30)

Function nodes can be identified with edges (ij) ∈ E.
In this case belief propagation may be described as operating directly on G.

Further, one of the two types of messages can be easily eliminated: we shall work

uniquely with variable-to-function messages, that we will denote as ν
(t)
i→j(xi), a

shortcut for ν
(t)
i→(ij)(xi). The BP updates then read

ν
(t+1)
i→j (xi) ∼=

∏

l∈∂i\j

∑

xl

ψil(xi, xl) ν
(t)
l→i(xl) . (14.31)

Simplified expressions can be derived in this case for the joint distribution of
several variables, cf. Eq. (14.18), as well as for the free-entropy, cf. Eq. (14.27).
We leave this as an exercise for the reader. ⋆

14.3 Optimization: Max-Product and Min-Sum {se:MaxProd}
Message passing algorithms are not limited to computing marginals. Imagine
that you are given a probability distribution p( · ) as in Eq. (14.13), and you are
asked to find a configuration45 x which maximizes the probability p(x). This
task is important for many applications, ranging from MAP estimation (e.g. in
image reconstruction) to word MAP decoding.

It is not hard to devise a message passing algorithm adapted to this task,
which correctly solves the problem on trees.

45Such a configuration, x
∗
, such that p(x) ≤ p(x

∗
) for any x, is called a mode of p( · ).
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14.3.1 Max-marginals

The role of marginal probabilities is here played by the so-called max-marginals

Mi(x
∗
i ) = max

x
{p(x) : xi = x∗i } . (14.32)

In the same way as sampling and computing partition functions can be reduced to
computing marginals, optimization can be reduced to computing max-marginals.
In other words, given a black box that computes max-marginals, optimization
can be performed efficiently.

Consider first the simpler case in which the max-marginals are non-degenerate,
i.e. for each i ∈ V , there exist x∗i such that Mi(x

∗
i ) > Mi(xi) (strictly) for

any xi 6= x∗i . Then the unique maximizing configuration is given by x∗ =
(x∗1, . . . , x

∗
N ).

In the general case, the following ‘decimation’ procedure, which is closely re-
lated to the BP-guided sampling algorithm in Section 14.2.4, returns one of the
maximizing configurations. Choose an ordering of the variables, say (1, . . . , N).
ComputeM1(x1) and let x∗1 be one of the values maximizing46 it: x∗1 = arg maxM1(x1).
Fix x1 to take this value, i.e. modify the graphical model by introducing the factor
I(x1 = x∗1) (this corresponds to considering the conditional distribution p(x|x1 =
x∗1)). Compute M2(x2) for the new model, fix x2 to x∗2 = arg maxM2(x2) and
iterate this procedure fixing sequentially all the xi’s.

14.3.2 Message passing

It is clear from the above that max-marginals only need to be computed up
to a multiplicative normalization. We shall therefore stick to our convention of
denoting by ∼= equality between max-marginals up to an overall normalization.
Adapting the message passing update rules to the computation of max-marginals
is not hard: it is sufficient to replace sums with maximizations. This yields the
following Max-Product update rules:

ν
(t+1)
i→a (xi) ∼=

∏

b∈∂i\a

ν̂
(t)
b→i(xi) , (14.33)

ν̂
(t)
a→i(xi) ∼= max

x∂a\i



ψa(x∂a)

∏

j∈∂a\i

ν
(t)
j→a(xj)



 . (14.34)

The fixed-point conditions for this recursion are also called Max-Product equa-
tions. As in BP, it is understood that, when ∂j \a is an empty set, νj→a(xj) ∼= 1
is the uniform distribution. Similarly, if ∂a\ j is empty, then ν̂a→j(xj) ∼= ψa(xj).
After any number of iterations, an estimate of the max-marginals is obtained as
follows

46Here and below, arg maxF (x) denotes the set of values of x that maximize F (x), and when
we write x∗ = arg maxF (x), what we really mean is x∗ ∈ arg maxF (x).
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ν
(t)
i (xi) ∼=

∏

a∈∂i

ν̂
(t−1)
a→i (xi) . (14.35)

As in the case of BP, the main motivation for the above updates comes from
the analysis of graphical models on trees.

{th:maxprod}
Theorem 14.4. (Max-Product is exact on trees) Consider a tree graphi-
cal model with diameter t∗. Then

1. Irrespective of the initialization, the Max-Product updates (14.33), (14.34)
converge after at most t∗ iterations. In other words, for any edge (i, a), and

any t > t∗ ν
(t)
i→a = ν∗i→a, ν̂

(t)
a→i = ν̂∗a→i.

2. The max-marginals are estimated correctly, i.e. for any variable node i,

and ant t > t∗, ν
(t)
i (xi) = Mi(xi).

The proof follows closely the one of Theorem 14.1, and is left as an exercise for
the reader.

{ex:distribut}
Exercise 14.7 The crucial property used both in both Theorems 14.1 and 14.4
is the distributive property of sum and max with respect to the product. Con-
sider for instance a function of the form f(x1, x2, x3) = ψ1(x1, x2)ψ2(x1, x3).
Then one can decompose the sum and max as

∑

x1,x2,x3

f(x1, x2, x3) =
∑

x1

[(
∑

x2

ψ1(x1, x2)

)(
∑

x3

ψ2(x1, x3)

)]
, (14.36)

max
x1,x2,x3

f(x1, x2, x3) = max
x1

[(
max

x2

ψ1(x1, x2)

)(
max

x3

ψ2(x1, x3)

)]
.(14.37)

Formulate a general ‘marginalization’ problem (with the ordinary sum and
product substituted by general operations with a distributive property) and
describe a message passing algorithm that solves it on trees.

The Max-Product messages ν
(t)
i→a( · ), ν̂(t)

a→i( · ) admit an interpretation which

is analogous to the one of Sum-Product messages. For instance ν
(t)
i→a( · ) is an

estimate of the max-marginal of variable xi with respect to the modified graph-
ical model in which factor node a is removed from the graph. Along with the
proof of Theorem 14.4, it is easy to show that, on a tree-graphical model, fixed
point messages do indeed coincide with max-marginals of such modified graphical
models.

The problem of finding the mode of a distribution that factorizes as in
Eq. (14.13) has an alternative formulation, namely minimizing a cost (energy)
function that can be written as the sum of local terms:

E(x) =
∑

a∈F

Ea(x∂a) . (14.38)
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The problems are mapped onto each other by writing ψa(x∂a) = e−βEa(x∂a) (with
β some positive constant). A set of message passing rules that is better adapted to
the last formulation is obtained by taking the logarithm of Eqs. (14.33), (14.34).
The corresponding algorithm is called Min-Sum:

J
(t+1)
i→a (xi) =

∑

b∈∂i\a

Ĵ
(t)
b→i(xi) + C

(t)
i→a , (14.39)

Ĵ
(t)
a→i(xi) = min

x∂a\i


Ea(x∂a) +

∑

j∈∂a\i

J
(t)
j→a(xj)


+ Ĉ

(t)
a→i . (14.40)

The corresponding fixed-point equations are also known in statistical physics as
the energetic cavity equations. Notice that, since the Max-Product marginals
are relevant up to a multiplicative constant, the Min-Sum messages are de-
fined up to an overall additive constant. In the following we will choose the

constant C
(t)
i→a (respectively Ĉ

(t)
a→i) such that minxi

J
(t+1)
i→a (xi) = 0 (respectively

minxi
Ĵ

(t)
a→i(xi) = 0). The analogous of the max-marginal estimate in Eq. (14.35)

is provided by the following log-max-marginal

J
(t)
i (xi) =

∑

a∈∂i

Ĵ
(t−1)
a→i (xi) + C

(t)
i . (14.41)

In the case of tree graphical models, the minimum energy U∗ = minxE(x)

can be immediately written in terms of the fixed point messages {J∗i→a, Ĵ
∗
i→a}.

We get indeed

U∗ =
∑

a

Ea(x∗∂a) , (14.42)

x∗∂a = arg min
x∂a

{
Ea(x∂a) +

∑

i∈∂a

Ĵ∗i→a(xi)

}
. (14.43)

In the case of non-tree graphs, this can be taken as a prescription to obtain a

Max-Product estimate U
(t)
∗ of the minimum energy. One has just to replace the

fixed point messages in Eq. (14.43) with the ones obtained after t iterations.
Finally, a minimizing configuration x∗ can be obtained through the decimation
procedure described in the previous Section.
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{ex:minsum_ene_bis}
Exercise 14.8 Show that U∗ is also given by U∗ =

∑
a∈F ǫa +

∑
i∈V ǫi −∑

(ia)∈E ǫia, where:

ǫa = min
x∂a


Ea(x∂a) +

∑

j∈∂a

J∗j→a(xj)


 , ǫi = min

xi

[
∑

a∈∂i

Ĵ∗a→i(xi)

]
,

ǫia = min
xi

[
J∗i→a(xi) + Ĵ∗a→i(xi)

]
. (14.44)

Hints: (i) Define x∗i (a) = arg min
[
Ĵ∗a→i(xi) + J∗i→a(xi)

]
, and show that the

minima in Eqs. (14.44) are achieved for xi = x∗i (a) (for ǫi and ǫai), and for

x∗∂a = {x∗i (a)}i∈∂a (for ǫa); (ii) Show that
∑

(ia) Ĵ
∗
a→i(x

∗
i (a)) =

∑
i ǫi.

14.3.3 Warning propagation
{se:warning_prop}

A frequently encountered case is that of constraint satisfaction problems, where
the energy function just counts the number of violated constraints:

Ea(x∂a) =

{
0 if constraint a is satisfied,
1 otherwise.

(14.45)

The messages’ structure can be simplified considerably in this case. More pre-

cisely, if the messages are initialized in such a way that Ĵ
(0)
a→i ∈ {0, 1}, this

condition is preserved by the Min-Sum updates (14.40), (14.39) at any subse-
quent time. Let us prove this statement by induction. Suppose it holds up to time

t − 1. From Eq. (14.40) it follows that J
(t)
i→a(xi) is a non-negative integer. Con-

sider now Eq. (14.39). Since both J
(t)
j→a(xj) and Ea(x∂a) are integers, Ĵ

(t)
a→i(xi),

the minimum of the right hand side is a non-negative integer as well. Further,

since for each j ∈ ∂a \ i there exists x∗j such that J
(t)
j→a(x∗j ) = 0, the minimum

in Eq. (14.39) is at most 1, which proves our claim.
This argument also shows that the outcome of the minimization in Eq. (14.39)

only depends on which entries of the messages J
(t)
j→a( · ) are vanishing. If there

exists an assignment x∗j , such that J
(t)
j→a(x∗j ) = 0 for each j ∈ ∂a \ i, and

Ea(xi, x
∗
∂a\i) = 0, then the value of the minimum is 0. Otherwise it is 1.

In other words, instead of keeping track of the messages Ji→a( · ), one can
use their ‘projections’

Ji→a(xi) = min {1, Ji→a(xi)} . (14.46) {eq_gge_def}

Proposition 14.5 Consider an optimization problem with cost function of the
form (14.38) with Ea(x∂a) ∈ {0, 1}, and assume the Min-Sum algorithm to be

initialized with Ĵa→i(xi) ∈ {0, 1} for all edges (i, a). Then, after any number of
iterations, the function node-to-variable node messages coincide with the ones
computed with the following update rules
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J
(t+1)
i→a (xi) = min



1,

∑

b∈∂i\a

Ĵ
(t)
b→i(xi) + C

(t)
i→a


 , (14.47)

Ĵ
(t)
a→i(xi) = min

x∂a\i



Ea(x∂a) +

∑

j∈∂a\i

J
(t)
j→a(xj)



+ Ĉ

(t)
a→i , (14.48)

where C
(t)
i→a, Ĉ

(t)
a→i are normalization constants determined by minxi

Ĵa→i(xi) = 0
and minxi

Ji→a(xi) = 0.
Finally, the ground state energy takes the same form as (14.44), with Ji→a( · )

replacing Ji→a( · ).
We shall call warning propagation the simplified Min-Sum algorithm with
update equations (14.48), (14.47).

The name is due to the remark that the messages Ji→a( · ) can be interpreted
as the following warnings:

Ji→a(xi) = 1 → “according to the set of constraints b ∈ ∂i \ a, the i-th
variable should not take value xi.”

Ji→a(xi) = 0 → “according to the set of constraints b ∈ ∂i \ a, the i-th
variable can take value xi.”

Warning propagation provides a procedure for finding all direct implications of
some partial assignment of the variables in a constraint satisfaction problem. For
instance, in satisfiability it finds all implications found by unit clause propaga-
tion, cf. Section 10.2.

14.4 Loopy BP
{se:BPloops}

We have seen how message passing algorithms can be used to efficiently treat tree-
graphical models. In particular they allow to exactly sample, compute marginals,
partition functions, modes of distributions that factorize according to tree factor
graphs. It would be very important for a number of applications to accomplish
the same tasks when the underlying factor graph is no longer a tree.

It is tempting to use the BP equations in this more general context, hoping
to get approximate results for large graphical models. We shall be dealing mostly
with NP-hard problems, and there is no general guarantee of performance. In-
deed, an important unsolved challenge is to identify classes of graphical models
where the following questions could be answered:

1. Is there any set of messages {ν∗i→a, ν̂
∗
a→i} that reproduces the local marginals

of p( · ) through Eq. (14.18), within some prescribed accuracy?

2. Do such messages correspond to an (approximate) fixed point of the BP
update rules (14.14), (14.15)?

3. Do the BP update rules have at least one (approximate) fixed point? Is it
unique?
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4. Does such a fixed point have non-empty ‘basin of attraction’ with respect
to Eqs. (14.14), (14.15)? Does this basin of attraction include all possible
(or ‘meaningful’) initializations?

We shall not treat these questions in depth, as a general theory is lacking. We
shall rather describe the (rather sophisticated) picture that has emerged, building
on a mixture of physical intuition and methods, empirical observations, and
rigorous proofs.

{ex_2DIsing_Bethe}
Exercise 14.9 Consider a ferromagnetic Ising model on the two dimensional
grid with periodic boundary conditions (i.e. ‘wrapped’ on a torus), defined in
Section 9.1.2, cf. Fig. 9.7. Ising spins σi, i ∈ V are associated to the vertices of
the grid, and interact along the edges:

p(σ) =
1

Z
eβ

P
(ij)∈E σiσj . (14.49)

(a) Describe the associated factor graph.

(b) Write the BP equations.

(c) Look for a solution that is invariant under translation νi→a(σi) = ν(σi),
ν̂a→i(σi) = ν̂(σi): write the equations satisfied by ν( · ), ν̂( · ).

(d) Parameterize ν(σ) in terms of the log-likelihood h = 1
2 log ν(+1)

ν(−1) and show

that h satisfies the equation tanh(βh) = tanh(β) tanh(3βh).

(e) Study this equation and show that, for 3 tanhβ > 1, it has three distinct
solutions corresponding to three BP fixed points.

(f) Consider iterating the BP updates starting from a translation invariant
initial condition. Does the iteration converge to a fixed point? Which
one?

(g) Discuss the appearance of three BP fixed points in relation with the
structure of the distribution p(σ), and the paramagnetic-ferromagnetic
transition. What is the approximate value of the critical temperature
obtained from BP? Compare with the exact value βc = 1

2 log(1 +
√

2).

(h) What results does one obtain for an Ising model on a d-dimensional (in-
stead of two-dimensional) grid?

14.4.1 Bethe free-entropy and variational methods

As we saw in Section 14.2.4, the free-entropy of a tree graphical model has a
simple expression in terms of local marginals, cf. Eq. (14.26). We can use it in
graphs with loops with the hope that it provides a good estimate of the actual
free-entropy. In spirit this approach is similar to the ‘mean field’ free-entropy
introduced in Chapter 2, although it differs from it in several respects.

In order to define precisely the Bethe free-entropy, we must first describe a
space of ‘possible’ local marginals. A minimalistic approach is to restrict our-
selves to the so-called ‘locally consistent marginals’. A set of locally consis-
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b1 =

[
0.5
0.5

]

b3 =

[
0.5
0.5

]
b2 =

[
0.5
0.5

]

b12 =

[
0.49 0.01
0.01 0.49

]

b31 =

[
0.01 0.49
0.49 0.01

]

b23 =

[
0.49 0.01
0.01 0.49

]

Fig. 14.5. A set of locally consistent marginals that cannot arise as the
marginals of any global distribution.

{fig:FactorTriangle}

tent marginals is a collection of distributions bi( · ) over X , for each i ∈ V , and
ba( · ) over X ∂a for each a ∈ F . Being distributions they must be non-negative,
bi(xi) ≥ 0 ba(x∂a) ≥ 0, and they must satisfy the normalization condition

∑

xi

bi(xi) = 1 ∀i ∈ V ,
∑

x∂a

ba(x∂a) = 1 ∀a ∈ F . (14.50)

To be ‘locally consistent’, they must satisfy the marginalization condition:

∑

x∂a\i

ba(x∂a) = bi(xi) ∀a ∈ F , ∀i ∈ ∂a . (14.51)

Given a factor graph G, we shall denote the set locally consistent marginals as
LOC(G), and the Bethe free-entropy will be defined as a real valued function on
this space.

It is important to stress that, although the marginals of any probability dis-
tribution p(x) over x = (x1, . . . , xN ) must be locally consistent, the converse
is not true: one can find sets of locally consistent marginals that do not corre-
spond to any distribution. To stress this point, locally consistent marginals are
sometimes called “beliefs”.

Exercise 14.10 Consider the graphical model in Fig. 14.4.1, on binary vari-
ables (x1, x2, x3), xi ∈ {0, 1}. A set beliefs is written in the same figure in the
vector/matrix form:

bi =

[
bi(0)
bi(1)

]
; bij =

[
bij(00) bij(01)
bij(10) bij(11)

]
. (14.52)

Check that this set of beliefs is locally consistent but cannot be the marginals
of any distribution p(x1, x2, x3).
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Given a set of locally consistent marginals b = {ba, bi}, we associate to it a
Bethe free-entropy exactly as in Eq. (14.26)

F[b] = −
∑

a∈F

ba(x∂a) log

{
ba(x∂a)

ψa(x∂a)

}
−
∑

i∈V

(1− |∂i|) bi(xi) log bi(xi) .(14.53)

The analogy with naive mean field suggests that stationary points (and in par-
ticular maxima) of the Bethe free-entropy should play an important role. This
is partially confirmed by the following result.

{propo:BPvsFreeEnergy}
Proposition 14.6 Assume ψa(x∂a) > 0 for each a and x∂a. Then the stationary
points of the Bethe free-entropy F[b] are in one-to-one correspondence with the
fixed points of BP.

As it will appear from the proof, this correspondence between BP fixed points
and stationary points of F[b] is completely explicit.

Proof: We want to check stationarity with respect to variations of b within
the set LOC(G), that is defined by the constraints (14.50), (14.51), as well
as ba(x∂a) ≥ 0, bi(xi) ≥ 0. We thus introduce a set of Lagrange multipliers
λ = {λi, i ∈ V ; λai(xi), (a, i) ∈ E, xi ∈ X}, where λi corresponds to the nor-
malization of bi( · ) and λai(xi) to the marginal of ba coinciding with bi. We then
define the Lagrangian

L(b, λ) = F[b]−
∑

a∈F

λi

[
∑

xi

bi(xi)− 1

]
−
∑

(ia),xi

λai(xi)



∑

x∂a\i

ba(x∂a)− bi(xi)


 .

(14.54)

Notice that we did not introduce a Lagrange multiplier for the normalization of
ba(x∂a) as this follows from the two constraints already enforced. The stationarity
conditions with respect to bi and ba imply:

bi(xi) ∼= e−
1

|∂i|−1

P
a∈∂i λai(xi) , ba(x∂a) ∼= ψa(x∂a) e−

P
i∈∂a λai(xi) .(14.55)

The Lagrange multipliers must be chosen in such a way that Eq. (14.51) is
fulfilled. Any such set of Lagrange multipliers yields a stationary point of F[b].
Once the λai(xj) are found, the computation of the normalization constants in
these expressions fixes λi. Conversely, any stationary point corresponds to a set
of Lagrange multipliers satisfying the stated condition.

It remains to show that sets of Lagrange multipliers such that
∑

x∂a\i
ba(x∂a) =

bi(xi) are in one-to-one correspondence with BP fixed points. In order to see this,
define the messages

νi→a(xi) ∼= e−λai(xi) , ν̂a→i(xi) ∼=
∑

x∂a\i

ψa(x∂a) e−
P

j∈∂a\i λaj(xj) .(14.56)

It is clear from the definition that such messages satisfy
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ν̂a→i(xi) ∼=
∑

x∂a\i

ψa(x∂a)
∏

j∈∂a\i

νi→a(xi) . (14.57)

Further, using the second of Eqs. (14.55) together with (14.56) we get
∑

x∂a\i
ba(x∂a) ∼=

νi→a(xi)ν̂a→i(xi). On the other hand, from the first of Eqs. (14.55) together with

(14.56), we get bi(xi) ∼=
∏

b νi→b(xi)
1

|∂i|−1 . The marginalization condition thus
implies

∏

b∈∂i

νi→b(xi)
1

|∂i|−1 ∼= νi→a(xi)ν̂a→i(xi) . (14.58)

Taking the product of these equalities for a ∈ ∂i\b, and eliminating
∏

a∈∂i\b νi→a(xi)

from the resulting equation (which is possible if ψa(x∂a) > 0), we get

νi→b(xi) ∼=
∏

a∈∂i\b

ν̂a→i(xi) . (14.59)

At this point we recognize in Eqs. (14.57), (14.59) the fixed point condition
for BP, cf. Eqs. (14.14), (14.14). Conversely, given any solution of Eqs. (14.57),
(14.59) one can define a set of Lagrange multipliers using the first of Eqs. (14.56).
It follows that from the fixed point condition that the second Eq. (14.56) is
fulfilled as well, and that the marginalization condition holds. �

An important consequence of this proposition is the existence of BP fixed
points.

{cor:bp_fp}
Corollary 14.7 Assume ψa(xa) > 0 for each a and x∂a. Then BP has at least
one fixed point.

Proof: Since F[b] is bounded and continuous in LOC(G) (which is closed), it takes
its maximum at some point b∗ ∈ LOC(G). Using the condition ψa(xa) > 0 it is
easy to see that such a maximum is reached in the relative interior of LOC(G), i.e.
that b∗a(x∂a) > 0, b∗i (xi) > 0 strictly. As a consequence b∗ must be a stationary
point and therefore, by Proposition 14.6, there is a BP fixed point associated
with it. �

The ‘variational principle’ provided by Proposition 14.6 is particularly sug-
gestive as it is analogous to naive mean field bounds. For practical applica-
tions it is sometimes more convenient to use the free-entropy functional F∗(ν)
(14.27). This can be regarded as a function from the space of messages to reals:

F : M(X )|
~E| → R (remember that M(X ) denotes the set of measures over X ,

and ~E is the set of directed edges in the factor graph)47. It enjoys the following
principle.

{propo:BPvsFreeEnergy2}
Proposition 14.8 The stationary points of the Bethe free-entropy F∗(ν) are
fixed points of belief propagation. Conversely, any fixed point ν of belief propaga-
tion such that F∗(ν) is finite, is also a stationary point of F∗(ν).

47On a tree F∗(ν) is (up to a change of variables) the Lagrangian dual of F(b)
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xi xi

xj xj

xl xl

Fig. 14.6. Neighborhood of node i in a pairwise graphical model. Right: the
modified graphical model used to define message νi→j(xi). {fig:Cavity1}

The proof is simple calculus and is left to the reader.
It turns out that for tree graphs and for unicyclic graphs, F[b] is convex, and

the above results then prove the existence and unicity of BP fixed points. But
for general graphs F[b] is non-convex and may have multiple stationary points.

14.4.2 Correlations

What is the origin of the error made when using BP in an arbitrary graph
with loops, and under what conditions can it be small? In order to understand
this point, let us consider for notational simplicity a pairwise graphical model,
cf. Eq. (14.2.5). The generalization to other models is straightforward. Taking
seriously the probabilistic interpretation of messages, we want to compute the
marginal distribution νi→j(xi) of xi in the modified graphical model that does
not include the factor ψij(xi, xj) (see Fig. 14.6). Call p∂i\j(x∂i\j) the joint dis-
tribution of all variables in ∂i \ j in the model where all the factors ψil(xi, xl),
l ∈ ∂i, have been removed. Then:

νi→j(xi) ∼=
∑

x∂i\j

∏

l∈∂i\j

ψil(xi, xl)p∂i\j(x∂i\j) . (14.60)

Comparing this expression to the BP equations, cf. Eq. (14.31), we deduce that
the messages {νi→j} solve these equations if

p∂i\j(x∂i\j) =
∏

l∈∂i\j

νl→i(xl) . (14.61)

We can think that this happens when two conditions are fulfilled:

1. Under p∂i\j( · ), the variables {xl : l ∈ ∂i\j} are independent: p∂i\j(x∂i\j) =∏
l∈∂i\j p∂i\j(xl).

2. The marginal of each of these variables under p∂i\j( · ) is equal to the
corresponding message νl→i(xl). In other words the two graphical mod-
els obtained by removing all the compatibility functions that involve xi
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xi xi

xj xj

xl xl

Fig. 14.7. Left: Modified graphical model used to define νl→i(xl). Right: Mod-
ified graphical model corresponding to the cavity distribution of the neighbors
of i, p∂i\j(x∂i\j).{fig:Cavity2}

(namely, the model p∂i\j( · )) and by removing only ψil(xi, xl) must have
the same marginal for variable xl, cf. Fig. 14.7.

These two conditions are obviously fulfilled for tree graphical models. They
are also approximately fulfilled if correlations among variables {xl : l ∈ ∂i} are
‘small’ under p∂i\j( · ). As we have seen, in many cases of practical interest (LDPC
codes, random K-SAT, etc.) the factor graph is locally tree-like. In other words,
when removing node i, the variables {xl : l ∈ ∂i} are with high probability far
apart from each other. This suggests that, in such models, the conditions 1, 2
above may indeed hold in the large size limit, provided far apart variables are
weakly correlated. A simple illustration of this phenomenon is provided in the
exercises below. The following Chapters will investigate further this property
and discuss how to cope with cases in which it does not hold.
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Exercise 14.11 Consider the anti-ferromagnetic Ising model on a ring, with
variables (σ1, . . . , σN ) ≡ σ, σi ∈ {+1,−1} and distribution

p(σ) =
1

Z
e−β

PN
i=1 σiσi+1 (14.62)

where σN+1 ≡ σi. This is a pairwise graphical model whose graph G is the ring
over N vertices.

1. Write the BP update rules for this model (see Section 14.2.5).

2. Express the update rules in terms of log-likelihoods h
(t)
i→ ≡

1
2 log

ν
(t)
i→i+1(+1)

ν
(t)
i→i+1(−1)

, and h
(t)
←i ≡ 1

2 log
ν
(t)
i→i−1(+1)

ν
(t)
i→i−1(−1)

.

3. Show that, for any β ∈ [0,∞), and any initialization, the BP updates
converge to the unique fixed point h←i = hi→ = 0 for all i.

4. Assume β = +∞ and N even. Show that any set of log-likelihoods of the
form hi→ = (−1)ia, h←i = (−1)ib, with a, b ∈ [−1, 1], is a fixed point.

5. Consider now β = ∞ and N odd, and show that the only fixed point is
h←i = hi→ = 0. Find an initialization of the messages such that BP does
not converge to this fixed point.

Exercise 14.12 Consider the ferromagnetic Ising model on a ring with mag-
netic field. This is defined through the distribution

p(σ) =
1

Z
eβ

PN
i=1 σiσi+1+B

PN
i=1 σi (14.63)

where σN+1 ≡ σi. Notice that with respect to the previous exercise we changed
a sign in the exponent.

1,2. As in the previous exercise.

3. Show that, for any β ∈ [0,∞), and any initialization, the BP updates
converge to the unique fixed point h←i = hi→ = h∗(β,B) for all i.

4. Let 〈σi〉 be the expectation of spin σi with respect to the measure p( · ),
and 〈σi〉BP the corresponding BP estimate. Show that |〈σi〉 − 〈σi〉BP| =
O(λN ) for some λ ∈ (0, 1).

14.5 General message passing algorithms

Both the sum-product and max-product (or min-sum) algorithms are instances
of a more general class of message passing algorithms. All the algorithms in
this family share some common features that we now highlight.

Given a factor graph, a message-passing algorithm is defined by the following
ingredients:
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1. An alphabet of messages M. This can be either continuous or discrete.

The algorithm operates on messages ν
(t)
i→a, ν̂

(t)
a→i ∈ M associated with the

directed edges in the factor graph.

2. Update functions Ψi→a : M|∂i\a| → M and Φa→i : M|∂a\i| → M that
describe how to update messages.

3. An initialization, i.e. a mapping from the directed edges in the factor graph

to M (it can be a random mapping). We shall denote by ν
(0)
i→a, ν̂

(0)
a→i the

image of such a mapping.

4. A decision rule, i.e. a local function from messages to a space of ‘decisions’
among which we are interested to make a choice. Since we will be mostly
interested in computing marginals (or max-marginals), we shall assume the

decision rule to be given by a family of functions Ψ̂i : M|∂i| →M(X ).

Notice the characterizing feature of message passing algorithms: messages out-
going from a node are functions of messages incoming on the same node through
the other edges.

Given these ingredients, a message passing algorithm with parallel updating

is defined as follows. Assign the values of initial messages ν
(0)
i→a, ν̂

(0)
a→i according

to the initialization rule. Then, for any t ≥ 0, update messages through local
operations at variable/check nodes as follows:

ν
(t+1)
i→a = Ψi→a({ν̂(t)

b→i : b ∈ ∂i \ a}) , (14.64)

ν̂
(t)
a→i = Φa→i({νj→a : j ∈ ∂a \ i}) . (14.65)

Finally, after a pre-established number of iterations t, take the decision using the
rules Ψ̂i, namely return

ν
(t)
i (xi) = Ψ̂i({ν̂(t−1)

b→i : b ∈ ∂i})(xi) . (14.66)

Many variants are possible concerning the update schedule. For instance in se-
quential updating one can pick up a directed edge uniformly at random and
compute the corresponding message. Another possibility is to generate a random
permutation of the edges and update the messages according to this permuta-
tion. We shall not discuss these ‘details’, but the reader should be aware that
they can be important in practice: some update schemes may converge better
than others.

Exercise 14.13 Recast the sum-product and min-sum algorithms in the gen-
eral message passing framework. In particular, specify the messages alphabet,
the update and decision rules.

14.6 Probabilistic analysis{sec:ProbAnaBP}
In the following Chapters we shall repeatedly be concerned with the analysis of
message passing algorithms on random graphical models. In this context mes-
sages become random variables, and their distribution can be characterized in
the large system limit, as we will now see.
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14.6.1 Assumptions
{sec:AssumptionsDE}

Before proceeding, it is necessary to formulate a few technical assumptions under
which the approach works. The basic idea is that, in a ‘random graphical model’,
distinct nodes should be essentially independent. Specifically, we shall consider
below a setting which already includes many cases of interest; it is easy to extend
our analysis to even more general situations.

A random graphical model is a (random) probability distribution on x =
(x1, . . . , xN ) of the form48

p(x) ∼=
∏

a∈F

ψa(x∂a)
∏

i∈V

ψi(xi) , (14.67)

where the factor graph G = (V, F,E), and the various factors ψa, ψi, are in-
dependent random variables. More precisely, we assume that the factor graph
is distributed according to one of the ensembles GN (K,α) or DN (Λ, P ) (see
Chapter 9).

The random factors are assumed to be distributed as follows. For any given
degree k, we are given a list of possible factors ψ(k)(x1, . . . , xk; Ĵ), indexed by a

‘label’ Ĵ ∈ J, and a distribution P (k) over the set of possible labels J. For each
function node a ∈ F of degrees |∂a| = k, a label Ĵa is drawn with distribution

P (k), and the function ψa( · ) is taken equal to ψ(k)( · ; Ĵa). Analogously, the
factors ψi are drawn from a list of possible {ψ( · ;J)}, indexed by the label J
which is drawn from a distribution P . The random graphical model is fully
characterized by the graph ensemble, the set of distributions P (k), P , and lists
of factors {ψ(k)( · ; Ĵ)}, {ψ( · ;J)}.

We need to make some assumptions on the message update rules. Specifically,
we assume that the variable-to-function node update rules Ψi→a depend on i→ a
only through |∂i| and Ji, and the function-to-variable node update rules Φa→i

depend on a→ i only through |∂a| and Ĵa. With a slight abuse of notation, we
shall denote the update functions as:

Ψi→a({ν̂b→i : b ∈ ∂i \ a}) = Ψl(ν̂1, . . . , ν̂l;Ji) , (14.68)

Φa→i({νj→a : j ∈ ∂a \ i}) = Φk(ν1, . . . , νk; Ĵa) , (14.69)

where we let l ≡ |∂i| − 1, k ≡ |∂a| − 1, {ν̂1, . . . , ν̂l} ≡ {ν̂b→i : b ∈ ∂i \ a}
and {ν1, . . . , νk} ≡ {νj→a : j ∈ ∂a \ i}. A similar notation will be used for the

decision rule Ψ̂.

48Notice that the factors ψi, i ∈ V could have been included as degree 1 function nodes as
we do in (14.13); including them explicitly yields a description of density evolution which is
more symmetric between variables and factors, and applies more directly to decoding
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Exercise 14.14 Let G = (V,E) be a uniformly random graph with M = Nα
edges over N vertices, and let λi, i ∈ V be iid random variables uniform in
[0, λ̄]. Recall that an independent set for G is a subset of the vertices S ⊆ V
such that if i, j ∈ S, then (ij) is not an edge. Consider the following weighted
measure over independent sets

p(S) =
1

Z
I(S is an independent set)

∏

i∈S

λi . (14.70)

1. Write the distribution p(S) as a graphical model with binary variables
and define the corresponding factor graph.

2. Describe the BP algorithm to compute its marginals.

3. Show that this model is a random graphical model.

14.6.2 Density evolution equations
{sec:DE_eqs}

Consider a random graphical model, with factor graph G = (V, F,E) and let

(i, a) be a uniformly random edge in G. Let ν
(t)
i→a be the message sent by the BP

algorithm in iteration t along edge (i, a). We assume that the initial messages

ν
(0)
i→a, ν̂

(0)
a→i are iid random variables, with distribution independent of N . A

considerable amount of information is contained in the distribution of ν
(t)
i→a and

ν̂
(t)
a→i with respect to the model realization. We are interested in characterizing

these distributions in the large system limit N → ∞. Our analysis will assume
that both the message alphabet M and the node labels alphabet J are subsets of
R

d for some fixed d, and that the update functions Ψi→a, Φa→i are continuous
with respect to the usual topology of R

d.
It is convenient to introduce the directed neighborhood of radius t of the

directed edge i→ a: Bi→a,t(G). This is defined as the subgraph ofG that includes
all the variable nodes which can be reached from i through a non-reversing path
of length at most t, whose first step is not the edge (i, a). It includes as well all the
function nodes connected only to the above specified variable nodes- see Fig. 14.8.
Let us consider, to be definite, the case where G is a random factor graph from
the DN (Λ, P ) ensemble. Then Bi→a,t(F ) converges in distribution to a tree with
a well defined distribution as N → ∞. This is completely analogous to what
happens for undirected neighborhoods treated in Section 9.5. The corresponding
tree ensemble T

→
t (Λ, P ) is defined as follows. For t = 0, the tree is formed by a

single variable node. To construct a tree of radius t ≥ 1, first construct a tree
of radius t − 1. Then, for each of the variable nodes i at distance t − 1 from
the root, draw an independent integer li with distribution λl and connect i to
li− 1 new function nodes. Finally, for each of the newly added function nodes a,
draw an independent random integer Ka with distribution ρk and connect a to
Ka − 1 new variable nodes. For illustrative reasons, we shall occasionally add a
‘root edge’ as i→ a in Fig. 14.8.
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i

a

Fig. 14.8. A radius 2 directed neighborhood Bi→a,2(F ).{fig:FactorTree}

Exercise 14.15 Consider a random graph from the regular DN (Λ, P ) ensem-
ble with Λ2 = 1, P3 = 1 (each variable node has degree 2 and each function
node degree 3). The three possible radius-1 directed neighborhoods appearing
in such factor graph are depicted in Fig. 14.9.

(a) Show that the probability that a given edge (i, a) has neighborhoods as
in (B) or (C) is O(1/N).

(b) Deduce that Bi→a,1(F )
d→ T1 where T1 is distributed according to the

tree model T
→
1 (2, 3) (i.e. it is the tree on Fig. 14.9, (A)).

(c) Discuss the case of a radius-t neighborhood.

For our purposes it is necessary to include in the description of the neigh-
borhood Bi→a,t(F ), the value of the labels Ji, Ĵb for function nodes b in this
neighborhood. It is understood that the tree model T

→
t (Λ, P ) includes labels as

well: these have to be drawn as iid random variables independent of the tree and
with the same distribution as in the original graphical model.

Now consider the message ν
(t)
i→a. This is a function of the factor graph G, of

the labels {Jj}, {Ĵb} and of the initial condition {ν(0)
j→b}. However, a moment of

thought shows that its dependence on G and on the labels occurs only through
the radius-(t + 1) directed neighborhood Bi→a,t+1(F ). Its dependence on the

initial condition is only through the messages ν
(0)
j→b for j, b ∈ Bi→a,t(F ).

In view of the above discussion, let us pretend for a moment that the neighbor-
hood of (i, a) is a random tree Tt+1 with distribution T

→
t+1(Λ, P ). We define ν(t)

to be the message passed through the root edge of such a random neighborhood
after t message passing iterations. Since Bi→a,t+1(F ) converges in distribution

to the tree Tt+1, we find that49 ν
(t)
i→a

d→ ν(t) as N →∞.

49The mathematically suspicious reader may wonder about the topology we are assuming on
the message space space. In fact no assumption is necessary if the distribution of labels Ji, bJa
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i

a

i

a

i

a

(A) (B) (C)

Fig. 14.9. The three possible radius–1 directed neighborhoods in a random
factor graph from the regular DN (2, 3) graph ensemble. {fig:FactorTreeRadius1}

We have shown that, as N → ∞, the distribution of ν
(t)
i→a converges to the

one of a well defined (N -independent) random variable ν(t). The next step con-
sists in finding a recursive characterization of ν(t). Consider a random tree from
the T

→
r (Λ, P ) ensemble and let j → b be an edge directed towards the root,

at distance d from it. The directed subtree rooted at j → b is distributed ac-
cording to T

→
r−d(Λ, P ). Therefore the message passed through it after r − d− 1

(or more) iterations is distributed as ν(r−d−1). The degree of the root variable
node i (including the root edge) has distribution λl. Each check node connected
to i has a number of other neighbors (distinct from i) which is a random vari-
able distributed according to ρk. These facts imply the following distributional
equations for ν(t) and ν̂(t):

ν(t+1) d
= Ψl(ν̂

(t)
1 , . . . , ν̂

(t)
l ;J) , ν̂(t) d

= Φk(ν
(t)
1 , . . . , ν

(t)
k ; Ĵ) . (14.71)

Here ν̂
(t)
b , b ∈ {1, . . . , l−1} are independent copies of ν̂(t), ν

(t)
j , j ∈ {1, . . . , k−1}

are independent copies of ν(t), l and k are independent random integers dis-

tributed, respectively, according to λl and ρk, Ĵ is distributed as P
(k)
bJ and J is dis-

tributed as PJ . It is understood that the recursion is initiated with ν(0) d
= ν

(0)
i→a,

ν̂(0) d
= ν̂

(0)
a→i.

In information theory, the equations (14.71), or sometimes the sequence of
random variables {ν(t), ν̂(t)}, is referred to as density evolution. In probabilis-
tic combinatorics, they are also called recursive distributional equations.
We have proved the following characterization of the messages distribution:

Proposition 14.9 Consider a random graphical model satisfying assumptions
1-4 in Section 14.6.1. Let t ≥ 0 and (ia) be a uniformly random edge in the factor

graph. Then, as N → ∞, the message ν
(t)
i→a (ν̂

(t)
i→a) converges in distribution to

the random variable ν(t) (respectively ν̂(t)) defined through the density evolution
equations (14.71).

is independent of N . If it is N dependent but converges, then the topology must be such that
the messages updates are continuous with respect to it.
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We shall discuss several applications of density evolution in the following
Chapters. Here we just mention that density evolution allows to compute the
asymptotic distribution of message passing decisions at a uniformly random site
i. Recall that the general message passing decision after t iterations is taken using
the rule (14.66), with Ψ̂i({ν̂b}) = Ψ̂l(ν̂1, . . . , ν̂l;Ji) (where l ≡ |∂i|). Arguing as in

the previous paragraphs it is easy to show that, in the large N limit, µ
(t)
i

d→ µ(t),
where the random variable µ(t) is distributed according to:

µ(t) d
= Ψ̂l(ν̂

(t−1)
1 , . . . , ν̂

(t−1)
l ;J) . (14.72)

As above ν̂
(t−1)
1 , . . . , ν̂

(t−1)
l are iid copies of ν̂(t−1), J is an independent copy of

the variable node label Ji, and l is a random integer distributed according to Λl.

14.6.3 The replica symmetric cavity method
{se:RS_cavity}

The replica symmetric (RS) cavity method of statistical mechanics adopts a point
of view which is very close to the previous one, but less algorithmic. Instead of
considering the BP update rules as an iterative message passing rule, it focuses
on the fixed point BP equations themselves.

The idea is to compute the partition function recursively, by adding one
variable node at a time. Equivalently one may think of taking one variable node
out of the system and computing the change in the partition function. The name
of the method comes exactly from this image: one digs a ‘cavity’ in the system.

As an example, take the original factor graph, delete the factor node a and
all the edges incident on it. If the graph is a tree, this procedure separates it into
|∂a| disconnected trees. Consider now the tree-graphical model described by the
connected component containing the variable j ∈ ∂a. Denote the corresponding
partition function, when the variable j is fixed to the value xj , by Zj→a(xj).
These partial partition functions can be computed iteratively as:

Zj→a(xj) =
∏

b∈∂j\a



∑

x∂b\j

ψb(x∂b)
∏

k∈∂b\j

Zk→b(xk)


 . (14.73) {eq:Z_rs_recursion}

The equations obtained by letting j → b be a generic directed edge in G, are
called cavity equations, or Bethe equations.

The cavity equations are mathematically identical to the BP equations, with
two important conceptual differences: (i) One is naturally led to think that the
equations (14.73) must have a fixed point, and to give special importance to it;
(ii) The partial partition functions are unnormalized messages, and, as we will
see in Chapter ??, their normalization provides some useful information. The
relation between BP messages and partial partition functions is

νj→a(xj) =
Zj→a(xj)∑
y Zj→a(y)

. (14.74) {eq:CavityNorm}
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Within the cavity approach, the replica symmetry assumption consists
in pretending that, for random graphical models as introduced above, and in the
large N limit:

1. There exists a solution (or quasi-solution50) to these equations.

2. This solution provides good approximations of the marginals of the graph-
ical model.

3. The messages in this solution are distributed according to a density evolu-
tion fixed point.

The last statement amounts to assuming that the normalized variable-to-factor
messages νi→a, cf. Eq. (14.74), converge in distribution to a random variable ν,
that solves the distributional equations:

ν
d
= Ψ(ν̂1, . . . , ν̂k−1;J) , ν̂

d
= Φ(ν1, . . . , νl−1; Ĵ) . (14.75)

Here we use the same notations as in Eq. (14.71): ν̂b, b ∈ {1, . . . , l − 1} are

independent copies of ν̂(t); ν
(t)
j , j ∈ {1, . . . , k−1} are independent copies of ν(t);

l and k are independent random integers distributed, respectively, according to
λl and ρk; J , Ĵ are distributed as the variable and function nodes labels Ji, Ĵa.

Using the distributions of ν and ν̂, the expected Bethe free-entropy per vari-
able F/N can be computed by taking the expectation of Eq. (14.27). The result
is:

F/N = FV + aFF − bFE (14.76){eq:RS_free_entropy}

where a is the average number of function nodes per variable, and b is the
average number of edges per variable: In the DN (Λ, P ) ensemble one has a =
Λ′(1)/P ′(1) and b = Λ′(1); Within the GN (K,α) ensemble, a = α and b = Kα.
The contributions of variable nodes FV , function nodes FF , and edges FE are:

FV = El,J,{bν} log

[
∑

x

ψ(x;J) ν̂1(x) · · · ν̂l(x)

]
,

FF = Ek, bJ,{ν} log

[
∑

x1,...,xk

ψ(k)(x1, . . . , xk; Ĵ) ν1(x1) · · · νk(xk)

]
,

FE = Eν,bν log

[
∑

x

ν(x)ν̂(x)

]
. (14.77)

In these expressions, E denotes expectation with respect to the random variables
in subscript. For instance, ifG is distributed according to the DN (Λ, P ) ensemble,
El,J,{bν} implies that l is drawn from distribution Λ, J is drawn from P , and
ν̂1, . . . ν̂l are l independent copies of the random variable ν̂.

50A quasi-solution is a set of messages νj→a such that the average difference between the
left and right hand sides of the BP equations goes to zero in the large N limit
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Instead of estimating the partition function, the cavity method can be used to
compute the ground state energy. One then uses Min-Sum like messages instead
of those in (14.73). The method is then called the ‘energetic cavity method’, we
leave to the reader the task of writing the corresponding average ground state
energy per variable.

14.6.4 Numerical methods

Generically, the RS cavity equations (14.75), as well as density evolution (14.71),
cannot be solved in close form, and one uses numerical methods to estimate the
distribution of the random variables ν, ν̂. Here we limit ourselves to describing
a stochastic approach that has the advantage of being extremely versatile and
simple to implement. It has been used in coding theory under the name of ‘sam-
pled density evolution’ or ‘Monte Carlo’, and is known in statistical physics as
population dynamics, a name which we shall adopt in the following.

The idea is to approximate the distribution of ν (or ν̂) through a sample
of (ideally) N iid copies of ν (respectively ν̂). As N gets large, the empirical
distribution of such a sample should converge to the actual distribution of m.
We shall call such a sample {νi} ≡ {ν1, . . . , νN} (or {ν̂i} ≡ {ν̂1, . . . , ν̂N}) a
population.

The algorithm is described by the pseudo-code below. As inputs it requires
the population size N , the maximum number of iterations T and a specification
of the ensemble of (random) graphical models. The latter consists in a description
of the (edge perspective) degree distributions λ, ρ , of the variable node labels
P , and of the factor node labels P (k)

Population dynamics (Model ensemble, Size N , Iterations T )

1: Initialize {ν(0)
i };

2: for t = 1, . . . , T :
3: for i = 1, . . . , N :
4: Draw an integer k with distribution ρ;
5: Draw i(1), . . . , i(k − 1) uniformly in {1, . . . , N};
6: Draw Ĵ with distribution P (k);

7: Set ν̂
(t)
i = Φk(ν

(t−1)
i(1) , . . . , ν

(t−1)
i(k−1); Ĵ);

8: end;
9: for i = 1, . . . , N :
10: Draw an integer l with distribution λ;
11: Draw i(1), . . . , i(l − 1) uniformly in {1, . . . , N};
12: Draw J with distribution P ;

13: Set ν̂
(t)
i = Ψl(ν

(t)
i(1), . . . , ν

(t)
i(l−1);J);

14: end;
15: end;

16: return {ν(T )
i } and {ν̂(T )

i }.
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In step 1 the initialization is done by drawing ν
(0)
1 , . . . , ν

(0)
N independently

with the same distribution P that was used for the initialization of BP.
It is not hard to show that, for any fixed T , the empirical distribution of

{ν(T )
i } (respectively {ν̂(T )

i }) converges, as N → ∞ to the distribution of the
density evolution random variable ν(t) (ν̂(t)). The limit T → ∞ is trickier. Let
us first assume that density evolution has a unique fixed point, and ν(t), ν̂(t)

converges to such a fixed point. Then we expect the empirical distribution of

{ν(T )
i } to converge to such a fixed point if the N → ∞ limit is taken after

T → ∞ as well. Finally, when density evolution has more than a fixed point,

the situation is even more subtle. The population {ν(T )
i } evolve according to

a finite (although large-) dimensional Markov chain, and one could expect it
to converge to its unique fixed point. This seems to spoil the application of
population dynamics in these cases (that are probably the most interesting ones).
Luckily, the convergence of population dynamics to its unique fixed point appears
to happen on a time scale that increases very rapidly with N . For large N and
on moderate time scales T , it converges instead to one of several ‘quasi-fixed
points’ that correspond to the density evolution fixed points.

In practice, one can monitor the effective convergence of the algorithm by
computing, after any number of iterations t, averages of the form

〈ϕ〉t ≡
1

N

N∑

i=1

ϕ(ν
(t)
i ) , (14.78)

for a smooth function ϕ : M(X ) → R. If these averages are well settled (up to
statistical fluctuations of order 1/

√
N), this is interpreted as a signal that the

iteration has converged.
The populations produced by the above algorithm can be used to to estimate

expectation with respect to the density evolution random variables ν, ν̂. For
instance, the expression in Eq. (14.78) is an estimate for E{ϕ(ν)}. When ϕ =
ϕ(ν!, . . . , νl) is a function of l iid copies of ν, the above formula is modified as

〈ϕ〉t ≡
1

R

R∑

n=1

ϕ(ν
(t)
i(1), . . . , ν

(t)
i(l)) . (14.79)

Here R is a large number (typically of the same order as N), and i(1), . . . , i(l)
are iid indices in {1, . . . , N}. Of course such estimates will be reasonable only if
l≪ N .

A particularly important example is the computation of the the free entropy
(14.76). Each of the terms FV , FF and FE can be estimated as indicated. The
precision of these estimates can be improved by repeating the computation for
several iterations and averaging the result.

Notes

Belief propagation equations have been rediscovered several times. They were
developed by Pearl (Pearl, 1988) as exact algorithm for probabilistic inference
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in acyclic Bayesian networks. In the early 60’s, Gallager had introduced them
as an iterative procedure for decoding low density parity check codes (Gallager,
1963). Gallager described several message passing procedures and, among them,
the sum-product algorithm. Always for decoding, the basic idea of this algorithm
was rediscovered in several works in the 90’s, and, in particular, in (Berrou and
Glavieux, 1996).

In the physics context, the history is even longer. In 1935, Bethe used a
free energy functional written in terms of pseudo-marginals to approximate the
partition function of the ferromagnetic Ising model (Bethe, 1935). Bethe equa-
tions were of the simple form discussed Exercise 14.9, because of the homogeneity
(translation invariance) of the underlying model. Their generalization to inhomo-
geneous systems, which has a natural algorithmic interpretation, waited until the
application of Bethe’s method to spin glasses (Thouless, Anderson and Palmer,
1977; Klein, Schowalter and Shukla, 1979; Katsura, Inawashiro and Fujiki, 1979;
Morita, 1979; Nakanishi, 1981).

The review paper (Kschischang, Frey and Loeliger, 2001) gives a general
overview of belief propagation in the factor graphs framework. The role of the
distributive property, mentioned in Exercise 14.7, is emphasized in (Aji and
McEliece, 2000). On tree graphs, belief propagation can be regarded as an in-
stance of the junction-tree algorithm (Lauritzen, 1996). This approach consists
in building a tree associated to the graphical model under study, by grouping
some of its variables. Belief propagation is then applied to this tree.

Although implicit in these earlier works, the equivalence between BP, Bethe
approximation, and sum-product algorithm was only recognized in the 90’s. The
turbo-decoding and sum-product algorithm were shown to be instances of BP
in (McEliece, MacKay and Cheng, 1998). A variational derivation of the turbo
decoding algorithm was proposed in (Montanari and Sourlas, 2000). The equiva-
lence between BP and Bethe approximation was first put forward in (Kabashima
and Saad, 1998) and, in a more general setting, in (Yedidia, Freeman and Weiss,
2001; Yedidia, Freeman and Weiss, 2005).

The last paper proved, in particular, the variational formulation in Proposi-
tion 14.8. This suggests to look for fixed points of BP by seeking directly sta-
tionary points of the Bethe free-entropy, without iterating the BP equations. An
efficient such procedure, based on the observation that the Bethe free-entropy can
be written as the difference between a convex and a concave function, was pro-
posed in (Yuille, 2002). An alternative approach consists in constructing convex
surrogates of the Bethe free energy (Wainwright, Jaakkola and Willsky, 2005b;
Wainwright, Jaakkola and Willsky, 2005a), which allow to define provably con-
vergent message passing procedures.

Bethe approximation can also be regarded as a first step in a hierarchy of
variational methods describing exactly larger and larger clusters of variables.
This point of view was first developed by Kikuchi (Kikuchi, 1951), leading to the
so called ‘cluster variational method’ in physics. The algorithmic version of this
approach is referred to as ‘generalized BP,’ and is described in detail in (Yedidia,
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Freeman and Weiss, 2005).
The analysis of iterative message passing algorithms on random graphical

models dates back to Gallager work (Gallager, 1963). These ideas were devel-
oped into a systematic method, also thanks to efficient numerical techniques,
in (Richardson and Urbanke, 2001b) who coined the name ‘density evolution.’
The point of view taken in this book is however closer to the one of ‘local weak
convergence’ (Aldous and Steele, 2003).

In physics, the replica symmetric cavity method for sparse random graphical
models, was first discussed in (Mézard and Parisi, 1987). The use of population
dynamics first appeared in (Abou-Chacra, Anderson and Thouless, 1973), and
was further developed for spin glasses in (Mézard and Parisi, 2001), but this
paper mainly deals with RSB effects which will be the object of Chapter ??.
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DECODING WITH BELIEF PROPAGATION

As we have seen in Section 6.1, symbol MAP decoding of error correcting codes
can be regarded as a statistical inference problem. If p(x|y) denotes the con-
ditional distribution of the channel input x, given the output y, one aims at
computing its single bit marginals p(xi|y). It is a very natural idea to accom-
plish this task using belief propagation (BP).

However, it is not hard to realize that an error correcting code cannot achieve
good performances unless the associated factor graph has loops. As a conse-
quence, belief propagation has to be regarded only as an approximate inference
algorithm in this context. A major concern of the theory is to establish conditions
for its optimality, and, more generally, the relation between message passing and
optimal (exact symbol MAP) decoding.

In this Chapter we discuss belief propagation decoding of the LDPC ensem-
bles introduced in Chapter 11. The message passing approach can be generalized
to several other applications within information and communications theory:
other code ensembles, source coding, channels with memory, etc. . . . Here we
shall keep to the ‘canonical’ example of channel coding as most of the theory has
been developed in this context.

BP decoding is defined in Section 15.1. One of the main tools in the analysis
is the ‘density evolution’ method that we discuss in Section 15.2. This allows
to determine the threshold for reliable communication under BP decoding, and
to optimize accordingly the code ensemble. The whole process is considerably
simpler for the erasure channel, which is treated in Section 15.3. Finally, Section
15.4 explains the relation between optimal (MAP) decoding and BP decoding in
the large block-length limit: the two approaches can be considered in the same
unified framework of the Bethe free energy.

15.1 BP decoding: the algorithm
{sec:DefinitionBPDecoding}

In this chapter, we shall consider communication over a binary input output
symmetric memoryless channel (BMS). This is a channel in which the
transmitted codeword is binary, x ∈ {0, 1}N , and the output y is a sequence of

N letters yi from an alphabet51 Y ⊂ R. The probability of receiving letter y
when bit x is sent, Q(y|x), enjoys the symmetry property Q(y|0) = Q(−y|1).

Let us suppose that a LDPC error correcting code is used in this communica-
tion. The conditional probability for the channel input being x ∈ {0, 1}N given
the output y is

51The case of a general output alphabet Y reduces in fact to this one.

325
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p(x|y) =
1

Z(y)

N∏

i=1

Q(yi|xi)

M∏

a=1

I(xia
1
⊕ · · · ⊕ xia

k(a)
= 0) , (15.1)

The factor graph associated with this distribution is the same as for the code
membership function, cf. Fig. 9.6 in Chapter 9. An edge joins a variable node
i to a check node a whenever the variable xi appears in the a-th parity check
equation.

Messages νi→a(xi), ν̂a→i(xi), are exchanged along the edges. We shall assume
a parallel updating of BP messages, as introduced in Section 14.2:

ν
(t+1)
i→a (xi) ∼= Q(yi|xi)

∏

b∈∂i\a

ν̂
(t)
b→i(xi) , (15.2)

ν̂
(t)
a→i(xi) ∼=

∑

{xj}

I(xi ⊕ xj1 ⊕ · · · ⊕ xjk−1
= 0)

∏

j∈∂a\i

ν
(t)
j→a(xj) , (15.3)

where we used the notation ∂a ≡ {i, j1, . . . , jk−1}, and the symbol ∼= denotes as
usual ‘equality up to a normalization constant’. We expect that the asymptotic
performances (for instance, the asymptotic bit error rate) of such BP decoding
should be not sensitive to the precise update schedule. On the other hand, this
schedule can have an important influence on the speed of convergence, and on
performances at moderate N . Here we shall not address these issues.

The BP estimate for the marginal distribution at node i at time t, also called
‘belief’ or ’soft decision’, is

µ
(t)
i (xi) ∼= Q(yi|xi)

∏

b∈∂i

ν̂
(t−1)
b→i (xi) . (15.4)

Based on this estimate, the optimal BP decision for bit i at time t (sometimes
called ‘hard decision’) is

x̂
(t)
i = arg max

xi

µ
(t)
i (xi) . (15.5)

In order to completely specify the algorithm, one should address two more issues:
(1) How are the messages initialized, and (2) After how many iterations t, does
one make the hard decision (15.5).

In practice, one usually initializes the messages to ν
(0)
i→a(0) = ν

(0)
i→a(1) = 1/2.

One alternative choice, that is sometimes useful for theoretical reasons, is to take

the messages ν
(0)
i→a( · ) as independent random variables, for instance by choosing

ν
(0)
i→a(0) uniformly on [0, 1].

As for the number of iterations, one would like to have a stopping criterion.
In practice, a convenient criterion is to check whether x̂(t) is a codeword, and to
stop if this is the case. If this condition is not fulfilled, the algorithm is stopped
after a fixed number of iterations tmax. On the other hand, for analysis purposes,



‘‘Info Phys Comp’’ Draft: November 9, 2007  --  ‘‘Info Phys Comp’’ Draft: November 9, 2007  --  

ANALYSIS: DENSITY EVOLUTION 327

j

b

i

a

ub→jhi→a

Fig. 15.1. Factor graph of a (2,3) regular LDPC code, and notation for the
belief propagation messages.{fig:FactorMess}

we shall rather fix tmax and assume that belief propagation is run always for tmax

iterations, regardless whether a valid codeword is reached at an earlier stage.
Since the messages are distributions over binary valued variables, we describe

them as in (??) by the log-likelihoods:

hi→a =
1

2
log

νi→a(0)

νi→a(1)
, ua→i =

1

2
log

ν̂a→i(0)

ν̂a→i(1)
. (15.6)

We further introduce the a-priori log-likelihood for bit i, given the received mes-
sage yi:

Bi =
1

2
log

Q(yi|0)
Q(yi|1)

. (15.7)

For instance in a BSC channel with flip probability p, one has Bi = 1
2 log 1−p

p

on variable nodes which have received yi = 0, and Bi = − 1
2 log 1−p

p on those

with yi = 1. The BP update equations (15.2), (15.3) read in this notation (see
Fig. 15.1):

h
(t+1)
i→a = Bi +

∑

b∈∂i\a

u
(t)
b→i , u

(t)
a→i = atanh

{ ∏

j∈∂a\i

tanhh
(t)
j→a

}
. (15.8)

The hard-decision decoding rule depends on the over-all BP log-likelihood

h
(t+1)
i = Bi +

∑

b∈∂i\a

u
(t)
b→i , (15.9)

and is given by (using for definiteness a fair coin outcome in case of a tie):

x̂
(t)
i (y) =





0 if h
(t)
i > 0,

1 if h
(t)
i < 0,

0 or 1 with probability 1/2 if h
(t)
i = 0.

(15.10)

15.2 Analysis: density evolution
{sec:DensityEvolutionDecoding

In this section we consider BP decoding of random codes from the LDPCN (Λ, P )
ensemble in the large block-length limit. The code ensemble is specified by the
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degree distributions of variable nodes Λ = {Λl} and of check nodes, P = {Pk}.
We assume for simplicity that messages are initialized to u

(0)
a→i = 0.

Because of the symmetry of the channel, under the above hypotheses, the
bit (or block) error probability is independent of the transmitted codeword. The
explicit derivation of this fact is outlined in Exercise 15.1 below. This is also
true for any other meaningful performance measures. We shall use this freedom
to assume that the all-zero codeword has been transmitted. We shall first write
the density evolution recursion as a special case of the one written in Section
??. It turns out that this recursion can be analyzed in quite some detail, and in
particular one can show that the decoding performance improves as t increases.
The analysis hinges on two important properties of BP decoding and density
evolution, related to the notions of ‘symmetry’ and ‘physical degradation’.

{ex:cw_indep}
Exercise 15.1 Independence of the transmitted codeword. Assume the code-

word x has been transmitted and let Bi(x), u
(t)
a→i(x), h

(t)
i→a(x) be the corre-

sponding channel log-likelihoods and messages. These are regarded as random
variables (because of the randomness in the channel realization). Let further-
more σi = σi(x) = +1 if xi = 0, and = −1 otherwise.

(a) Prove that the distribution of σiBi is independent of x.

(b) Use the equations (15.8) to prove by induction over t that the (joint)

distribution of {σih
(t)
i→a, σiu

(t)
a→i} is independent of x.

(c) Use Eq. (15.9) to show that the distribution of {σiH
(t)
i } is independent

of x for any t ≥ 0. Finally, prove that the distribution of the ‘error vector’
z(t) ≡ x ⊕ x̂(t)(y) is independent of x as well. Write the bit and block

error rate in terms of the distribution of z(t).

15.2.1 Density evolution equations

Let us consider the distribution of messages after a fixed number t of iterations.
As we saw in Section ??, in the large N limit, the directed neighborhood of any
given edge is with high probability a tree. This implies the following recursive
distributional characterization for h(t) and u(t):

h(t+1) d
= B +

l−1∑

b=1

u
(t)
b , u(t) d

= atanh
{ k−1∏

j=1

tanhh
(t)
j

}
. (15.11)

Here u
(t)
b , b ∈ {1, . . . , l−1} are independent copies of u(t), h

(t)
j , j ∈ {1, . . . , k−1}

are independent copies of h(t), l and k are independent random integers dis-

tributed, respectively, according to λl and ρk. Finally, B = 1
2 log Q(y|0)

Q(y|1) where y

is independently distributed according to Q(y|0). The recursion is initiated with
u(0) = 0.

Let us finally consider the BP log-likelihood at site i. The same arguments

as above imply h
(t)
i

d→ h
(t)
∗ , where the distribution of h

(t)
∗ is defined by
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h
(t+1)
∗

d
= B +

l∑

b=1

u
(t)
b , (15.12)

with l a random integer distributed according to Λl. In particular, if we let P
(N,t)
b

be the expected (over a LDPCN (Λ, P ) ensemble) bit error rate for the decoding
rule (15.10), then:

lim
N→∞

P
(N,t)
b = P

{
h

(t)
∗ < 0

}
+

1

2
P
{
h

(t)
∗ = 0

}
. (15.13)

The suspicious reader will notice that this statement is non-trivial, because
f(x) = I(x < 0) + 1

2 I(x = 0) is not a continuous function. We shall prove it

below using the symmetry property of the distribution of h
(t)
i ,which allows to

write the bit error rate as the expectation of a continuous function (cf. Exercise
15.2).

15.2.2 Basic properties: 1. Symmetry
{sec:Symmetry}

A real random variable Z (or, equivalently, its distribution) is said to be sym-
metric if

E {f(−Z)} = E
{
e−2Zf(Z)

}
. (15.14)

for any function f such that one of the expectations exists. If Z has a density
p(z), then the above condition is equivalent to p(−z) = e−2zp(z).

Symmetric variables appear quite naturally in the description of BMS chan-
nels: {propo:channel_sym}

Proposition 15.1 Consider a BMS channel with transition probability Q(y|x).
Let Y be the channel output conditional to input 0 (this is a random variable with

distribution Q(y|0)), and let B ≡ 1
2 log Q(Y |0)

Q(Y |1) . Then B is a symmetric random

variable.
Conversely, if Z is a symmetric random variable, there exists a BMS channel

whose log-likelihood ratio, conditioned on the input being 0 is distributed as Z.

Proof: To avoid technicalities, we prove this claim when the output alphabet Y
is a discrete subset of R. Then, using channel symmetry in the form Q(y|0) =
Q(−y|1), we get

E {f(−B)} =
∑

y

Q(y|0) f
(

1

2
log

Q(y|1)
Q(y|0)

)
=
∑

y

Q(y|1) f
(

1

2
log

Q(y|0)
Q(y|1)

)
=

=
∑

y

Q(y|0) Q(y|1)
Q(y|0) f

(
1

2
log

Q(y|0)
Q(y|1)

)
= E

{
e−2Bf(B)

}
. (15.15)

We now prove the converse. Let Z be a symmetric random variable. We
build a channel with output alphabet R as follows: Under input 0, the output is
distributed as Z, and under input 1, it is distributed as −Z. In terms of densities
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Q(z|0) = p(z) , Q(z|1) = p(−z) . (15.16)

This is a BMS channel with the desired property. Of course this construction is
not unique. �

Example 15.2 Consider the binary erasure channel BEC(ǫ). If the channel
input is 0, then Y can take two values, either 0 (with probability 1 − ǫ) or ∗
(probability ǫ). The distribution of B, PB = (1− ǫ) δ∞+ ǫ δ0 , is symmetric. In
particular, this is true for the two extreme cases: ǫ = 0 (a noiseless channel)
and ǫ = 1 (a completely noisy channel: PB = δ0).

Example 15.3 Consider a binary symmetric channel BSC(p). The log-
likelihood B can take two values, either b0 = 1

2 log 1−p
p (input 0 and output 0)

or −b0 (input 0 and output 1). Its distribution, PB = (1 − p) δb0 + p δ−b0 is
symmetric.

Example 15.4 Finally consider the binary white noise additive Gaussian
channel BAWGN(σ2). If the channel input is 0, the output Y has probabil-
ity density

q(y) =
1√

2πσ2
exp

{
− (y − 1)2

2σ2

}
, (15.17)

i.e. it is a Gaussian of mean 1 and variance σ2. The output density upon
input 1 is determined by the channel symmetry (i.e. a Gaussian of mean −1
and variance σ2). The log-likelihood under output y is easily checked to be
b = y/σ2. Therefore B also has a symmetric Gaussian density, namely:

p(b) =

√
σ2

2π
exp

{
−σ

2

2

(
b− 1

σ2

)2
}
. (15.18)

The variables appearing in density evolution are symmetric as well. The ar-
gument is based on the symmetry of the channel log-likelihood, and the fact that
symmetry is preserved by the operations in BP evolution: If Z1 and Z2 are two in-
dependent symmetric random variables (not necessarily identically distributed),
it is straightforward to show that Z = Z1 +Z2, and Z ′ = atanh[tanhZ1 tanhZ2]⋆
are both symmetric.

Consider now communication of the all-zero codeword over a BMS channel
using a LDPC code, but let us first assume that the factor graph associated
with the code is a tree. We apply BP decoding with a symmetric random initial

condition like e.g. u
(0)
a→i = 0. The messages passed during the decoding procedure

can be regarded as random variables, because of the random received symbols
yi (which yield random log-likelihoods Bi). Furthermore, messages incoming at
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a given node are independent since they are functions of Bi’s (and of initial
conditions) on disjoint subtrees. From the above remarks, and looking at the BP

equations (15.8) it follows that the messages u
(t)
a→i, and h

(t)
i→a, as well as the overall

log-likelihoods h
(t)
i are symmetric random variables at all t ≥ 0. Therefore:

{propo:SymmetryBP}
Proposition 15.5 Consider BP decoding of an LDPC code under the above

assumptions. If Bi→a,t+1(F ) is a tree, then h
(t)
i→a is a symmetric random variable.

Analogously, if Bi,t+1(F ) is a tree, then H
(t)
i is a symmetric random variable.

{propo:SymmetryDE}

Proposition 15.6 The density evolution random variables {h(t), u(t),H
(t)
∗ } are

symmetric.

{ex:SymmetryBER}
Exercise 15.2 Using Proposition 15.5, and the fact that, for any finite t
Bi→a,t+1(F ) is a tree with high probability as N →∞, show that

lim
N→∞

P
(N,t)
b = lim

N→∞
E

{
1

N

N∑

i=1

f(h
(t)
i )

}
, (15.19)

where f(x) = 1/2 for x ≤ 0 and f(x) = e−2x/2 otherwise.

The symmetry property is a generalization of the Nishimori condition that we
encountered in spin glasses. As can be recognized from Eq. (12.7) this condition
is satisfied if and only if for each coupling constant J , βJ is a symmetric random
variable. While in spin glasses symmetry occurs only at very special values of
the temperature, it is a natural property in the decoding problem. Further it
does not hold uniquely for the BP log-likelihood, but also for the actual (MAP)
log-likelihood of a bit, as shown in the exercise below.
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{ex:MAPSymmetric}
Exercise 15.3 Consider the actual (MAP) log-likelihood for bit i (as opposed
to its BP approximation). This is defined as

hi =
1

2
log

P{xi = 0|y}
P{xi = 1|y} . (15.20)

If we condition on the all-zero codeword being transmitted, then the random
variable hi is symmetric. This can be shown as follows.

(a) Show that hi = 1
2 log Q(yi|0)

Q(yi|1)
+ gi where gi depends on

y1, . . . , yi−1, yi+1, . . . , yN , but not on yi. Suppose that a codeword
z 6= 0 has been transmitted, and let hi(z) be the corresponding log-

likelihood for bit xi. Show that hi(z)
d
= hi if zi = 0, and hi(z)

d
= −hi if

zi = 1.

(b) Consider the following process. A bit zi is chosen uniformly at random.
Then a codeword z is chosen uniformly at random conditioned on the
value of zi, and transmitted through a BMS channel, yielding an output
y. Finally, the log-likelihood hi(z) is computed. Hiding the intermediate
steps in a black box, this can be seen as a communication channel: zi →
hi(z). Show this is a BMS channel.

(c) Show that hi is a symmetric random variable.

15.2.3 Basic properties: 2. Physical degradation

It turns out that BP decoding gets better when the number of iterations t in-
creases (although it does not necessarily converge to the correct values). This is
an extremely useful result, which does not hold when BP is applied to a general
inference problems. A precise formulation of this statement is provided by the
notion of physical degradation. This notion is first defined in terms of BMS chan-
nels, and then extended to symmetric random variables. This allows to apply it
to the random variables encountered in BP decoding and density evolution.

Let us start with the case of BMS channels. Consider two such channels,
denoted as BMS(1) and BMS(2), denote by {Q1(y|x)}, {Q2(y|x)} their transition
matrices and by Y1, Y2 the corresponding output alphabets. We say that BMS(2)
is physically degraded with respect to BMS(1) if there exists a third channel
C with input alphabet Y1 and output Y2 such that BMS(2) can be regarded as
the concatenation of BMS(1) and C. By this we mean that passing a bit through
BMS(1) and then feeding the output to C is statistically equivalent to passing
the bit through BMS(2). If the transition matrix of C is {R(y2|y1)}, this can be
written in formulae as

Q2(y2|x) =
∑

y1∈Y1

R(y2|y1)Q1(y1|x) , (15.21)

where, to simplify the notation, we assumed Y1 to be discrete. A pictorial repre-
sentation of this relationship is provided by Fig. 15.2. A formal way of expressing



‘‘Info Phys Comp’’ Draft: November 9, 2007  --  ‘‘Info Phys Comp’’ Draft: November 9, 2007  --  

ANALYSIS: DENSITY EVOLUTION 333

BMS(2)

BMS(1) C

x y2

x y1 y2

Fig. 15.2. The channel BMS(2) (top) is said to be physically degraded with
respect to BMS(1) if it is equivalent to the concatenation of BMS(1) with a
second channel C.{fig:PhysDegr}

the same idea is that there exists a Markov chain X → Y1 → Y2.
Whenever BMS(2) is physically degraded with respect to BMS(1) we shall

write BMS(1) � BMS(2) (which is read as: BMS(1) is ‘less noisy than’ BMS(2)).
Physical degradation is a partial ordering: If BMS(1) � BMS(2) and BMS(2) � ⋆
BMS(3), then BMS(1) � BMS(3). Furthermore, if BMS(1) � BMS(2) and
BMS(2) � BMS(1), then BMS(1) = BMS(2). However, given two binary mem-
oryless symmetric channels, they are not necessarily ordered by physical degra-
dation (i.e. it can be that neither BMS(1) � BMS(2) nor BMS(2) � BMS(1)).

Here are a few examples of channel pairs ordered by physical degradation.

Example 15.7 Let ǫ1, ǫ2 ∈ [0, 1] with ǫ1 ≤ ǫ2. Then the corresponding erasure
channels are ordered by physical degradation, namely BEC(ǫ1) � BEC(ǫ2).

Consider in fact a channel C that has input and output alphabet Y =
{0, 1, ∗} (the symbol ∗ representing an erasure). On inputs 0, 1, it transmits
the input unchanged with probability 1 − x and erases it with probability x.
On input ∗ it outputs an erasure. If we concatenate this channel at the output
of BEC(ǫ1), we obtain a channel BEC(ǫ), with ǫ = 1 − (1 − x)(1 − ǫ) (the
probability that a bit is not erased is the product of the probability that it is
not erased by each of the component channels). The claim is thus proved by
taking x = (ǫ2− ǫ1)/(1− ǫ1) (without loss of generality we can assume ǫ1 < 1).

Exercise 15.4 If p1, p2 ∈ [0, 1/2] with p1 ≤ p2, then BSC(p1) � BSC(p2). This
can be proved by showing that BSC(p2) is equivalent to the concatenation of
BSC(p1) with a second binary symmetric channel BSC(x). What value of the
crossover probability x should one take?

Exercise 15.5 If σ2
1 , σ

2
2 ∈ [0,∞) with σ2

1 ≤ σ2
2 , show that BAWGN(σ2

1) �
BAWGN(σ2

2).
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If BMS(1) � BMS(2), most measures of the channel ‘reliability’ are ordered
accordingly. Let us discuss here two important such measures: (1) conditional
entropy and (2) bit error rate.

(1): Let Y1 and Y2 be the outputs of passing a uniformly random bit, respec-
tively, through channels BMS(1) and BMS(2). Then H(X|Y1) ≤ H(X|Y2) (the
uncertainty on the transmitted is larger for the ‘noisier’ channel). This follows
immediately from the fact that X → Y1 → Y2 is a Markov chain by applying the
data processing inequality, cf. Sec. ??.

(2) Assume the outputs of channels BMS(1), BMS(2) are y1 and y2. The
MAP decision rule for x knowing ya is x̂a(ya) = arg maxx P{X = x|Ya = ya},
with a = 1, 2. The corresponding bit error rate is P

(a)
b = P{x̂a(ya) 6= x}. Let

us show that P
(1)
b ≤ P

(2)
b . As BMS(1) � BMS(2), there is a channel C be the

channel such that BMS(1) concatenated with C is equivalent to BMS(2). Then

P
(2)
b can be regarded as the bit error rate for a non-MAP decision rule given y1.

The rule is: transmit y1 through C, denote by y2 the output, and then compute
x̂2(y2). This non-MAP decision rule cannot be better than the MAP rule applied
directly to y1.

Since symmetric random variables can be associated with BMS channels (see
Proposition 15.1), the notion of physical degradation of channels can be extended
to symmetric random variables. Let Z1, Z2 be two symmetric random variables
and BMS(1), BMS(2) the associated BMS channels, constructed as in the proof
of proposition 15.1. We say that Z2 is physically degraded with respect to Z1 (and
we write Z1 � Z2) if BMS(2) is physically degraded with respect to BMS(1). It
can be proved that this definition is in fact independent of the choice of BMS(1),
BMS(2) within the family of BMS channels associated to Z1, Z2.

The interesting result is that BP decoding behaves in the intuitively most
natural way with respect to physical degradation. As above, we fix a particular
LDPC code and look at BP message as random variables due to the randomness
in the received vector y.

{propo:PhysDegr}
Proposition 15.8 Consider communication over a BMS channel using an LDPC
code under the all-zero codeword assumption, and BP decoding with standard ini-

tial condition X = 0. If Bi,r(F ) is a tree, then h
(0)
i � h

(1)
i � · · · � h

(t−1)
i � h

(t)
i

for any t ≤ r− 1. Analogously, if Bi→a,r(F ) is a tree, then h
(0)
i→a � h

(1)
i→a � · · · �

h
(t−1)
i→a � h

(t)
i→a for any t ≤ r − 1.

We shall not prove this proposition in full generality here, but rather prove
its most useful consequence for our purpose, namely the fact that the bit error
rate is monotonously decreasing with t.

Proof: Under the all-zero codeword assumption, the bit error rate is P{x̂(t)
i =

1} = P{h(t)
i < 0} (for the sake of simplicity we neglect here the case h

(t)
i = 0).

Assume Bi,r(F ) to be a tree and fix t ≤ r − 1. Then we want to show that

P{h(t)
i < 0} ≤ P{h(t−1)

i < 0}. The BP log-likelihood after T iterations on the

original graph, h
(t)
i , is equal to the actual (MAP) log-likelihood for the reduced
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model defined on the tree Bi,t+1(F ). More precisely, let us call Ci,t the LDPC
code associated to the factor graph Bi,t+1(F ), and imagine the following process.
A uniformly random codeword in Ci,t is transmitted through the BMS channel
yielding output y

t
. Define the log-likelihood ratio for bit xi

ĥ
(t)
i =

1

2
log

{
P(xi = 0|y

t
)

P(xi = 1|y
t
)

}
, (15.22)

and denote the map estimate for xi and x̂i. It is not hard to show that h
(t)
i is

distributed as ĥ
(t)
i under the condition xi = 0. In particular, P{x̂i = 1|xi = 0} =

P{h(t)
i < 0}.
In the above example, instead of MAP decoding one can imagine to scratch all

the received symbols at distance t from i, and then performing MAP decoding on
the reduced information. Call x̂′i the resulting estimate. The vector of non-erased
symbols is y

t−1
. The corresponding log-likelihood is clearly the BP log-likelihood

after t−1 iterations. Therefore P{x̂′i = 1|xi = 0} = P{h(t−1)
i < 0}. By optimality

of the MAP decision rule P{x̂i 6= xi} ≤ P{x̂′i 6= xi}, which proves our claim. �

In the case of random LDPC codes Bi,r(F ) is a tree with high probability
for any fixed r, in the large block length limit. Therefore Proposition 15.8 has
an immediate consequence in the asymptotic setting.

{propo:PhysDegrDE}
Proposition 15.9 The density evolution random variables are ordered by phys-
ical degradation. Namely, h(0) � h(1) � · · · � h(t−1) � h(t) � · · · . Analogously

h
(0)
∗ � h

(1)
∗ � · · · � h

(t−1)
∗ � h

(t)
∗ � · · · . As a consequence, the asymptotic bit

error rate after a fixed number t of iterations P
(t)
b ≡ limN→∞ P

(N,t)
b is monoton-

ically decreasing with t.

Exercise 15.6 An alternative measure of the reliability of h
(t)
i is provided

by the conditional entropy. Assuming that a uniformly random codeword is

transmitted, this is given by Hi(t) = H(Xi|h(t)
i ).

(a) Prove that, if Bi,r(F ) is a tree, then Hi(t) is monotonically decreasing
with t for t ≤ r − 1.

(b) Assume that, under the all-zero codeword assumption h
(t)
i has density

pt(.). Show that Hi(t) =
∫

log(1 + e−2z) dpt(z) . (Hint: remember that
pt(.) is a symmetric distribution).

15.2.4 Numerical implementation and threshold

Density evolution is a useful tool because it can be simulated efficiently. One
can estimate numerically the distributions of the density evolution variables

{h(t), u(t)}, as well as {h(t)
∗ }. As we have seen this gives access to the prop-

erties of BP decoding in the large block-length limit, such as the bit error rate

P
(t)
b after t iterations.
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Fig. 15.3. Predicted performances of two LDPC ensembles on a BSC chan-
nel. The curves have been obtained through a numerical solution of den-
sity evolution, using population dynamics algorithm with population size
5 · 105. On the left, the (3, 6) regular ensemble. On the right, an opti-
mized irregular ensemble with the same design rate Rdes = 1/2. Its degree
distribution pair is Λ(x) = 0.4871x2 + 0.3128x3 + 0.0421x4 + 0.1580x10,
P (x) = 0.6797x7 + 0.3203x8. Dotted curves give the bit error rate obtained
after t = 1, 2, 3, 6, 11, 21, 51 iterations (from top to bottom), and bold con-
tinuous lines to the limit t → ∞. In the inset we plot the expected conditional
entropy EH(Xi|Y ). {fig:DE}

A possible approach52 consists in representing the distributions by samples
of some fixed size. This leads to the population dynamics algorithm discussed
in Section 14.6.2. In Fig. 15.3 we report the results of population dynamics
computations for two different LDPC ensembles used on a BSC channel with
crossover probability p. We consider two performance measures: the bit error

rate P
(t)
b and the conditional entropy H(t). As follows from proposition 15.9,

they are monotonically decreasing functions of the number of iterations. One

can also show that they are monotonically increasing functions of p. As P
(t)
b is

non-negative and decreasing in t, it has a finite limit PBP
b ≡ limt→∞ P

(t)
b , which

is itself non-decreasing in p (the limit curve PBP
b is estimated in Fig. 15.3 by

choosing t large enough so that P
(t)
b is independent of t within the numerical

accuracy). One defines the BP threshold as

pd ≡ sup
{
p ∈ [0, 1/2] : PBP

b (p) = 0
}
. (15.23)

Analogous definitions can be provided for other channel families such as the
erasure BEC(ǫ) or Gaussian BAWGN(σ2) channels. In general, the definition

52An alternative approach is as follows. Both maps (15.11) can be regarded as convolu-
tions of probability densities for an appropriate choice of the message variables. The first
one is immediate in terms of log-likelihoods. For the second map, one can use variables
r(t) = (signh(t), log | tanhh(t)|), s(t) = (signu(t), log | tanh y(t)|)). By using fast Fourier trans-
form to implement convolutions, this can result in a significant speedup of the calculation.
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{TableBPThresholds}
l k Rdes pd Shannon limit
3 4 1/4 0.1669(2) 0.2145018
3 5 2/5 0.1138(2) 0.1461024
3 6 1/2 0.0840(2) 0.1100279
4 6 1/3 0.1169(2) 0.1739524

Table 15.1 Belief propagation thresholds for the BSC channel, for a few regular
LDPC ensembles. The third column is the design rate 1− l/k.

(15.23) can be extended to any family of BMS channels BMS(p) indexed by a
real parameter p which orders the channels in terms of physical degradation.

Numerical simulation of density evolution allows to determine the BP thresh-
old pd with good accuracy. In Table 15.2.4 we report the results of a few such
results. Let us stress that the threshold pd has an important practical meaning.
For any p < pd one can achieve arbitrarily small bit error rate with high probabil-
ity by just picking one random code from the ensemble LDPCN (Λ, P ) with large
N and decoding it using BP with a large enough (but independent of N) number
of iterations. For p > pd the bit error rate is asymptotically lower bounded by
PBP

b (p) > 0 for any fixed number of iterations (in practice it turns out that doing
more iterations, say na, does not help). The value of pd is therefore a primary
measure of the performance of a code.

The design of good LDPC codes thus involves a choice of the degree distri-
bution pair (Λ, P ) with the largest BP threshold pd, given a certain design rate
Rdes = 1−P ′(1)/Λ′(1). For general BMS channels, this can be done numerically.
One computes the threshold noise level for a given degree distribution pair using
density evolution, and maximizes it by a local search procedure. As we shall see
in Section 15.3, the optimization can be carried out analytically for the BEC.
Figure 15.3 shows the example of an optimized irregular ensemble with rate 1/2,
including variable nodes of degrees 2, 3, 4 and 10 and check nodes of degree 7
and 8. Its threshold is pd ≈ 0.097 (while Shannon’s limit is 0.110).

Note that this ensemble has a finite fraction of variable nodes of degree 2. We
can use the analysis in Chapter 11 to compute its weight enumerator function.
It turns out that the parameter of A in Eq. (11.23) is positive. This optimized
ensemble has a large number of codewords with small weight. It is surprising,
and not very intuitive, that a code where there exist many codewords close to
the one which is sent has nevertheless a large BP threshold pd. It turns out that
this phenomenon is pretty general: the code ensembles that approach Shannon
capacity turn out to have bad distance properties, without any gap at short
distance in the weight enumerator function. The low-weight codewords are not
harmless. They degrade the code performances at moderate block-length N ,
below the threshold pd. Further they prevent the block error probability from
vanishing as N goes to infinity (in each codeword a fraction 1/N of the bits is
decoded incorrectly). This phenomenon is referred to as the error floor.



‘‘Info Phys Comp’’ Draft: November 9, 2007  --  ‘‘Info Phys Comp’’ Draft: November 9, 2007  --  

338 DECODING WITH BELIEF PROPAGATION

Exercise 15.7 while the BP threshold (15.23) was defined in terms of the
bit error rate, any other ‘reasonable’ measure of error on the decoding of a
single bit would give the same result. This can be shown as follows. Let Z be a
symmetric random variable and Pb ≡ P{Z < 0}+ 1

2P{Z = 0}. Show that, for
any ∆ > 0, P{Z < ∆} ≤ (2 + e2∆)Pb.

Consider then a sequence of symmetric random variables {Z(t)}, such that

the sequence of P
(t)
b → 0 defined as before goes to 0. Show that the distribution

of Z(t) becomes a Dirac delta at plus infinity as t→∞.

15.2.5 Local stability

Beside numerical computation, it is useful to derive simple analytical bounds on
the BP threshold. One of the most interesting is provided by a local stability
analysis. It applies to any BMS channel, and the result depends on the specific
channel only through its Bhattacharya parameter B ≡∑y

√
Q(y|0)Q(y|1). This

parameter B ≤ 1, that we already encountered in Chap.11, is a measure of the
channel noise level. It preserves the ordering by physical degradation (i.e. the
Bhattacharya parameters of two channels BMS(1) � BMS(2) satisfy B(1) ≤
B(2)), as can be checked by explicit computation.⋆

The local stability condition depends on the LDPC code through the fraction

of vertices with degree 2, Λ2 = λ′(0), and the value of ρ′(1) =
P

k Pkk(k−1)P
k Pkk . It is

expressed as:
{thm:LocalStability}

Theorem 15.10 Consider communication over a binary memoryless symmet-
ric channel with Bhattacharyia parameter B, using random elements from the
ensemble LDPCN (Λ, P ) and belief propagation decoding with an arbitrary sym-

metric initial condition X (by this we mean a couple (X(0),X(1))). Let P
(t,N)
b

be the bit error rate after t iterations, and P
(t)
b = limN→∞ P

(t,N)
b .

1. If λ′(0)ρ′(1)B < 1, then there exists ξ > 0 such that, if P
(t)
b < ξ for some

ξ, then P
(t)
b → 0 as t→∞.

2. If λ′(0)ρ′(1)B > 1, then there exists ξ > 0 such that P
(t)
b > ξ for any t.

Corollary 15.11 Define the local stability threshold ploc as

ploc = inf
{
p | λ′(0)ρ′(1)B(p) > 1

}
. (15.24)

The BP threshold pd for decoding a communication over an ordered channel
family BMS(p) using random codes from the LDPCN (Λ, P ) ensemble satisfies:

pd ≤ ploc .

We shall not give the full proof of the theorem, but will explain the stability
argument that underlies it. If the minimum variable node degree is 2 or larger, the

density evolution recursions (15.11) have as a fixed point h, u
d
= Z∞, where Z∞ is
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the random variable that takes value +∞ with probability 1. The BP threshold
pd is the largest value of the channel parameter such that {h(t), u(t)} converge
to this fixed point as t→∞. It is then quite natural to ask what happens if the
density evolution recursion is initiated with some random initial condition that
is ‘close enough’ to Z∞. To this end, we consider the initial condition

X =

{
0 with probability ǫ,
+∞ with probability 1− ǫ. (15.25)

This is nothing but the log-likelihood distribution for a bit revealed through a
binary erasure channel, with erasure probability ǫ.

Let us now apply the density evolution recursions (15.11) with initial condi-

tion u(0) d
= X. At the first step we have h(1) d

= B +
∑l−1

b=1Xb, where {Xb} are
iid copies of X. Therefore h(1) = +∞ unless X1 = · · · = Xl−1 = 0, in which case

h(1) d
= B. We have therefore

With probability λl : h(1) =

{
B with prob. ǫl−1,
+∞ with prob. 1− ǫl−1.

(15.26)

where B is distributed as the channel log-likelihood. Since we are interested in
the behavior ‘close’ to the fixed point Z∞, we linearize in ǫ, thus getting

h(1) =





B with prob. λ2ǫ+O(ǫ2),
+∞ with prob. 1− λ2ǫ+O(ǫ2),
· · · with prob. O(ǫ2).

(15.27)

The last line is absent here, but it will become necessary at next iterations. It
signals that h(1) could take some other value with a negligible probability.

Next consider the first iteration at check node side: u(1) = atanh{∏k−1
j=1 tanhh

(1)
j }.

At first order in ǫ, we have to consider only two cases. Either h
(1)
1 = · · · = h

(1)
k−1 =

+∞ (this happens with probability 1 − (k − 1)λ2ǫ + O(ǫ2)), or one of the log-
likelihoods is distributed like B (with probability (k−1)λ2ǫ+O(ǫ2)). Averaging
over the distribution of k, we get

u(1) =





B with prob. λ2ρ
′(1)ǫ+O(ǫ2),

+∞ with prob. 1− λ2ρ
′(1)ǫ+O(ǫ2),

· · · with prob. O(ǫ2).
(15.28)

Repeating the argument t times (and recalling that λ2 = λ′(0)), we get

h(t) =





B1 + · · ·+Bt with prob. (λ′(0)ρ′(1))tǫ+O(ǫ2),
+∞ with prob. 1− (λ′(0)ρ′(1))tǫ+O(ǫ2),
· · · with prob. O(ǫ2).

(15.29)

The bit error rate vanishes if and only P(t; ǫ) = P
{
h(t) ≤ 0

}
goes to 0 as t→∞.

The above calculation shows that
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P(t; ǫ) = ǫ(λ′(0)ρ′(1))tP
{
B1 + · · ·+ Bt ≤ 0

}
+ O(ǫ2) . (15.30)

The probability of B1 + · · · + Bt ≤ 0 is computed, to leading exponential
order, using the large deviations estimates of Section 4.2. In particular

P
{
B1 + · · ·+Bt ≤ 0

} .
=

{
inf
z≥0

E [e−zB ]

}t

. (15.31)

We leave to the reader the exerciseof showing that, sinceB is a symmetric random⋆
variable, E e−zB is minimized for z = 1, thus yielding

P
{
B1 + · · ·+Bt ≤ 0

} .
= Bt . (15.32)

As a consequence, the order ǫ coefficient In Eq. (15.30) behaves, to leading
exponential order, as (λ′(0)ρ′(1)B)t. Depending whether λ′(0)ρ′(1)B < 1 or
λ′(0)ρ′(1)B > 1 density evolution converges or not to the error-free fixed point
if initiated sufficiently close to it. The full proof relies on these ideas, but it
requires to control the terms of higher order in ǫ, and other initial conditions as
well.

15.3 BP decoding of the erasure channel
{sec:ErasureCodes}

In this Section we focus on the channel BEC(ǫ). The analysis can be greatly
simplified in this case: the BP decoding algorithm has a simple interpretation,
and the density evolution equations can be studied analytically. This allows to
construct capacity achieving ensembles.

15.3.1 BP, peeling and stopping sets

We consider BP decoding, with initial condition u
(0)
a→i = 0. As can be seen from

Eq. (15.7), the channel log likelihood Bi can take three values: +∞ (if a 0 has
been received at position i), −∞ (if a 1 has been received at position i), 0 (if an
erasure occurred at position i).

It follows from the update equations (15.8) that the messages exchanged
at any subsequent time take values in {−∞, 0,+∞} as well. Consider first the

equation at check nodes. If one of the incoming messages h
(t)
j→a is 0, then u

(t)
a→i =

0 as well. If on the other hand h
(t)
j→a = ±∞ for all incoming messages, then

u
(t)
a→i = ±∞ (the sign being the product of the incoming signs). Next consider

the update equation at variable nodes. If u
(t)
b→i = 0 for all the incoming messages,

and Bi = 0 as well, then of course h
(t+1)
i→a = 0. If on the other hand some of the

incoming messages, or the received value Bi take value ±∞, then h
(t+1)
i→a takes

the same value. Notice that there can never be contradicting messages (i.e. both
+∞ and −∞) incoming at a variable node.

Exercise 15.8 Show that, if contradicting messages were sent to the same
variable node, this would imply that the transmitted message was not a code-
word.
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The meaning of the three possible messages ±∞ and 0, and of the update

equations is very clear in this case. Each time the message h
(t)
i→a, or u

(t)
a→i is

+∞ (respectively, −∞), this means that the bit xi is 0 (respectively 1) in all
codewords that coincide with the channel output on the non-erased positions:

the value of xi is perfectly known. Vice-versa, if, h
(t)
i→a = 0 (or u

(t)
a→i = 0) the bit

xi is currently considered equally likely to be 0 or 1.
The algorithm is very simple: each message changes value at most one time,

either from 0 to +∞, or from 0 to −∞.

Exercise 15.9 To show this, consider the first time, t1 at which a message

h
(t)
i→a changes from +∞ to 0. Find out what has happened at time t1 − 1.

Therefore a fixed point is reached after a number of updates smaller or equal
to the number of edges NΛ′(1). There is also a clear stopping criterion: if in one

update round no progress is made (i.e. if h
(t)
i→a = h

(t+1)
i→a for all directed edges

i→ a) then no progress will be made at successive rounds.
An alternative decoding formulation of BP decoding is the so-called peeling

algorithm. The idea is to view decoding as a linear algebra problem. The code
is defined through a linear system over Z2, of the form Hx = 0. The output of
an erasure channel fixes a fraction of the bits in the vector x (the non-erased
ones). One is left with a linear system L over the remaining erased bits (not
necessarily an homogeneous one). Decoding amounts to using this new linear
system to determine the bits erased by the channel. If an equation in L contains
a single variable xi with non vanishing coefficient, it can be used to determine xi,
and replace it everywhere. One can then repeat this operation recursively until
either all the variables have been fixed (in which case decoding is successful), or
the residual linear systems includes only equations over two or more variables
(in which case the decoder gets stuck).

Exercise 15.10 An explicit characterization of the fixed points of the peeling
algorithm can be given in terms of stopping sets (or 2-cores). A stopping
set is a subset S of variable nodes in the factor graph such that each check has
a number of neighbors in S which is either zero, or at least 2.

(a) Let S be the subset of undetermined bits when the peeling algorithm
stops. Show that S is a stopping set.

(b) Show that the union of two stopping sets is a stopping set. Deduce that,
given a subset of variable nodes U , there exists a unique ‘largest’ stopping
set contained in U that contains any other stopping set in U .

(c) Let U be the set of erased bits. Show that S is the largest stopping set
contained in U .
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Fig. 15.4. Density evolution for the (3, 6) LDPC ensemble over the era-
sure channel BEC(ǫ), for two values of ǫ below and above the BP threshold
ǫd = 0.4294.{fig:DEBEC}

Exercise 15.11 Let us prove that the peeling algorithm is indeed equivalent
to BP decoding. As in the previous exercise, we denote by S the largest stopping
set contained in the erased set U .

(a) Prove that, for any edge (i, a) with i ∈ S, u
(t)
a→i = h

(t)
a→i = 0 at all times.

(b) Vice-versa, let S′ be the set of bits that are undetermined by BP after a
fixed point is reached. Show that S′ is a stopping set.

(c) Deduce that S′ = S (use the maximality property of S).

15.3.2 Density evolution

Consider BP decoding of an LDPCN (Λ, P ) code after communication through
a binary erasure channel. Under the assumption that the all-zero codeword has
been transmitted, messages will take values in {0,+∞}, and their distribution
can be parameterized by a single real number. We let zt denote the probability
that h(t) = 0, and by ẑt the probability that u(t) = 0. The density evolution
recursions (15.11) translate into the following recursion on {zt, ẑt}:

zt+1 = ǫλ(ẑt) , ẑt = 1− ρ(1− zt) . (15.33)

We can also eliminate ẑt from this recursion to get zt+1 = Fǫ(zt), where we
defined Fǫ(z) ≡ ǫλ(1− ρ(1− z)). The bit error rate after t iterations in the large

block-length limit is P
(t)
b = ǫΛ(ẑt).

In Fig. 15.4 we show as an illustration the recursion zt+1 = Fǫ(zt) for the (3, 6)
regular ensemble. The edge perspective degree distributions are λ(z) = z2 and
ρ(z) = z5, so that Fǫ(z) = ǫ[1− (1− z)2]5. Notice that Fǫ(z) is a monotonously
increasing function with Fǫ(0) = 0 (if the minimum variable node degree is at
least 2), and Fǫ(1) = ǫ < 1. As a consequence the sequence {zt} is decreasing
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Fig. 15.5. The bit error rate under belief propagation decoding for the (3, 6)
(left) and (2, 4) (right) ensembles. The prediction of density evolution (bold lines)
is compared to numerical simulations (averaged over 10 code/channel realizations
with block-length N = 104). For the (3, 6) ensemble ǫBP ≈ 0.4294 < ǫloc = ∞,
the transition is discontinuous. For the (2, 4) ensemble ǫBP = ǫloc = 1/4, the
transition is continuous. {fig:36vs24bec}

and converges at large t to the largest fixed point of Fǫ. In particular zt → 0
(and consequently PBP

b = 0) if and only if Fǫ(z) < z for all z ∈ (0, 1]. This yields
the following explicit characterization of the BP threshold:

ǫd = inf

{
z

λ(1− ρ(1− z)) : z ∈ (0, 1]

}
. (15.34)

It is instructive to compare this characterization with the local stability
threshold that in this case reads ǫloc = 1/λ′(0)ρ′(1). It is obvious that ǫd ≤ ǫloc,
since ǫloc = limz→0 z/λ(1− ρ(1− z)).

Two cases are possible, as illustrated in Fig. 15.5: either ǫd = ǫloc or ǫd < ǫloc.
Each one corresponds to a different behavior of the bit error rate. If ǫd = ǫloc,
then, generically53, PBP

b (ǫ) is a continuous function of ǫ at ǫd with PBP
b (ǫd +δ) =

Cδ + O(δ2) just above threshold. If on the other hand ǫd < ǫloc, then PBP
b (ǫ) is

discontinuous at ǫd with PBP
b (ǫd+δ) = PBP,∗

b +Cδ1/2+O(δ) just above threshold.

Exercise 15.12 Consider communication over the binary erasure channel us-
ing random elements from the regular (k, l) ensemble, in the limit k, l → ∞,
with a fixed rate R = 1 − l/k. Prove that the BP threshold ǫd tends to 0 in
this limit.

15.3.3 Ensemble optimization

The explicit characterization (15.34) of the BP threshold for the binary erasure
channel opens the way to the optimization of the code ensemble.

53Other behaviors are possible but they are not ‘robust’ with respect to a perturbation of
the degree sequences.
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A possible setup is the following. Fix an erasure probability ǫ ∈ (0, 1): this
is the estimated noise level on the channel that we are going to use. For a given
degree sequence pair (λ, ρ), let ǫd(λ, ρ) denote the corresponding BP threshold,

and R(λ, ρ) = 1 −
P

k ρk/kP
l λl/l be the design rate. Our objective is to maximize

the rate, while keeping ǫd(λ, ρ) ≤ ǫ. Let us assume that the check node degree
distribution ρ is given. Finding the optimal variable node degree distribution can
then be recast as a (infinite dimensional) linear programming problem:





maximize
∑

l λl/l ,

subject to
∑

l λl = 1
λl ≥ 0 ∀ l ,
ǫλ(1− ρ(1− z)) ≤ z ∀ z ∈ (0, 1] .

(15.35)

Notice that the constraint ǫλ(1−ρ(1−z)) ≤ z is conflicting with the require-
ment of maximizing

∑
l λl/l, since both are increasing functions in each of the

variables λl. As usual with linear programming, one can show that the objective
function is maximized when the constraints saturate i.e. ǫλ(1− ρ(1− z)) = z for
all z ∈ (0, 1]. This ‘saturation condition’ allows to derive λ, for a given ρ.

We shall do this in the simple case where the check nodes have uniform degree

k, i.e. ρ(z) = zk−1. The saturation condition implies λ(z) = 1
ǫ [1 − (1 − z) 1

k−1 ].
By Taylor expanding this expression we get, for l ≥ 2

λl =
(−1)l

ǫ

Γ
(

1
k−1 + 1

)

Γ(l) Γ
(

1
k−1 − l + 2

) . (15.36)

In particular λ2 = 1
(k−1)ǫ , λ3 = (k−2)

2(k−1)2ǫ , and λl ≃ λ∞l
−k/(k−1) as l → ∞.

Unhappily this degree sequence does not satisfy the normalization condition in
(15.35). In fact

∑
l λl = λ(1) = 1/ǫ. This problem can however be overcome

by truncating the series and letting k → ∞, as shown in the exercise below.
The final result is that a sequence of LDPC ensembles can be found that allows
for reliable communication under BP decoding, at a rate that asymptotically
achieved the channel capacity C(ǫ) = 1− ǫ. This is stated more formally below.

Theorem 15.12 Let ǫ ∈ (0, 1). Then there exists a sequence of degree distribu-
tion pairs {(λ(k), ρ(k))}k, with ρ(k)(x) = xk−1 such that ǫd(λ(k), ρ(k)) > ǫ and
R(λ(k), ρ(k))→ 1− ǫ.

The precise construction of the sequence (λ(k), ρ(k)) is outlined in the next
exercise. In Fig. 15.6 we show the BP error probability curves for this sequence
of ensembles.
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Fig. 15.6. Belief propagation bit error rate for LDPCN (Λ, P ) ensembles from
the capacity achieving sequence (λ(k), ρ(k)) defined in the main text. The se-
quence is constructed in such a way to achieve capacity at the noise level ǫ = 0.5
(the corresponding capacity is C(ǫ) = 1 − ǫ = 0.5). The 5 ensembles consid-
ered here have design rates Rdes = 0.42253, 0.48097, 0.49594, 0.49894, 0.49976
(respectively for k = 4, 6, 8, 10, 12).{fig:CapacityAchieving}

Exercise 15.13 Let ρ(k)(z) = zk−1, λ̂(k)(z) = 1
ǫ [1− (1− z)1/(k−1)], and zL =

∑L
l=2 λ̂

(k)
l . Define L(k, ǫ) as the smallest value of L such that zL ≥ 1. Finally,

set λ
(k)
l = λ̂

(k)
l /zL(k,ǫ) if l ≤ L(k, ǫ) and λ

(k)
l = 0 otherwise.

(a) Show that ǫλ(k)(1−ρ(k)(1−z)) < z for all z ∈ (0, 1], and, as a consequence
ǫd(λ(k), ρ(k)) > ǫ. [Hint: Use the fact that the coefficients λl in Eq. (15.36)

are non-negative and hence λ(k)(x) ≤ λ̂(k)(z)/zL(k,ǫ).]

(b) Show that, for any sequence l(k), λ̂
(k)
l(k) → 0 as k → ∞. Deduce that

L(k, ǫ)→∞ and zL(k,ǫ) → 1 as k →∞.

(b) Prove that limk→∞R(λ(k), ρ(k)) = limk→∞ 1− ǫzL(k,ǫ) = 1− ǫ.

15.4 Bethe free energy and optimal decoding
{sec:OptimalVSBP}

So far we have studied the performance of LDPCN (Λ, P ) ensembles under BP
message passing decoding, in the large block-length limit. Remarkably, sharp
asymptotic predictions can be obtained for optimal decoding as well, and they
involve the same mathematical objects, namely messages distributions. We shall
focus here on symbol MAP decoding for a channel family {BMS(p)} ordered
by physical degradation. Analogously to Chapter 11, we can define a threshold
pMAP depending on the LDPC ensemble, such that MAP decoding allows to
communicate reliably at all noise levels below pMAP. We shall now compute
pMAP using the Bethe free energy.
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Let us consider the entropy density hN = (1/N) EHN (X|Y ), averaged over
the code ensemble. Intuitively speaking, this quantity allows to estimate the
typical number of inputs with non-negligible probability for a given channel
output. If hN is bounded away from 0 as N → ∞, the typical channel output
is likely to correspond to an exponential number of inputs. If on the other hand
hN → 0, the correct input has to be searched among a sub-exponential number
of candidates. A precise relation with the error probability is provided by Fano’s
inequality:

Proposition 15.13 Let PN
b the symbol error probability for communication us-

ing a code of block-length N . Then

H(PN
b ) ≥ HN (X|Y )

N
.

In particular, if the entropy density HN (X|Y )/N is bounded away from 0, so is
PN

b .

Although this gives only a bound, it suggests to identify the MAP threshold as
the largest noise level such that hN → 0 as N →∞:

pMAP ≡ sup
{
p : lim

N→∞
hN = 0

}
. (15.37)

The conditional entropy HN (X|Y ) is directly related to the free entropy of
the model defined in (15.1). More precisely we have

HN (X|Y ) = Ey log2 Z(y)−N
∑

y

Q(y|0) log2Q(y|0) , (15.38)

where Ey denotes expectation with respect to the output vector y. In order to

derive this expression, we first use the entropy chain rule to write (dropping the
subscript N)

H(X|Y ) = H(Y |X) +H(X)−H(Y ) . (15.39)

Since the input message is uniform over the code H(X) = NR. Further, since the
channel is memoryless and symmetric H(Y |X) =

∑
iH(Yi|Xi) = NH(Yi|Xi =

0) = −N∑y Q(y|0) log2Q(y|0). Finally, rewriting the distribution (15.1) as

p(x|y) =
|C|
Z(y)

p(y, x) , (15.40)

we can identify (by Bayes theorem) Z(y) = |C| p(y). The expression (15.38)
follows by putting together these contributions.
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The free-entropy Ey log2 Z(y) is the non-trivial term in Eq. (15.38). For LDPC
codes, in the large N limit, it is natural to compute it using the Bethe approxi-
mation of Section 14.2.4. Suppose u = {ua→i}, h = {hi→a} is a set of messages
which solves the BP equations

hi→a = Bi +
∑

b∈∂i\a

ub→i , ua→i = atanh




∏

j∈∂a\i

tanhhj→a



 . (15.41)

Then the corresponding Bethe free-entropy follows from Eq. (14.28):

Φ(u, h) = −
∑

(ia)∈E

log2

[
∑

xi

Pua→i
(xi)Phi→a

(xi)

]
(15.42)

+

N∑

i=1

log2

[
∑

xi

Q(yi|xi)
∏

a∈∂i

Pua→i
(xi)

]
+

M∑

a=1

log2



∑

xa

Ia(x)
∏

i∈∂a

Phi→a
(xi)


 .

where we denote by Pu(x) the distribution of a bit x whose log likelihood ratio
is u, given by: Pu(0) = 1/(1 + e−2u), Pu(1) = e−2u/(1 + e−2u).

We are interested in the expectation of this quantity with respect to the code
and channel realization, in the N → ∞ limit. We assume that messages are

asymptotically identically distributed ua→i
d
= u, hi→a

d
= u, and that messages

incoming in the same node along distinct edges are asymptotically independent.
Under these hypotheses we get:

lim
N→∞

1

N
Ey Φ(m̂, h) = φ−

∑

y

Q(y|0) log2Q(y|0) , (15.43)

where

φ = −Λ′(1) Eu,h log2

[
∑

x

Pu(x)Ph(x)

]
+ ElEyE{ul} log2

[
∑

x

Q(y|x)
Q(y, 0)

l∏

i=1

Pul
(x)

]
−

+
Λ′(1)

P ′(1)
EkE{hi} log2

[
∑

x1...xk

Ia(x)

k∏

i=1

Phi
(xi)

]
. (15.44)

Here k and l are distributed according to Pk and Λl respectively, and u1, u2, . . .
(respectively h1, h2, . . . ) are i.i.d.’s and distributed as u (respectively as h).

If the Bethe free energy is correct, φ should give the conditional entropy hN .
It turns out that this guess can be turned into a rigorous inequality:

Theorem 15.14 If u, h are symmetric random variables satisfying the distri-

butional identity u
d
= atanh

{∏k−1
i=1 tanhhi

}
, then

lim
N→∞

hN ≥ φu,h . (15.45)
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{TableMAPThresholds}
l k Rdes pd pMAP Shannon limit
3 4 1/4 0.1669(2) 0.2101(1) 0.2145018
3 5 2/5 0.1138(2) 0.1384(1) 0.1461024
3 6 1/2 0.0840(2) 0.1010(2) 0.1100279
4 6 1/3 0.1169(2) 0.1726(1) 0.1739524

Table 15.2 MAP thresholds for the BSC channel are compared to the BP de-
coding thresholds, for a few regular LDPC ensembles

It is natural to conjecture that the correct limit is obtained by optimizing
the above lower bound, i.e.

lim
N→∞

hN = sup
u,h

φu,h , (15.46)

where, once again the sup is taken over the couples of symmetric random vari-

ables u, h satisfying u
d
= atanh

{∏k−1
i=1 tanhhi

}
and h

d
= B +

∑l−1
a=1 ua.

This conjecture has indeed been proved in the case of communication over
the binary erasure channel for a large class of LDPC ensembles (including, for
instance, regular ones).

The above expression is interesting because it establishes a bridge between
BP and MAP decoding. For instance, it is immediate to show that it implies
pBP ≤ pMAP:

Exercise 15.14 (a) Recall that u, h = +∞ constitute a density evolution
fixed point for any noise level. Show that φh,u = 0 on such a fixed point.

(b) Use ordering by physical degradation to show that, if any other fixed
point exists, then density evolution converges to it.

(c) Deduce that pBP ≤ pMAP.

Evaluating the expression (15.46) implies an a priori infinite dimensional
optimization problem. In practice good approximations can be obtained through
the following procedure:

1. Initialize h, u to a couple of symmetric random variables h(0), u(0).

2. Implement numerically the density evolution recursion (15.11) and iterate
it until an approximate fixed point is attained.

3. Evaluate the functional φu,h on such a fixed point, after enforcing u
d
=

atanh
{∏k−1

i=1 tanhhi

}
exactly.

The above procedure can be repeated for several different initializations u(0), h(0).
The largest of the corresponding values of φu,v is then picked as an estimate for
limN→∞ hN .

While this procedure is not guaranteed to exhaust all the possible density
evolution fixed points, it allows to compute a sequence of lower bounds to the
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conditional entropy density. Further, in analogy with exactly solvable cases (such
as the binary erasure channel) one expects a small finite number of density
evolution fixed points. In particular, for regular ensembles and p > pBP, a unique
(stable) fixed point is expected to exist apart from the no-error one u, h = +∞.
In Table 15.4 we present the corresponding MAP thresholds for a few regular
ensembles.

Notes

Belief propagation was first applied to the decoding problem by Robert Gallager
in his Ph. D. thesis (Gallager, 1963), and denoted there as the ‘sum-product’
algorithm. Several low-complexity alternative message-passing approaches were
introduced in the same work, along with the basic ideas of their analysis.

The analysis of iterative decoding of irregular ensembles over the erasure
channel was pioneered by Luby and co-workers in (Luby, Mitzenmacher, Shokrol-
lahi, Spielman and Stemann, 1997; Luby, Mitzenmacher, Shokrollahi and Spiel-
man, 1998; Luby, Mitzenmacher, Shokrollahi and Spielman, 2001a; Luby, Mitzen-
macher, Shokrollahi and Spielman, 2001b). These papers also presented the first
examples of capacity achieving sequences.

Density evolution for general binary memoryless symmetric channels was in-
troduced in (Richardson and Urbanke, 2001b). The whole subject is surveyed in
the review (Richardson and Urbanke, 2001a) as well as in the upcoming book
(Richardson and Urbanke, 2006). One important property we left out is ‘con-
centration:’ the error probability under message passing decoding is, for most of
the codes, close to its ensemble average, that is predicted by density evolution.

The design of capacity approaching LDPC ensembles for general BMS chan-
nels is discussed in (Chung, G. David Forney, Richardson and Urbanke, 2001;
Richardson, Shokrollahi and Urbanke, 2001).

Since message passing allows for efficient decoding, one may wonder whether
encoding (whose complexity is, a priori, O(N2)) might become the bottleneck.
Efficient encoding schemes are discussed in (Richardson and Urbanke, 2001c).

Tight bounds for the threshold under MAP decoding were first proved in
(Montanari, 2005), and subsequently generalized in (Macris, 2005). An alterna-
tive proof technique uses the so-called area theorem and the related ‘Maxwell
construction’ (Méasson, Montanari, Richardson and Urbanke, 2005b). Tightness
of these bounds for the erasure channel was proved in (Méasson, Montanari and
Urbanke, 2005a).

The analysis we describe in this Chapter is valid in the large block-length
limit N → ∞. In practical applications a large block-length translates into a
corresponding communication delay. This has motivated a number of works that
aims at estimating and optimizing LDPC codes at moderate block-lengths. Some
pointers to this large literature can be found in (Di, Proietti, Richardson, Telatar
and Urbanke, 2002; Amraoui, Montanari, Richardson and Urbanke, 2004; Am-
raoui, Montanari and Urbanke, 2007; Wang, Kulkarni and Poor, 2006; Kötter
and Vontobel, 2003; Stepanov, Chernyak, Chertkov and Vasic, 2005).
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THE ASSIGNMENT PROBLEM

Consider N ‘agents’ and N ‘jobs’, and suppose you are given the N ×N matrix
{Eij}, where Eij is the cost for having job j executed by agent i. Finding an
assignment of agents to jobs that minimizes the cost is one of the most classical
combinatorial optimization problems.

The minimum cost (also referred to as ‘maximum weight’) assignment prob-
lem is important both because of its many applications and because it can be
solved in polynomial time. This motivated a number theoretical developments,
both from the algorithms and the probability viewpoints.

Here we will study it as an application domain for message passing techniques.
The assignment problem is in fact a success story of this approach. Given a
generic instance of the assignment problem, the associated factor graph is not
locally tree like. Nevertheless, the Min-Sum algorithm can be proved to converge
to an optimal solution in polynomial time. Belief propagation (Sum-Product
algorithm) can also be used for computing weighted sums over assignments,
although much weaker guarantees exist in this case. A significant amount of
work has been devoted to the study of random instances, mostly in the case
where the costs Eij are iid random variables. Typical properties (such as the
cost of the optimal assignment) can be computed heuristically within the replica
symmetric cavity method. It turns out that these calculations can be made fully
rigorous.

In spite of this success of the replica symmetric cavity method, one must be
warned that apparently harmless modifications of the problem can spoil it. One
instance is the generalization of minimal cost assignment to multi-indices (say
matching agents with jobs and houses). Even random instances of this problem
are not described by the replica symmetric scenario. The more sophisticated
replica symmetry breaking ideas, described in the next chapters, are required.

After defining the problem in Sec. 16.1, in Sec. 16.2 we compute the asymp-
totic optimal cost for random instances using the cavity method. In order to do
this we write the Min-Sum equations. In Sec. 16.3 we prove convergence of the
Min-Sum iteration to the optimal assignment. Section 16.4 contains a combinato-
rial proof that confirm the cavity result and provides sharper estimates. In sect.
16.5 we discuss a generalization of the assignment problem to a multi-assignment
case.

16.1 Assignment and random assignment ensembles
{se:assign_def}

An instance of the assignment problem is determined by a cost matrix {Eij},
indexed by i ∈ A (the ‘agents’ set) and j ∈ B (the ‘jobs’ set), with |A| =

350
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Fig. 16.1. Left: graphical representation of a small assignment problem with 3
agents and 3 jobs. Each edge carries a cost (not shown), the problem is to find
a perfect matching, i.e. a set of 3 edges which are vertex disjoint, of minimal
cost. Right: The factor graph corresponding to the representation (16.2) of this
problem. Dashed squares are the function nodes associate with edge weights.

{fig:assignment_def}

|B| = N . We shall often identify A and B with the set {1, . . . , N} and use
indifferently the terms cost or energy in the following. An assignment is a one-
to-one mapping of agents to jobs, that is a permutation π of {1, . . . , N}. The cost

of an assignment π is E(π) =
∑N

i=1Eiπ(i). The optimization problem consists in
finding a permutation that minimizes E(π).

We shall often use a graphical description of the problem as a weighted com-
plete bipartite graph over vertices sets A and B. Each of the N2 edges (i, j)
carries a weight Eij . The problem is to find a perfect matching in this graph (a
subset M of edges such that every vertex is adjacent to exactly one edge in M),
of minimal weight (see Fig. 16.1).

In the following we shall be interested in two types of questions. The first
is to understand whether a minimum cost assignment for a given instance can
be found efficiently through a message passing strategy. The second will be to
analyze the typical properties of ensembles of random instances where the N2

costs Eij are iid random variables drawn from a distribution with density ρ(E).
One particularly convenient choice is that of exponentially distributed variables
with probability density function ρ(E) = e−E

I(E ≥ 0). Although the cavity
method allows to tackle more general distribution, assuming exponential costs
greatly simplifies the combinatorial approach.
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16.2 Message passing and its probabilistic analysis
{se:cavity_assign}

16.2.1 Statistical physics formulation and counting

Following the general statistical physics approach, it is of interest to relax the
optimization problem by introducing a finite inverse temperature β. The corre-
sponding computational problem associates a weight to each possible matching,
as follows.

Consider the complete bipartite graph over vertices sets A (agents), B (jobs).
To any edge (i, j), i ∈ A, j ∈ B, we associate a variable which is an ‘occupation
number’ nij ∈ {0, 1} encoding membership of edge (ij) in the matching: nij = 1
means that job j is done by agent i. We impose that the subset of edges (i, j)
with nij = 1 be a matching of the complete bipartite graph:

∑

j∈B

nij ≤ 1 ∀i ∈ A ,
∑

i∈A

nij ≤ 1 ∀j ∈ B . (16.1){eq:matching_constraints}

Let us denote by n = {nij : i ∈ Aj ∈ B} the matrix of occupation numbers,
and define the probability distribution

p(n) =
1

Z

∏

i∈A

I



∑

j∈B

nij ≤ 1



∏

j∈B

I

(
∑

i∈A

nij ≤ 1

)
∏

(ij)

e−βnij(Eij−2γ) .(16.2)

The support of p(n) corresponds to matchings, thanks to the ‘hard constraints’

enforcing conditions (16.1). The factor exp
(
2βγ

∑
(ij) nij

)
can be interpreted as

a ‘soft constraint’: as γ →∞, the distribution concentrates on perfect matchings
(the factor 2 is introduced here for future convenience). On the other hand,
in the limit β → ∞, the distribution (16.2) concentrates on the minimal cost
assignments. The optimization problem is thus recovered in the double limit
γ →∞ followed by β →∞.

There is a large degree of arbitrariness in the choice of which constraint should
be ‘softened’ and how. The present one makes the whole problem most similar
to the general class of graphical models that we study in this book. The factor
graph obtained from (16.2) has the following structure (see Fig.16.1). It contains
N2 variable nodes, each associated with an edge (i, j) in the complete bipartite
graph over vertices sets A, B. It also includes N2 function nodes of degree one,
one for each variable node, and 2N function nodes of degree N , associated with
the vertices in A and B. The variable node (i, j), i ∈ A, j ∈ B is connected to the
two function nodes corresponding to i and j, as well as to the one corresponding
to edge (i, j). The first two enforce the hard constraints (16.1); the third one
corresponds to the weight exp [−β(Eij − 2γ)nij ].

In the case of random instances, we will be particularly interested in the
thermodynamic limit N → ∞. In order for this limit to be non-trivial the dis-
tribution (16.2) must be dominated neither by energy nor by entropy. Consider
the case of iid costs Eij ≥ 0 with exponential density ρ(E) = e−E . One can then
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argue that low energy assignments have, with high probability, energy of order
O(1) as N → ∞. The hand-waving reason is that for a given agent i ∈ A, and
any fixed k, the k lowest costs among the ones of jobs that can be assigned to
him (namely among {Eij : j ∈ B}) are of order O(1/N). The exercise below
sketches a more formal proof. Since the entropy54 is linear in N , we need to
re-scale the costs for the two contributions to be of the same order.

To summarize, throughout our cavity analysis, we shall assume the edge cost
to be drawn according to the ‘rescaled pdf’ ρ̂(E) = 1

N exp(−E/N). This choice
ensures that the occupied edges in the best assignment have finite cost in the
large N limit.

Exercise 16.1 Assume the energies Eij to be iid exponential variables of mean
η. Consider the ‘greedy mapping’ obtained by mapping each vertex i ∈ A
to that j = π1(i) ∈ B that minimizes Eij , and call E1 =

∑
iEi,π1(i) the

corresponding energy.

(a) Show that EE1 = η.

(b) Of course π1 is not necessary injective and therefore not a valid matching.
Let C be the number of collisions (i.e. the number of vertices j ∈ B such
that there exist several i with π1(i) = j). Show that EC = N(1− 2/e) +
O(1), and that C is tightly concentrated around its expectation.

(c) Consider the following ‘fix’. Construct π1 in the greedy fashion described
above, and let π2(i) = π1(i) whenever i is the unique vertex mapped to
π1(i). For each collision vertex j ∈ B, and each i ∈ A such that π1(i) = j,
let j′ be the vertex in B such that Eij′ takes the smallest value among
the vertices still un-matched. What is the expectation of the resulting
energy E2 =

∑
iEi,π2(i)? What is the number of residual collisions?

(d) How can this construction be continued?

16.2.2 The belief propagation equations

The BP equations for this problem are a particular instantiation of the general
ones in (14.14,14.15). We will generically denote by i (respectively, j) a vertex
in the set A (respectively, in B), in the complete bipartite graph, cf. Fig. 16.1

To be definite, let us write explicitly the equation for updating messages
flowing from right to left (from vertices j ∈ B to i ∈ A) in the graph of Fig. 16.1:

νij→i(nij) ∼= ν̂j→ij(nij) e
−βnij(Eij−2γ) , (16.3)

ν̂j→ij(nij) ∼=
∑

{nkj}

I

[
nij +

∑

k∈A\i

nkj ≤ 1
] ∏

k∈A\i

νkj→j(nkj) . (16.4)

The equations for messages moving from A to B, νij→j and ν̂i→ij , are obtained
by inverting the role of the two sets.

54The total number of assignments is N ! which would imply an entropy of order N logN .
However, if we limit the choices of π(i) to those j ∈ B such that the cost Eij is comparable
with the optimal one, the entropy becomes O(N).
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Since the variables nij take values in {0, 1}, messages can be parameterized
by a single real number, as usual. In the present case it is convenient to introduce
rescaled log-likelihood ratios as follows:

xL
j→i ≡ γ +

1

β
log

{
ν̂j→ij(1)

ν̂j→ij(0)

}
, xR

i→j ≡ γ +
1

β
log

{
ν̂i→ij(1)

ν̂i→ij(0)

}
, (16.5){eq:BP_assignmentLLRDef}

Variable-to-function node messages do not enter this definition, but they are
easily expressed in terms of the quantities xL

i→j , x
R
i→j using Eq. (16.3). The BP

equations (16.3), (16.4) can be written as:

xL
j→i = − 1

β
log
{
e−βγ +

∑

k∈A\i

e−βEkj+βxR
k→j

}
,

xR
i→j = − 1

β
log
{
e−βγ +

∑

k∈B\j

e−βEik+βxL
k→i

}
.

(16.6){eq:BP_assignmentLLR}

Notice that the factor graph representation in Fig. 16.1, right frame, was help-
ful in writing down these equations. However, any reference to the factor graph
disappeared in the latter, simplified form. This can be regarded as a a mes-
sage passing procedure operating on the original complete bipartite graph, cf.
Fig. 16.1, left frame.

{ex:marginals_assign}
Exercise 16.2 [Marginals] Consider the expectation value of nij with respect
to the measure (16.2). Show that its BP estimate is tij/(1 + tij), where tij ≡
eβ(xL

j→i+xR
i→j−Eij)

The Bethe free-entropy F(ν) can be computed using the general formu-
lae (14.27), (14.28). Writing it in terms of the log-likelihood ratio messages
{xR

i→j , x
L
j→i} is straightforward but tedious. The resulting BP estimate for the

free-entropy logZ is:

F(x) = 2Nβγ −
∑

i∈A,j∈B

log
[
1 + e−β(Eij−xR

i→j−xL
j→i)

]
+

+
∑

i∈A

log


e−βγ +

∑

j

e−β(Eij−xL
j→i)


+

∑

j∈B

log

[
e−βγ +

∑

i

e−β(Eij−xR
i→j)

]
.

(16.7)eq:free_entropy_assignment}

The exercise below provides a few guidelines for this computation.
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Exercise 16.3 Consider the Bethe free-entropy (14.27) for the model (16.2).

(a) Show that it contains three types of function node terms, one type of
variable node term, and three types of mixed (edge) terms.

(b) Show that the function node term associated with the weight
e−βnij(Eij−2γ) exactly cancels with the mixed term involving this same
factor node and the variable node (i, j).

(c) Write explicitly each of the remaining terms, express it in terms of the
messages messages {xR

i→j , x
L
j→i}, and derive the result (16.7).

[Hint: The calculation can be simplified by recalling that the expression
(14.27) does not change value if each message is independently rescaled]

16.2.3 Zero temperature: The Min-Sum algorithm {sec:MinSumAssignment}
The BP equations (16.6) simplify in the double limit γ →∞ followed by β →∞
which is relevant for the minimum cost assignment problem. Assuming that
{xR

i→j , x
L
j→i} remain finite in this limit, we get:

xL
j→i = min

k∈A\i

(
Ekj − xR

k→j

)
, xR

i→j = min
k∈B\j

(
Eik − xL

k→i

)
. (16.8) {eq:BP_assignment_T0}

Alternatively, the same equations can be obtained directly as the Min-Sum up-
date rules. This derivation is outlined in the exercise below.

Exercise 16.4 Consider the Min-Sum equations (14.39), (14.40), applied to
the graphical model (16.2).

(a) Show that the message arriving on variable node (ij) from the adjacent
degree-1 factor node is equal to nij(Eij − 2γ).

(b) Write the update equations for the other messages and eliminate the
variable-to-function node messages Jij→i(nij), Jij→j(nij), in favor of the
function-to-variable ones. Show that the resulting equations for function-
to-variable messages read (cf. Fig. 16.1):

Ĵi→ij(1) =
∑

k∈B\j

Ĵk→ik(0) ,

Ĵi→ij(0) =
∑

k∈B\j

Ĵk→ik(0) + min {0;Tij}

Tij = min
l∈B\j

{
Ĵl→il(1)− Ĵl→il(0) + Eil − 2γ

}
.

(c) Define xR
i→j = Ĵi→ij(0) − Ĵi→ij(1) + γ, and analogously xL

i→j =

Ĵj→ij(0)− Ĵj→ij(1) + γ. Write the above Min-Sum equations in terms of
{xR

i→j , x
L
j→i}.

(d) Show that, in the large γ limit, the update equations for the x-messages
coincide with Eq. (16.8).
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The Bethe estimate for the ground state energy (the cost of the optimal
assignment) can be obtained by taking the γ, β → ∞ limit of the free energy
−F(x)/β, whereby F(x) is the Bethe approximation for the log-partition function
logZ, cf. Eq. (16.7). Alternatively, we can use the fact that Min-Sum estimates
the max-marginals of the graphical model (16.2). More precisely, for each pair
(i, j), i ∈ A, j ∈ B, we define

Jij(nij) ≡ nij(Eij − 2γ) + Ĵi→ij(nij) + Ĵj→ij(nij) , (16.9)

n∗ij ≡ arg min
n∈{0,1}

Jij(n) . (16.10)

The interpretation of these quantities is that e−Jij(n) is the message passing
estimate for the max-marginal nij with respect to the distribution (16.2). Let us
neglect the case of multiple optimal assignment (in particular, the probability of
such an event vanishes for the random ensembles we shall consider). Under the
assumption that message passing estimates are accurate, nij necessarily take the
value n∗ij in the optimal assignment, see Section 14.3. The resulting ground state
energy estimate is Egs =

∑
ij n
∗
ijEij .

In the limit γ →∞, Eq. (16.10) reduces to a simple ‘inclusion principle’:
an edge ij is present in the optimal assignment (i.e. n∗ij = 1) if and only if

Eij ≤ xR
i→j + xL

j→i. We invite the reader to compare this fact to the result of
Exercise 16.2.

16.2.4 Distributional fixed point and ζ(2)
{sec:AssignmentDE}

Let us now consider random instances of the assignment problem. For the sake of
simplicity we assume that the edge costs Eij are iid exponential random variables
with mean N . We want to use the general density evolution technique of Section
14.6.2, to analyze Min-Sum message passing, cf. Eqs. (16.8).

The skeptical reader might notice that the assignment problem does not fit
the general framework for density evolution, since the associated graph (the com-
plete bipartite graph) is not locally tree like. Density evolution can nevertheless
justified, through the following limiting procedure. Remove from the factor graph
all the variables (ij), i ∈ A, j ∈ B such that Eij > Emax, and the edges attached
to them. Remembering that typical edge costs are of order Θ(N), it is easy to
check that the resulting graph is a sparse factor graph and therefore density⋆
evolution applies. On the other hand, one can prove that the error made in in-
troducing a finite cutoff Emax is bounded uniformly in N by a quantity that
vanishes as Emax → ∞, which justifies the use of density evolution. In the fol-
lowing we shall take the shortcut of writing density evolution equations for finite
N without any cut-off and formally take the N →∞ limit on them.

Since the Min-Sum equations (16.8) involve minima, it is convenient to in-

troduce the distribution function AN,t(x) = P{x(t)
i→j ≥ x}, where t indicates

the iteration number, and x(t) refer to right moving messages (going from A to
B) when t is even, and to left moving messages when t is odd. Then, density



‘‘Info Phys Comp’’ Draft: November 9, 2007  --  ‘‘Info Phys Comp’’ Draft: November 9, 2007  --  

MESSAGE PASSING AND ITS PROBABILISTIC ANALYSIS 357

evolution reads AN,t+1(x) = [1 − E AN,t(E − x)]N−1, where E denotes expec-
tation with respect to E (that is an exponential random variable of mean N).
Within the cavity method, one seeks fixed points of this recursion. These are the
distributions that solve

AN (x) = [1− E AN (E − x)]N−1 . (16.11) {eq:FixPointFiniteN}

We want now to take the N → ∞ limit. Assuming the fixed point AN (x) has a
(weak) limit A(x) we have

E AN (E − x) =
1

N

∫ ∞

−x

AN (y) e−(x+y)/Ndy =
1

N

∫ ∞

−x

A(y) dy + o(1/N) .(16.12)

It follows from Eq. (16.11) that the limit message distribution must satisfy the
equation

A(x) = exp

{
−
∫ ∞

−x

A(y) dy

}
. (16.13) {eq:FixPointDEMatching}

This equation has the unique solution A(x) = 1/(1 + ex) corresponding to the
density a(x) = A′(x) = 1/[4 cosh2(x)]. It can be shown that density evolution
does indeed converge to this fixed point.

Within the hypothesis of replica symmetry, cf. Sec. 14.6.3, we can use the
above fixed point distribution to compute the asymptotic ground state energy
(minimum cost). The most direct method is to use the inclusion principle: an
edge (ij) is present in the optimal assignment if and only if Eij < xR

i→j + xL
j→i.

Therefore the conditional probability for (ij) to be in the optimal assignment,
given its energy Eij = E is given by:

q(E) =

∫
I(x1 + x2 ≥ E) a(x1)a(x2) dx1dx2 =

1 + (E − 1)eE

(eE − 1)2
(16.14) {eq:rs_assignment2}

The expected cost E∗ of the optimal assignment is equal to the number of edges,
N2, times the expectation of the edge cost, times the probability that the edge
is in the optimal assignment. Asymptotically we have E∗ = N2

E{Eq(E)}:

E∗ = N2

∫ ∞

0

E N−1e−E/N q(E) dE + o(N)

= N

∫ ∞

0

E
1 + (E − 1)eE

(eE − 1)2
dE + o(N) = Nζ(2) + o(N) ,

where

ζ(2) ≡
∞∑

n=1

1

n2
=
π2

6
≈ 1.64493406684823 . (16.15)

Recall that this result holds when the edge weights are exponential random
variables of mean N . If we reconsider the case of exponential random variables
of mean 1, we get E∗ = ζ(2) + o(1).
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The reader can verify that the above derivation does not depend on the
full distribution of the edges costs, but only on its behavior near E = 0. More
precisely, for any edge costs distribution with a density ρ(E) such that ρ(0) = 1,
the cost of the optimal assignment converges to ζ(2).

Exercise 16.5 Suppose that the pdf of the costs ρ(E) has support R+, and
that ρ(E) ≃ Er, for some r > 0, when E ↓ 0.

(a) Show that, in order to have an optimal weight of order N , the edge costs

must be rescaled by letting Eij = Nr/r+1Ẽij where Ẽij have density ρ
(i.e. typical costs must be of order Nr/r+1).

(b) Show that, within the replica symmetric cavity method, the asymptotic
(N →∞) message distribution satisfies the following distributional equa-
tion

A(x) = exp

{
−
∫ ∞

−x

(x+ y)r A(y) dy

}
(16.16){eq:Gdef_rqcq}

(c) Assume that the solution A(x) to Eq. (16.16) is unique and that replica
symmetry holds. Show that the expected ground state energy (in the
problem with rescaled edge costs) is E∗ = Nǫr + o(N), where ǫr ≡∫

A(x) log 1
A(x) dx. As a consequence the optimal cost in the initial prob-

lem is Nr/(r+1)er(1 + o(1)).

(d) Equation (16.16) can be solved numerically with the population dynamics
algorithm of Section 14.6.3. Write the corresponding program and show
that the costs of the optimal matching for r = 1, 2 are: e1 ≈ 0.8086,
e2 ≈ 0.6382.

16.2.5 Non-zero temperature and stability analysis
sec:TemperatureStabilityMatching}

The reader may wonder whether the heuristic discussion of the previous sections
can be justified. While a rigorous justification would lead us too far, we want to
discuss, still at a heuristic level, the consistency of the approach. In particular
we want to argue that BP provides good approximations to the marginals of
the distribution (16.2), and that density evolution can be used to analyze its
behavior on random instances.

Intuitively, two conditions should be verified for the approach to be valid:
(i) The underlying factor graph should be locally tree-like; (ii) The correlation
between two variables nij , nkl should decay rapidly with the distance between
edges (ij) and (kl) on such a graph.

At first sight it looks that condition (i) is far from holding, since our fac-
tor graph is constructed from a complete bipartite graph. As mentioned in the
previous Section, the locally tree like structure emerges if one notices that only
edges with cost of order 1 are relevant (as above we are assuming that edge
costs have been rescaled or, equivalently, drawn with probability density func-
tion ρ̂(E) = N−1 exp(−E/N)). In order to further investigate this point, we
modify the model (16.2) by pruning from the original graph all edges with cost
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Fig. 16.2. Left frame: Estimate of the probability distribution of the messages
xi→j obtained by population dynamics. Here we consider the modified ensemble
in which costly edges (with Eij > 2γ) have been removed. The three curves,
from top to bottom, correspond to: (β = 1, γ = 5), (β = 1, γ = 60),and
(β = 10, γ = 60). The last curve is indistinguishable from the analytical re-
sult for (β = ∞, γ = ∞): a(x) = 1/[4 cosh2(x/2)], also shown. The curves with
larger γ are indistinguishable from the curve γ = 60 on this scale. The algorithm
uses a population of size 105, and the whole population is updated 100 times.
Right: Free energy versus temperature T = 1/β, computed using Eq. (16.18).
The messages distribution was obtained as above with γ = 40. {fig:assign_pdex}

larger than 2γ. In the large β limit this modification will become irrelevant since
the Boltzmann weight (16.2) ensures that these ‘costly’ edges of the original
problem are not occupied. In the modified problem, the degree of any vertex in
the graph converges (as N → ∞) to a Poisson random variable with mean 2γ.
The costs of ‘surviving’ edges converge to iid uniform random variables in the
interval [0, 2γ].

For fixed β and γ, the asymptotic message distribution can be computed from
the RS cavity method. The corresponding fixed point equation reads

x
d
= − 1

β
log

[
e−βγ +

k∑

r=1

e−β(Er−xr)

]
, (16.17) {eq:rsd_assign}

where k is a Poisson random variable with mean 2γ, Er are iid uniformly dis-
tributed on [0, 2γ], and xr are iid with the same distribution as x. The fixed point
distribution can be estimated easily using the population dynamics algorithm of
Sec. 14.6.3. Results are shown in Fig. 16.2. For large β, γ the density estimated
by this algorithm converges rapidly to the analytical result for β = γ = ∞,
namely a(x) = 1/[4 cosh2(x/2)].

The messages distribution can be used to compute the expected Bethe free-
entropy. Assuming that the messages entering in Eq. (16.7) are independent, we
get E F(x) = −Nβf(β, γ) + o(N) where
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Fig. 16.3. Part of the factor graph used to compute the correlation between xr

and x1.
{fig:assignment_stab}

f(β, γ) = −2γ− 2

β
E log


e−βγ +

k∑

j=1

e−β(Ej−xj)


+

2γ

β
E log

[
1 + e−β(E1−x1−x2)

]

(16.18) {eq:rs_free_energy_assignment

Having a locally tree-like structure is only a necessary condition for BP to
provide good approximations of the marginals. An additional condition is that
correlations of distinct variables nij , nkl decay rapidly enough with the distance
between nodes (ij), (kl) in the factor graph. Let us discuss here one particular
measure of these correlations, namely the spin glass susceptibility defined in
Sec. 12.3.2. In the present case it can be written as

χSG ≡
1

N

∑

e,f

(〈nenf 〉 − 〈ne〉〈nf 〉)2 , (16.19)

where the sum runs over all pairs of variable nodes e = (i, j), f = (k, l) in the
factor graph (equivalently, over all pairs of edges in the original bipartite graph
with vertex sets A, B).

If correlations decay fast enough χSG should remain bounded as N →∞. The
intuitive explanation goes as follows: From the fluctuation dissipation relation
of Sec. 2.3, 〈nenf 〉 − 〈ne〉〈nf 〉 is proportional to the change in 〈nf 〉 when the
cost of edge e is perturbed. The sign of such a change will depend upon f , and
therefore the resulting change in the expected matching size

∑
f 〈nf 〉 (namely∑

f (〈nenf 〉 − 〈ne〉〈nf 〉)) can be either positive or negative. Assuming that this
sum obeys a central limit theorem, its typical size is given by the square root of∑

f (〈nenf 〉 − 〈ne〉〈nf 〉)2. Averaging over the perturbed edge, we see that χSG

measures the decay of correlations.
We shall thus estimate χSG using the same RS cavity assumption that we

used in our computation of the expectations 〈ne〉. If the resulting χSG is infinite,
such an assumption is falsified. In the opposite case, although nothing definite
can be said, the assumption is said ‘consistent’, and the RS-solution is called
‘locally stable’ (since it is stable to small perturbations).
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In order for the susceptibility to be finite, only couples of variable nodes
(e, f) whose distance r in the factor graph is bounded should give a significant
contribution to the susceptibility. We can then compute

χ
(r)
SG ≡

1

N

∑

e,f : d(e,f)=r

(〈nenf 〉 − 〈ne〉〈nf 〉)2 (16.20)

for fixed r in the N →∞ limit, and then sum the result over r. For any given r
and large N , there is (with high probability) a unique path of length r joining e
to f , all the others being of length Θ(logN). Denote by (j1, j2, . . . , jr) variable
nodes, and by (a2, . . . , ar) the function nodes on this path (with e = j1, f = jr),
see Fig. 16.2.5.

Consider a fixed point of BP and denote by xn the (log-likelihood) message
passed from an to jn. The BP fixed point equations (16.6) allow to compute xr

as a function of the message x1 arriving on j1, and of all the messages incoming
on the path {a2, . . . , ar} from edges outside this path, call them {yn,p}:

x2 = − 1

β
log
{
e−βγ + e−β(E1−x1) +

k2∑

p=1

e−β(E2,p−y2,p)
}
,

. . . . . . . . .

. . . . . . . . .

xr = − 1

β
log
{
e−βγ + e−β(Er−xr) +

kr∑

p=1

e−β(Er,p−yr,p)
}
. (16.21)

In a random instance, the kn are iid Poisson random variables with mean 2γ,
the En and En,p variables are iid uniform on [0, 2γ], and the yn,p are iid random
variables with the same distribution as the solution of Eq. (16.17). We shall
denote below by Eout the expectation with respect to all of these variables outside
the path. Keeping them fixed, a small change δx1 of the message x1 leads to a
change δxr = ∂xr

∂x1
δx1 = ∂x2

∂x1

∂x3

∂x2
. . . ∂xr

∂xr−1
δx1 of xr. We leave it as an exercise to

the reader to show that the correlation function ⋆

〈nenf 〉 − 〈ne〉〈nf 〉 = C
∂xr

∂x1
= C

r∏

n=2

∂xn

∂xn−1
(16.22)

where the proportionality constant C is r-independent. Recalling that the ex-
pected number of variable nodes f such that d(e, f) = r grows as (2γ)r, and

using Eq. (16.20), we have Eχ
(r)
SG = C ′ eλrr, where

λr(β, γ) = log(2γ) +
1

r
log

{
Eout

r∏

n=2

(
∂xn

∂xn−1

)2
}
. (16.23) {eq:assign_stab}

Therefore, a sufficient condition for the expectation of χSG to be finite is to
have λr(β, γ) negative and bounded away from 0 for large enough r (when this

happens, Eχ
(r)
SG decays exponentially with r).
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Fig. 16.4. Stability parameter λr, defined in Eq. (16.23), plotted versus r, for
inverse temperatures β = 10, 5, 2, 1 (from bottom to top). Lines are guides to
the eye. A negative asymptotic value of λr at large r shows that the spin glass
susceptibility is finite. Data obtained from a population dynamics simulation
with a population of 106, for γ = 20.

{fig:assign_stab_dat}

The exponent λr(β, γ) can be computed numerically through population dy-
namics: the population allows to sample iid messages yn,p from the fixed point
message density, and the costs En, En,p are sampled uniformly in [0, 2γ]. The
expectation (16.23) can be estimated through a numerical average over large
enough populations. Notice that the quantity we are taking expectation of de-
pends exponentially on r. As a consequence, its expectation becomes more diffi-
cult to compute as r grows.

In Fig. 16.2.5 we present some estimates of λr obtained through this ap-
proach. Since λr depends very weakly on r, we expect that λ∞ can be safely
estimated from these data. The data are compatible with the following scenario:
λ∞(β, γ) is negative at all finite β temperatures and vanishes as 1/β as β →∞.
This indicates that χSG is finite, so that the replica symmetry assumption is
consistent.

16.3 A polynomial message passing algorithm{se:BP_assign}
Remarkably, the Min-Sum message passing algorithm introduced in Section 16.2.3,
can be proved to return the minimum cost assignment on any instance for which
the minimum is unique. Let us state again the Min-Sum update equations of
Eq. (16.8), writing the iteration number explicitly:

xL
j→i(t+ 1) = min

k∈A\i

(
Ekj − xR

k→j(t)
)
, xR

i→j(t) = min
k∈B\j

(
Eik − xL

k→i(t)
)
.

(16.24){eq:BPiter_assign}

Here, as before, A and B (with |A| = |B| = N) are the two vertices sets to be
matched, and we keep denoting by i (respectively j) a generic vertex in A (resp.
in B).
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The algorithm runs as follows:

Min-Sum assignment (Cost matrix E, Iterations t∗)
1: Set xL

j→i(0) = xR
i→j(0) = 0 for any i ∈ A, j ∈ B

2: For all t ∈ {0, 1, . . . , t∗}:
3: Compute the messages at time t+ 1 using Eq. (16.24)
4: Set π(i) = arg minj∈B

(
Eij − xL

j→i(t∗)
)

for each i ∈ A;
5: Output the permutation π ;

This algorithm finds the correct result if the optimal assignment is unique
after a large enough number of iterations, as stated in the theorem below.

{th:assign_BP_conv}
Theorem 16.1 Let W ≡ maxij |Eij | and ǫ be the gap between the cost E∗ of
the optimal assignment, π∗, and the next best cost: ǫ ≡ minπ( 6=π∗)(E(π) − E∗),
where E(π) ≡∑N

i=1Eiπ(i). Then, for any t∗ ≥ 2NW/ǫ, the Min-Sum algorithm
above returns the optimal assignment π∗.

The proof is given in the Sec. 16.3.2, and is based on the notion of computation
tree explained in the present context in Sec. 16.3.1.

For practical application of the algorithm to cases where one does not know
the gap in advance, it is important to have a stopping criterion for the the
algorithm. This can be obtained by noticing that, after convergence, the messages
become ‘periodic-up-to-a-drift’ functions of t. More precisely there exists a period
τ and a drift C > 0 such that for any t > 2NW/ǫ, and any i ∈ A, xR

i→j(t+ τ) =
xR

i→j(t) + C if j = arg mink∈B(Eik + xL
k→i(t)), and xR

i→j(t + τ) = xR
i→j(t) − C

otherwise. If this happens, we shall write xR(t+ τ) = xR(t) + C.
It turns out that: (i) If for some time t0, period τ and constant C > 0, one

has xR(t0 + τ) = xR(t0) + C, then xR(t + τ) = xR(t) + C for any t ≥ t0; (ii)
Under the same condition, the permutation returned by the Min-Sum algorithm
is independent of t∗ for any t∗ ≥ t0. We leave the proof of these statement as a
(research level) exercise for the reader. It is immediate to see that they imply a ⋆
clear stopping criterion: After any number of iterations t, check whether there
exists t0 < t and C > 0, such that xR(t) = xR(t0) + C. If this is the case halt
the message passing updates and return the resulting permutation as in point 4
of the above pseudocode.

16.3.1 The computation tree
{se:minsum_computree}

As we saw in Fig. 16.1, an instance of the assignment problem is characterized
by the complete weighted bipartite graph GN over vertices sets A, B, with |A| =
|B| = N . The analysis of the Min Sum algorithm described above uses in a
crucial way the notion of computation tree.

Given a vertex i0 ∈ A (the case i0 ∈ B is completely symmetric) the corre-
sponding computation tree of depth t, T

t
i0

is a weighted rooted tree of depth t
and degree N , that is constructed recursively as follows. First introduce the root
î0 that is in correspondence with i0 ∈ A. For any j ∈ B, add a corresponding
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vertex ĵ in T
t
i0

and connect it to î0. The weight of such an edge is taken to be

Eî0,ĵ ≡ Ei0,j . At any subsequent generation, if î ∈ T
t
i0

corresponds to i ∈ A, and

its direct ancestor is ĵ that corresponds to j ∈ B, add N − 1 direct descendants
of î in T

t
i0

. Each one of such descendants k̂, corresponds to a distinct vertex
k ∈ B \ j, and the corresponding weight is Ek̂ĵ = Ekj .

A more compact description of the computation tree T
t
i0

consists in saying
that it is the tree of non-reversing walks55 rooted at i0.

Imagine iterating the Min-Sum equations (16.24) on the computation tree
T

t
i0

(starting from initial condition xî→ĵ(0) = 0). Since T
t
i0

has the same local

structure as GN , for any s ≤ t the messages incoming to the root î0 coincide with
the ones along the corresponding edges in the original graph GN : xĵ→î0

(s) =
xj→i0(s).

In the proof of Theorem 16.1, we will use the basic fact that the Min-Sum
algorithm correctly finds the ground state on trees (see theorem 14.4). More
precisely, let us define an internal matching of a tree to be a subset of the
edges such that each non-leaf vertex has one adjacent edge in the subset. In view
of the above remark, we have the following property.

{lemma:assign_algo1}
Lemma 16.2 Define, for any i ∈ A, πt(i) = argminj∈B

(
Ei,j − xL

j→i(t)
)
. Let î

denote the root in the computation tree T
t
i, and ĵ the direct descendant of î that

corresponds to πt(i).
Then the edge (̂i, ĵ) belongs to the internal matching with lowest cost in T

t
i

(assuming this is unique).

Although it follows from general principles, it is a useful exercise to re-derive
this result explicitly.

Exercise 16.6 Let r be an internal (non-leaf) vertex in the computation T
t
i,

distinct from the root. Denote by Sr the set of its direct descendants (hence
|Sr| = N − 1), Tr the tree of all its descendants. We define a ‘cavity internal
matching’ in Tr as a set of edges where all vertices which are distinct from
the root r and are not leaves. Denote by Ar the cost of the optimal cavity
internal matching when vertex r is not matched, and Br its cost when vertex
r is matched. Show that:

Ar =
∑

q∈Sr

Bq ; Br = min
q∈Sr


Aq + Erq +

∑

q′∈Sr\{q}

Bq′


 (16.25)

Show that xr = Br − Ar satisfies the same equations as (16.24), and prove
Lemma 16.2.

55A ‘non-reversing walk’ on a graph G is a sequence of vertices ω = (i0, i1, . . . , in), such that
(is, is+1) is an edge for any s ∈ {0, . . . , n− 1}, and is−1 6= is+1 for s ∈ {1, . . . , n− 1}.
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16.3.2 Proof of convergence of the Min-Sum algorithm
{se:minsum_assign_proof}

We can now prove Theorem 16.1. It will be convenient to represent assignments
as matchings, i.e. subsets of the edges such that each vertex is incident to exactly
one edge in the subset. In particular we denote the optimal matching on G as
M∗. If π∗ is the optimal assignment then M∗ ≡ {(i, π∗(i)) : i ∈ A}. We denote
by π the mapping returned by the Min-Sum algorithm. It is not necessarily
injective, therefore the subset of edges M = {(i, π(i)) : i ∈ A} is not necessarily
a matching.

The proof is by contradiction. Assume that π 6= π∗. Then there exists at
least one vertex in A, call it i0, such that π(i0) 6= π∗(i0). Consider the depth-t

computation tree of i0, T
t
i0

, call î0 its root, and denote by M̂ the optimal internal

matching in this graph. Finally, denote by M̂∗ the internal matching on T
t
i0

which

is obtained by projection of the optimal one, M∗. Let j = π(i0) ∈ B, and ĵ ∈ T
t
i0

be the neighbor of î0 whose projection on G is j. By Lemma 16.2 (̂i0, ĵ) ∈ M̂.

On the other hand, since π(i0) 6= π∗(i0), (̂i0, ĵ) 6∈ M̂∗. The idea is to construct a

new internal matching M̂′ on T
t
i0

, such that: (i) (̂i0, ĵ) 6∈ M̂′; (ii) The cost of M̂′

is strictly smaller than the one M̂, thus leading to a contradiction.
Intuitively, the improved matching M̂′ is constructed by modifying M̂ in such a

way as to ‘get closer’ to M̂∗. In order to formalize the idea, consider the symmetric
difference of M̂ and M̂∗, P̂′ = M̂△ M̂∗, i.e. the set of edges which are either in
M̂ or in M̂∗ but not in both. The edge (̂i0, ĵ) belongs to P̂′. We can therefore

consider the connected component of P̂′ that contains (̂i0, ĵ), call it P̂. A moment

of thought reveals that P̂ is a path on T
t
i0

with end-points on its leaves (see

Fig. 16.3.2). Furthermore, its 2t edges alternate between edges in M̂ and in M̂∗.

We can then define M̂′ = M̂△ P̂ (so that M̂′ is obtained from M̂ by deleting the

edges in P̂ ∩ M̂ and adding those in P̂ ∩ M̂∗). We shall now show that, if t is

large enough, the cost of M̂′ is smaller than that of M̂, in contradiction with the
hypothesis.

Consider the projection of P̂ onto the original complete bipartite graph G,
call it P ≡ ϕ(P̂) (see Fig. 16.3.2). This is a non-reversing path of length 2t on G.
As such, it can be decomposed into m simple cycles56 {C1, . . . ,Cm} (eventually
with repetitions) and at most one even length path Q, whose lengths add up to
2N . Furthermore, the length of Q is at most 2N − 2, and the length of each of
the cycles at most 2N . As a consequence m > t/N .

Consider now a particular cycle, say Cs. Its edges alternate between edges
belonging to the optimal matching M∗ and edges not in it. As we assumed that
the second best matching in G has cost at least ǫ above the best one, the total
cost of edges in Cs \M∗ is at least ǫ above the total cost of edges in Cs ∩M∗.

As for the path Q, it is again alternating between edges belonging to M∗ and
edges outside of M∗. We can order the edges in Q in such a way that the first

56A simple cycle is a cycle that does not visit the same vertex twice.
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Fig. 16.5. Top left: an instance G of an assignment problem with 2N = 6 ver-
tices (costs are not shown). The optimal π∗ is composed of the thick edges. Right:
the computation tree T

2
l1

. The matching π∗ is ‘lifted’ to an internal matching
in T

2
l1

composed of the thick edges. Notice that one edge in the original graph
has many images in the unwrapped graph. The dashed edges are those of the
optimal internal matching in T

2
l1

, and the alternating path P is circled (dashed).
Bottom left: the projection of P on the original graph; here it consists of a single
cycle.

{fig:unwrapped}

one is in M∗ and the last one is not. By changing the last step, we can transform
it into an alternating cycle, to which the same analysis as above applies. This
swapping changes the cost of edges not in Q by at most 2W . Therefore the cost
of the edges in Q \M∗ is at least the cost of edges in Q ∩M∗ plus ǫ− 2|W |.

Let ET(M̂) denote the cost of matching M̂ on T
t
i0

. By summing the cost

differences of the m cycles {C1, . . . ,Cm} and the path Q, we found that ET(M̂) ≥
ET(M̂′) + (m + 1)ǫ − 2W . Therefore, for t > 2NW/ǫ, ET(M̂) > ET(M̂′), in
contradiction with our hypothesis.�

16.3.3 A few remarks

The alert reader might be puzzled by the following observation. Consider a ran-
dom instance of the assignment problem with iid edge weights, e.g. exponentially
distributed. In Section 16.2.4 we analyzed the Min-Sum algorithm through den-
sity evolution and showed that the only fixed point is given by the x-message
density a(x) = 1

4 cosh2(x/2). A little more work shows that, when initiated with
x = 0 messages density evolution does indeed converge to such a fixed point.

On the other hand, for such a random instance the maximum weight W
and the gap between the two best assignments are almost surely finite, so the
hypotheses of Thm 16.1 apply. The proof in the last Section implies that the



‘‘Info Phys Comp’’ Draft: November 9, 2007  --  ‘‘Info Phys Comp’’ Draft: November 9, 2007  --  

COMBINATORIAL RESULTS 367

Min-Sum messages diverge: the messages xi→π∗(i) diverge to +∞, while other
ones diverge to −∞ (indeed Min-Sum messages are just the difference between
the cost of optimal matching on the computation tree and the cost of the optimal
matching that does not include the root).

How can these two behaviors be compatible? The conundrum is that density
evolution correctly predicts the messages distribution as long as the number of
iterations is kept bounded as N → ∞. On the other hand, the typical scale
for messages divergence discussed in the previous Section is NW/ǫ. If the edge
weights are exponentials of mean N , the typical gap is ǫ = Θ(1), while W =
Θ(N logN). Therefore the divergence sets in after t∗ = Θ(N2 logN) iterations.
The two analyses therefore describe completely distinct regimes.

16.4 Combinatorial results {se:assign_combi}

It turns out that a direct combinatorial analysis allows to prove several non-
asymptotic results for ensembles of random assignment problems. Although the
techniques are quite specific, the final results are so elegant that they deserve
being presented. As an offspring, they also provide rigorous proofs of some of
our previous results, like the optimal cost ζ(2) found in (16.15).

We will consider here the case of edge weights given by iid exponential random
variables with rate 1. Let us remind that an exponential random variable X
with rate α has density ρ(x) = α e−αx for x ≥ 0, and therefore its expectation is
E[X] = 1/α. Equivalently, the distribution of X is given by P{X ≥ x} = e−αx

for x ≥ 0.
Exponential random variables have several special properties that make them

particularly convenient in the present context. The most important is that the
minimum of two independent exponential random variables is again exponential.
We shall use the following refined version of this statement:

{lemma:exponential_var}
Lemma 16.3 Let X1, . . . ,Xn be n independent exponential random variables
with respective rates α1, . . . , αn. Then:

1. The random variable X = min{X1, . . . ,Xn} is exponential with rate α ≡∑n
i=1 αi.

2. The random variable I = arg miniXi is independent of X, and has distri-
bution P{I = i} = αi/α.

Proof: First notice that the minimum of {X1, . . . ,Xn} is almost surely achieved
by only one of the variables, and therefore the index I in point 2 is well defined.
An explicit computation yields, for any x ≥ 0 and i ∈ {1, . . . , n}

P{I = i, X ≥ x} =

∫ ∞

x

αi e
−αiz

∏

j( 6=i)

P{Xj ≥ z} dz

=

∫ ∞

x

αi e
−αz dz =

αi

α
e−αx . (16.26)

By summing over i = 1, . . . , n, we get P{X ≥ x} = e−αx which proves point 1.
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By taking x = 0 in the above expression we get P{I = i} = αi/α. Using these
two results, Eq. (16.26) can be rewritten as P{I = i, X ≥ x} = P{I = i}P{X ≥
x}, which imply that X and I are independent. �

16.4.1 The Coppersmith-Sorkin and Parisi formulae

The combinatorial approach is based on a recursion on the size of the problem. It
is therefore natural to generalize the assignment problem by allowing for partial
matching between two sets of unequal size as follows. Given a set of agents A
and a set of jobs B (with |A| = M and |B| = N), consider the complete bipartite
graph G over vertex sets A and B. A k-assignment between A and B is defined as
a subset of k edges of G that has size k and such that each vertex is adjacent to at
most one edge. Given edge costs {Eij : i ∈ A j ∈ B} the optimal k-assignment
is the one that minimizes the sum of costs over edges in the matching. The
assignment problem considered so far is recovered by setting k = M = N . Below
we shall assume, without loss of generality, k ≤M ≤ N :

{thm:CS_conj}
Theorem 16.4. (Coppersmith-Sorkin formula) Assume the edge costs {Eij :
i ∈ A, j ∈ B} to be iid exponential random variables of rate 1, with |A| = M ,
|B| = N , and let Ck,M,N denote the expected cost of the optimal k-assignment.
Then:

Ck,M,N =
k−1∑

i,j=0

I(i+ j < k)
1

(M − i)(N − j) . (16.27){eq:CSMatching}

This result, that we shall prove in the next sections, yields, as a special case,
the expected cost CN of the complete matching over a bipartite graph with 2N
vertices:{coro:Parisi_conj}

Corollary 16.5. (Parisi formula) Let CN ≡ CN,N,N be the expected cost of
the optimal complete matching among vertices sets A, B with |A| = |B| = N ,
assuming iid, exponential, rate 1, edge weights. Then

CN =
N∑

i=1

1

i2
. (16.28)

In particular, the expected cost of the optimal assignment when N →∞ is ζ(2).

Proof: By Theorem 16.4 we have CN =
∑N−1

i,j=0 I(i+j < N) (N− i)−1(N−j)−1.
Simplifying equal terms, the difference CN+1 − CN can be written as

N∑

j=0

1

(N + 1)(N + 1− j) +

N∑

i=1

1

(N + 1− i)(N + 1)
−

N∑

r=1

1

(N + 1− r)r . (16.29)

Applying the identity 1
(N+1−r)r = 1

(N+1)r + 1
(N+1−r)(N+1) , this implies CN+1 −

CN = 1/N2, which establishes Parisi’s formula. �
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16.4.2 From k-assignment to k + 1-assignment

The proof of Theorem 16.4 relies on two Lemmas which relate properties of the
optimal k-assignment to those of the optimal (k + 1)-assignment. Let us denote
by Mk the optimal k-assignment.

The first Lemma applies to any realization of the edge costs, provided that
no two subsets of the edges have equal cost (this happens with probability 1
within our random cost model).

{lemma:nesting}
Lemma 16.6. (Nesting lemma) Let k < M ≤ N and assume that no lin-
ear combination of the edge costs {Eij : i ∈ A, j ∈ B} with coefficients in
{+1, 0,−1} vanishes. Then every vertex that belongs to Mk also belongs to Mk+1.

The matching Mk consists of k edges which are incident on the vertices i1, . . . , ik
in set A, and on j1, . . . , jk in set B. Call Ak the k × k matrix which is the
restriction of E to the lines i1, . . . , ik and the columns j1, . . . , jk. The nesting
lemma insures that Ak+1 is obtained from Ak by adding one line (ik+1) and one
column (jk+1). Therefore we have a sequence of nested matrices E(1) ⊂ E(2) · · · ⊂
E(M) = E containing the sequence of optimal assignments M1,M2, . . . ,MM .

Proof: Color in red all the edges in Mk, in blue all the edges in Mk+1, and
denote by Gk+ the bipartite graph induced by edges in Mk ∪Mk+1. Clearly the
maximum degree of Gk+ is at most 2, and therefore its connected components
are either cycles or paths.

We first notice that no component of Gk+ can be a cycle. Assume by con-
tradiction that edges {u1, v1, u2, v2, . . . , up, vp} ⊆ Gk+ form such a cycle, with
{u1, . . . , up} ⊆ Mk and {v1, . . . , vp} ⊆ Mk+1. Since Mk is the optimal k-assignment
Eu1

+ · · · + Eup
≤ Ev1

+ · · · + Evp
(in the opposite case we could decrease its

cost by replacing the edges {u1, . . . , up} with {v1, . . . , vp}, without changing its
size). On the other hand, since Mk+1 is the optimal (k+1)-assignment, the same
argument implies Eu1

+ · · ·+Eup
≥ Ev1

+ · · ·+Evp
. These two inequalities imply

Eu1
+ · · · + Eup

= Ev1
+ · · · + Evp

, which is impossible by the non-degeneracy
hypothesis.

So far we have proved that Gk+ consists of a collection of disjoint simple
paths, made of alternating blue and red edges. Along such paths all vertices
have degree 2 except for the two endpoints which have degree 1. Since each path
alternates between red and blue edges, the difference in their number is in at
most 1 in absolute value. We will show that indeed there can exist only one such
path, with one more blue than red edges, thus proving the thesis.

We first notice that Gk+ cannot contain even paths, with as many red as blue
edges. This can be shown using the same argument that we explained above in
the case of cycles: either the cost of blue edges along the path is lower than the
cost of red ones, which would imply that Mk is not optimal, or vice-versa, the
cost of red edges is lower, which would imply that Mk+1 is not optimal.

We now exclude the existence of a path P of odd length with one more red
edge than blue edges. Since the total number of blue edges is larger than the total
number of red edges, there should exist at least one path P′ with odd length, with
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one more blue edge than red edges. We can then consider the double path P∪P′,
which contains as many red as blue edges and apply to it the same argument as
for cycles and even paths.

We thus conclude that the symmetric difference of Mk and Mk+1 is a path of
odd length, with one endpoint i ∈ A and one j ∈ B. These are the only vertices
that are in Mk+1 but not in Mk. Reciprocally, there is no vertex that is Mk but
not in Mk+1. �

{lemma:cost_nesting}
Lemma 16.7 Let {ui : i ∈ A} and {vj : j ∈ B} be two collections of pos-
itive real numbers and assume that the edges costs {Eij : i ∈ A, j ∈ B} are
independent exponential random variables, the rate of Eij being uivj. Denote by
Ak = {i1, . . . , ik} ⊆ A, and Bk = {j1, . . . , jk} ⊆ B, the sets of vertices appearing
in the optimal k-assignment Mk. Let Ik+1 = Ak+1 \ Ak and Jk+1 = Bk+1 \ Bk

be the extra vertices which are added in Mk+1. Then the conditional distribution
of Ik+1 and Jk+1 is P {Ik+1 = i, Jk+1 = j|Ak, Bk} = Qi,j, where

Qij =
uivj(∑

i′∈A\Ak
ui′

) (∑
j′∈B\Bk

vj′

) . (16.30)

Proof: Because of the nesting lemma, one of the following must be true: Either
the matching Mk+1 contains edges (Ik+1, jb), and (ia, Jk+1) for some ia ∈ Ak,
jb ∈ Bk, or it contains the edge (Ik+1, Jk+1).

Let us fix ia and jb and condition on the first event

E1(ia, jb) ≡ {Ak, Bk, (Ik+1, jb), (ia, Jk+1) ∈ Mk+1} .

Then necessarily EIk+1,jb
= min{Eijb

: i ∈ A \Ak} (because otherwise we could
decrease the cost of Mk+1 by making a different choice for Ik+1). Analogously
Eia,Jk+1

= min{EiAj : j ∈ B \ Bk}. Since the two minima are taken over
independent random variables, Ik+1 and Jk+1 are independent as well. Further,
by Lemma 16.3,

P {Ik+1 = i, Jk+1 = j | E1(ia, jb)} =
uivjb∑

i′∈A\Ak
ui′vjb

uia
vj∑

j′∈B\Bk
uia

vj′

= Qij .

If we instead condition on the second event

E2 ≡ {Ak, Bk, (Ik+1, Jk+1) ∈ Mk+1} ,

then EIk+1,Jk+1
= min{Eij : i ∈ A \Ak j ∈ B \Bk} (because otherwise we could

decrease the cost of Mk+1). By applying again Lemma 16.3 we get

P {Ik+1 = i, Jk+1 = j | E2} =
uivj∑

i′∈A\Ak,j′∈B\Bk
ui′vj′

= Qij .

Since the resulting probability is Qij irrespective of the conditioning, it remains
the same when we condition on the union of the events {∪a,bE1(ia, jb)} ∪ E2 =
{Ak, Bk}. �
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16.4.3 Proof of Theorem 16.4

In order to prove the Coppersmith-Sorkin (C-S) formula (16.27), we will consider
the difference Dk,M,N ≡ Ck,M,N−Ck−1,M,N−1, and establish in this section that:

Dk,M,N =
1

N

(
1

M
+

1

M − 1
+ · · ·+ 1

M − k + 1

)
. (16.31){eq:CS_formula_recursion}

This immediately leads to the C-S formula, by recursion using as a base step
the identity C1,M,N−k+1 = 1

M(N−k+1) (which follows from the fact that it is the

minimum of M(N − k + 1) iid exponential random variables with rate 1).
Consider a random instance of the problem over vertex sets A and B with

|A| = M and |B| = N , whose edge costs {Eij : i ∈ A, j ∈ B} are iid exponential
random variables with rate 1. Let X be the cost of its optimal k-assignment.
Let Y be the cost of the optimal (k− 1)-assignment for the new problem that is
obtained by removing one fixed vertex, say the last one, from B. Our aim is to
estimate the expectation value Dk,M,N = E(X − Y ),

We shall use an intermediate problem with a cost matrix F of size (M+1)×N
constructed as follows. The first M lines of F are identical to those of E. The
matrix element in its last line are N iid exponential random variables of rate λ,
independent from E. Denote by W the cost of the edge (M + 1, N), and let us
call E the event “the optimal k-assignment in F uses the edge (M + 1, N)”.

We claim that, as λ→ 0, P(E) = λE[X − Y ] +O(λ2). First notice that, if E
is true, then W + Y < X, and therefore

P(E) ≤ P{W + Y < X} = E
[
1− e−λ(X−Y )

]
= λE[X − Y ] +O(λ2)(16.32)

Conversely, if W < X − Y , and all the edges from the vertex M + 1 in A to
B \ {N} have cost at least X, then the optimal k-assignment in F uses the edge
(M + 1, N). Therefore, using the independence of the edge costs

P(E) ≥ P{W < X − Y ; EM+1,j ≥ X for j ≤ N − 1} =

= E

{
P{W < X − Y | X,Y }

N−1∏

j=1

P{EM+1,j ≥ X|X}
}

= E

{
P{W < X − Y | X,Y } e−(N−1)λX

}
=

= E

{(
1− e−λ(X−Y )

)
e−(N−1)λX

}
= λE[X − Y ] +O(λ2) . (16.33)

We now turn to the evaluation of P(E), and show that

P(E) =
1

N

[
1−

k−1∏

r=0

M − r
M − r + λ

]
. (16.34) {eq:plemmaCSPf}

Let us denote by α the M + 1-th vertex in A. By Lemma 16.7, conditional to
α /∈ Mk−1, the probability that α ∈ Mk is λ/(M − (k − 1) + λ). By recursion,
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this shows that the probability that α /∈ Mk−1 is
∏k−1

r=0
M−r

M−r+λ . Since all the N
edges incident on α are statistically equivalent, we get (16.34).

Expanding Eq. (16.34) as λ → 0, we get P(E) = λ
N

∑k−1
r=0

1
M−r + O(λ2).

Since, as shown above, E[X − Y ] = limλ→0 P(E)/λ, this proves Eq. (16.31),
which establishes the C-S formula.�

16.5 An exercise: multi-index assignment
{se:multi_assign}

In Section 16.2.4 we computed the asymptotic minimum cost for random in-
stances of the assignment problem using the cavity method under the replica
symmetric (RS) assumption. The result, namely that the cost converges to ζ(2)
for exponential edge weights with mean 1, was confirmed by the combinatorial
analysis of Section 16.4. This suggests that the RS assumption is probably cor-
rect for this ensemble, an intuition that is further confirmed by the fact that
Min-Sum finds the optimal assignment.

Statistical physicists conjecture that there exists a broad class of random
combinatorial problems which satisfy the RS assumption. On the other hand,
many problems are thought not to satisfy it: the techniques developed for deal-
ing with such problems will be presented in the next chapters. In any case, it
is important to have a feeling of the line separating RS from non-RS problems.
This is a rather subtle point, here we want to illustrate it by considering a gen-
eralization of random assignment: the multi-index random assignment (MIRA)
problem. We propose to study the MIRA using the RS cavity method and de-
tect the inconsistency of this approach. Since the present Section is essentially
an application of the methods developed above for the assignment, we will skip
all technical details. The reader may consider it as a long guided exercise.

One instance of the multi-index assignment problem consists of d sets A1,. . . ,
Ad, of N vertices, and a cost Ea for every d-uplet a = (a1, . . . , ad) ∈ A1×· · ·×Ad.
A ‘hyper-edge’ a can be occupied (na = 1) or empty (na = 0). A matching is a
set of hyper-edges which are vertex disjoint (formally:

∑
a: i∈a na ≤ 1 for each r

and each i ∈ Ar). The cost of a matching is the sum of the costs of the hyper-
edges that it occupies. The problem is to find a perfect matching (i.e. a matching
with N occupied hyper-edges) with minimal total cost.

In order to define a random ensemble of multi-index assignment instances,
we proceed as for the assignment problem, and assume that the edge costs Ei are
iid exponential random variables with mean Nd−1. Thus the costs have density

ρ(E) = N−d+1 e−E/Nd−1

I(E ≥ 0) . (16.35)

The reader is invited to check that under this scaling of the edge costs, the typical
optimal cost is extensive, i.e. Θ(N). The simple random assignment problem
considered before corresponds to d = 2.

We introduce the probability distribution on matchings that naturally gen-
eralizes Eq. (16.2):
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p(n) =
1

Z

∏

a∈∪rAr

I

( ∑

i: a∈i

ni ≤ 1
)
e−β

P
i ni(Ei−2γ) . (16.36)

The associated factor graph has Nd variable nodes, each of degree d, corre-
sponding to the original hyper-edges, and dN factor nodes, each of degree N ,
corresponding to the vertices in F ≡ A1 ∪ · · · ∪Ad. As usual i, j, · · · ∈ V denote
the variable nodes in the factor graph and a, b, · · · ∈ F the function nodes coding
for hard constraints.

Using a parameterization analogous to the one for the assignment problem,
one finds that the BP equations for this model take the form:

hi→a =
∑

b∈∂i\a

xb→i ,

xa→i = − 1

β
log
{
e−βγ +

∑

j∈∂a\i

e−β(Ej−hj→a)
}
.

(16.37) {eq:recrs}

In the large β, γ limit they become:

hi→a =
∑

b∈∂i\a

xb→i , xa→i = min
j∈∂a\i

(Ej − hj→a)). (16.38)

Finally, the Bethe free-entropy can be written in terms of x-messages yielding:

F[x] =Ndβγ +
∑

a∈F

log
{
e−βγ +

∑

i∈∂a

e−β(Ei−
P

b∈∂i\a xb→i)
}

− (d− 1)
∑

i∈V

log
{

1 + e−β(Ei−
P

a∈∂i xj→a))
}
.

(16.39) {eq:BetheMIRA}

Using the RS cavity method, one obtains the following equation for the dis-
tribution of x messages in the N →∞ limit:

A(x) = exp



−

∫ (
x+

d−1∑

j=1

tj

)
I

(
x+

d−1∑

j=1

tj ≥ 0
) d−1∏

j=1

dA(tj)



 . (16.40)

This reduces to Eq. (16.13) in the case of simple assignment. Under the RS
assumption the cost of the optimal assignment is E0 = Ne0 + o(N), where

e0 =
1

2

∫ ( d∑

j=1

xj

)2

I

(∑

j

xj > 0
) d∏

j=1

dA(xj) . (16.41) {eq:energyinclusion}

These equations can be solved numerically to high precision and allow to
derive several consequences of the RS assumption. However the resulting predic-
tions (in particular, the cost of the optimal assignment) are wrong for d ≥ 3.
There are two observations showing that the RS assumption is inconsistent:
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1. Using the Bethe free-entropy expression (16.39) we can compute the asymp-
totic free energy density as f(T ) = −F/(Nβ), for a finite β = 1/T . The
resulting expression can be estimated numerically via population dynamics,
for instance for d = 3. It turns out that the entropy density s(T ) = −df/dT
becomes negative for T < Tcr ≈ 2.43. This is impossible: we are dealing
with a statistical mechanics model with a finite state space, thus the en-
tropy must be non-negative.

2. A local stability analysis can be performed analogously to what is done in
Section 16.2.5. It turns out that , for d = 3, the stability coefficient λ∞,
cf. Eq. (16.23), becomes positive for T . 1.6, indicating an instability of
the putative RS solution to small perturbations.

The same findings are generic for d ≥ 3. A more satisfying set of predictions
for such problems can be developed using the RSB cavity method that will be
treated in Chap. ??.

Notes

Rigorous upper bounds on the cost of the optimal random assignment go back
to (Walkup, 1979) and (Karp, 1987). The ζ(2) result for the cost was first ob-
tained in 1985 by (Mézard and Parisi, 1985) using the replica method. The
cavity method solution was then found in (Mézard and Parisi, 1986; Krauth and
Mézard, 1989), but the presentation in Sec. 16.2 is closer to (Martin, Mézard and
Rivoire, 2005). This last paper deals the multi-index assignment and contains
answers to the exercise in Sec. 16.5, as well as a proper solution of the problem
using the RSB cavity method).

The first rigorous proof of the ζ(2) result was derived in (Aldous, 2001), using
a method which can be regarded as a rigorous version of the cavity method. An
essential step in elaborating this proof was the establishment of the existence
of the limit, and its description as a minimum cost matching on an infinite
tree (Aldous, 1992). An extended review on the ‘objective method’ on which
this convergence result is based can be found in (Aldous and Steele, 2003). A
survey of recursive distributional equations like (16.17) occurring in the replica
symmetric cavity method is found in (Aldous and Bandyopadhyay, 2005).

On the algorithmic side, the assignment problem is a very well studied prob-
lem for many years (Papadimitriou and Steiglitz, 1998), and there exist efficient
algorithms based on network flow ideas. The first BP algorithm was found in
(Bayati, Shah and Sharma, 2005), it was then simplified in (Bayati, Shah and
Sharma, 2006) into the O(N3) algorithm presented in Sec. 16.3. This paper also
shows that the BP algorithm is basically equivalent to Bertsekas’ auction al-
gorithm (Bertsekas, 1988). The periodic-up-to-a-shift stopping criterion is due
to (Sportiello, 2004), and the understanding of the existence of diverging time
scales for the onset of the drift was found in (Grosso, 2004)

Combinatorial studies of random assignments were initiated by Parisi’s con-
jecture (Parisi, 1998a). This was generalized to the Coppersmith-Sorkin conjec-
ture in (Coppersmith and Sorkin, 1999). The same paper also provides a nice


