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2 OTIS CHODOSH

1. Overview

These are my notes for a mini-course that I gave at the Princeton RTG sum-
mer school in 2019 on geometric features of the Allen–Cahn equation. A “+”
marks the exercises which are used subsequently in the lectures. The others can
safely be skipped without subsequent confusion, but are probably more interest-
ing/difficult. There are additional problems in Appendix B, which explore some
of the theory not discussed in the lectures. I am very grateful to be informed of
any inaccuracies, typos, incorrect references, or other issues.

2. Introduction to the Allen–Cahn equation

We will consider throughout (Mn, g) a complete Riemannian manifold.

Definition 2.1. We define the Allen–Cahn energy1 by

Eε(u; Ω) :=

ˆ
Ω

(
ε

2
|∇gu|2 +

1

ε
W (u)

)
dµg.

Here W (·) is a “double well potential,” which we will take as W (t) = 1
4
(1− t2)2

(more general functions are also possible). We will often drop Ω (e.g. when M is
compact).

It is clear that Eε is well defined for u ∈ H1(Ω) ∩ L4(Ω). It is convenient to
extend Eε to functions u ̸∈ H1(Ω) ∩ L4(Ω) by Eε(u) = ∞.
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Figure 1. The double well potential W (t) = 1
4
(1− t2)2.

1The Allen–Cahn energy was first considered as a model for matter of a non-uniform com-
position by Van der Waals (see the translated article [vdW79]) in 1893 and then rediscovered
by Cahn–Hillard [CH58] in 1958. Allen–Cahn [AC79] observed in 1978 that there is a basic
link between the location of the interface between the two phases and the mean curvature of
the interface.
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2.1. Critical points and the Allen–Cahn equation.

Definition 2.2. A function u : M → R is a critical point of Eε if for any
φ :M → R smooth with support compactly contained in a precompact open set
Ω ⊂M , we have u ∈ H1(Ω) ∩ L∞(Ω) and

d

dt

∣∣∣
t=0
Eε(u+ tφ; Ω) = 0.

Note that

d

dt

∣∣∣
t=0
Eε(u+ tφ; Ω) =

ˆ
Ω

(
εg(∇gu,∇gφ) +

1

ε
W ′(u)φ

)
dµg,

so it follows that u (weakly) solves the Allen–Cahn equation

ε∆gu =
1

ε
W ′(u) =

1

ε
u(u2 − 1)

in Ω if and only it is a critical point of Eε on Ω.

Exercise 2.1 (+). (a) Prove that if u : M → R is a critical point of the
Allen–Cahn functional u, then u is smooth.

(b) For a smooth critical point of the Allen–Cahn functional u on a closed
manifold (M, g), show that u ∈ [−1, 1].

Observe that u ≡ ±1 and u ≡ 0 are critical points for the Allen–Cahn equation,
since W ′(±1) = W ′(0) = 0. If (M, g) is compact, then

Eε(v) ≥ 0 = Eε(±1).

Because ±1 are the unique global minima forW (t), we see that ±1 are the unique
global minimizers for Eε in the sense that Eε(v) = 0 implies that v = ±1.

Are there other solutions to the Allen–Cahn equation?

2.2. One dimensional solution. Let us begin by considering the Allen–Cahn
equation on R. The Allen–Cahn equation becomes

(2.1) εu′′(t) =
1

ε
W ′(u(t)).

Rescaling by ε allows us (in this case) to study only ε = 1. Set ũ(t) = u(εt), so

ũ′′(t) = ε2u′′(εt) = W ′(u(εt)) = W ′(ũ(t)).

Thus, we will begin by considering ε = 1 (and then rescale the coordinate function
t to return to arbitrary ε).
Dropping the tilde, we seek (other than u ≡ ±1) solutions to the ODE

(2.2) u′′(t) = W ′(u(t)) = u(t)3 − u(t).

Observe that we have “conservation of energy,” i.e.,

d

dt

(
u′(t)2 − 2W (u(t))

)
= 2u′(t)u′′(t)− 2u′(t)W ′(u(t)) = 0.
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Thus u′(t)2 = 2W (u(t)) + λ for some λ ∈ R. Let us first try to find any solution
to the equation. Take λ = 0 and suppose that u′(t) > 0 for all t ∈ R. Then,

du

dt
=

1√
2
(1− u2).

We can solve this as u(t) = H(t− t0) for H(t) = tanh(t/
√
2) and t0 ∈ R arbitrary.

You should check (by differentiating) that H(t) is indeed a solution to (2.2).
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Figure 2. The heteroclinic solution H(t) = tanh(t/
√
2).

Observe that H(t) has finite energy in the sense thatˆ ∞

−∞

1

2
H′(t)2 +W (H(t))dt <∞.

In Exercise 2.3 below you will be asked to compute this integral.

Lemma 2.3. Suppose that u(t) solves (2.2) for all t ∈ R. Then u(t) has finite
energy if and only if u(t) = ±H(t− t0) or ±1.

Proof. We have seen that u′(t)2 = 2W (u(t)) + λ for λ ∈ R. Becauseˆ ∞

−∞

(
1

2
u′(t)2 +W (u(t))

)
dt <∞

and since both terms are non-negative, there is tk → ∞ with u′(tk) → 0 and
W (u(tk)) → 0. Thus,

u′(tk)
2 − 2W (u(tk)) → 0.

Hence, λ = 0. Now, by considering the cases |u(0)| < 1, |u(0)| = 1, and |u(0)| > 1
arguing as above, we find that in the first case u(t) = ±H(t− t0), in the second
case u(t) = ±1, and in the third case u(t) cannot be defined for all t ∈ R. □

Exercise 2.2 (+). (a) Do solutions to (2.2) exist that have infinite energy?

(b) Suppose that u(t) solves (2.2) and satisfies u′(t) > 0 for all t ∈ R. Show
that u must be one of the solutions in Lemma 2.3 (and thus have finite
energy).



GEOMETRIC FEATURES OF ALLEN–CAHN 5

Rescaling back to the general ε > 0 equation we’ve seen

Hε(t) := tanh

(
t

ε
√
2

)
is the unique (up to sign and translation) non-trivial solution with finite energy
to

εH′′
ε(t) =

1

ε
W ′(Hε(t)).

2.2.1. First glimpse of the ε→ 0 limit. Note that for t > 0,

lim
ε→0

Hε(t) = 1

and for t < 0
lim
ε→0

Hε(t) = −1
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Figure 3. The heteroclinic solution Hε(t) with ε = .01 is converg-
ing to a step function.

Thus, Hε converges a.e., to the step function

H0(t) :=

{
+1 t > 0

−1 t < 0
.

Note that
{0} = ∂{H0(t) = 1}.

This somewhat trivial observation is the first hint of the connection between the
singular limit ε→ 0 for solutions to the Allen–Cahn equation and hypersurfaces
(in this case, just a point).

2.3. Solutions on R2. We have seen that the set of (finite energy) solutions to
the Allen–Cahn ODE on R is rather simple (although the solution H(t) is very
important). We turn to solutions on R2. Observe that as above, if

(2.3) ∆u = W ′(u),

then uε(x) := u(x/ε) solves

ε∆uε =
1

ε
W ′(uε)
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2.3.1. The one-dimensional solution on R2. We first observe that the one dimen-
sional solution H(t) we considered before provides a solution on R2 as well. To
that end, fixing a ∈ ∂B1(0) ⊂ R2 and b ∈ R, we consider the function

u(x) = H(⟨a, x⟩ − b).

It is clear that u solves (2.3). Note that this u has flat level sets and defining
uε(x) = u(x/ε),

lim
ε→0

uε(x) = u0(x) :=

{
1 ⟨a, x⟩ > b

−1 ⟨a, x⟩ < b

Note that ∂{u0 = 1} = {⟨a, x⟩ = b}, is a straight line.

Exercise 2.3 (+). Recall that H(t) = tanh(t/
√
2) is the 1-dimensional solution.

Show that

σ :=

ˆ ∞

−∞

(
1

2
H′(t)2 +W (H(t))

)
dt =

ˆ ∞

−∞
H′(t)2dt =

ˆ 1

−1

√
2W (s)ds

and compute the value of σ.

Exercise 2.4. For uε(x) = H(ε−1 ⟨a, x⟩) on R2 considered above, compute the
value of limε→0Eε(uε;B1(0)). Hint: First compute the limit with B1(0) replaced
by an appropriately chosen square. Check that H(t) is exponentially small as
t→ ±∞ to show that the associated error is small.

2.3.2. The saddle solution and other four ended solutions. On R2, there are other
solutions to Allen–Cahn besides H(⟨a, x⟩). The following saddle solution was first
discovered by Dang–Fife–Peletier [DFP92]. It is an entire solution on R2 with
{u = 0} = {xy = 0}.

Exercise 2.5. Consider

ΩR := {(x, y) ∈ R2 : x, y > 0, x2 + y2 < R2}.
Choose uR a smooth function with Dirichlet boundary conditions minimizing
E1(·) among functions in H1

0 (ΩR) (or equivalently smooth functions on ΩR that
vanish on the boundary). Show that:

(a) The function uR exists, is smooth, satisfies the Allen–Cahn equation, and
does not change sign. Argue that uR is either identically zero or (possibly
replacing u by −u) u ∈ (0, 1) in the interior of ΩR.

(b) Show that E1(uR; ΩR) ≤ CR for some C > 0 independent of R. Conclude
that uR is strictly positive in the interior of ΩR, for R large.

(c) Using odd reflections across the coordinate axes, construct ũR solving the
Allen–Cahn equation on BR(0) ⊂ R2. Using elliptic regularity, check that
ũR is smooth across the axes and at 0 and has E1(ũR;BR(0)) ≤ C̃R.

(d) Using elliptic theory, take a subsequential limit as R → ∞ to find an
entire solution u to Allen–Cahn.
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(e) Show that {u = 0} = {xy = 0}. Hint: if not, the maximum principle
implies that u ≡ 0; this function is not minimizing on balls compactly
contained in the quadrant.

There are many other related solutions. For example:

Theorem 2.4 (Kowalczyk–Liu–Pacard [KLP12]). Given any two lines ℓ1, ℓ2 ⊂
R2 intersecting precisely at the origin, there is a solution u on R2 whose nodal
set {u = 0} is asymptotic at infinity to ℓ1 ∪ ℓ2.

3. Convergence of (local) minimizers of the Allen–Cahn
functional

The ε ↘ 0 limit of the Allen–Cahn functional (and associated critical points)
turns out to be intimately related with the area functional for hypersurfaces
(and associated critical points, minimal surfaces). This relationship was first
described in works of Modica and Mortola [MM77] based on the framework of
“Γ-convergence” defined by De Giorgi [DGF75].

Definition 3.1. For Ω ⊂ (Mn, g) an open set, a function u ∈ L1(Ω) is of bounded
variation, u ∈ BV (Ω), if its distributional gradient is a Radon measure, i.e.
if there is a TM valued Radon measure Du so that for any vector field X ∈
C1

c (Ω;TM) ˆ
Ω

u divgX dµg = −
ˆ
Ω

g(X,Du).

We writeˆ
Ω

|Du| = sup

{ˆ
Ω

u divgX dµg : X ∈ C1
c (Ω;TM), ∥X∥L∞ ≤ 1

}
for the total variation norm.

Proposition 3.2 (BV compactness, see Appendix A). If uk ∈ BV (Ω) satisfies

sup
k

(
∥uk∥L1(Ω′) +

ˆ
Ω′
|Duk|

)
<∞,

for all Ω′ precompact open set in Ω, then after passing to a subsequence, there is
u ∈ BVloc(Ω)

2 so that uk → u in L1
loc(Ω)

3 andˆ
Ω′
|Du| ≤ lim inf

k→∞

ˆ
Ω′
|Duk|

for all Ω′ precompact in Ω.

Remark 3.3. If Ω has Lipschitz boundary, then we can drop the “loc,” i.e. we
could replace Ω′ by Ω throughout. We will not address this further.

2That is, u ∈ BV (Ω′) for all Ω′ compactly contained in Ω.
3That is, L1 convergence on precompact open sets.
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Definition 3.4. For a Borel set E ⊂ Ω, we say that E has finite perimeter if
χE ∈ BV (Ω). In this case, we define the perimeter of E by

P (E; Ω) =

ˆ
Ω

|DχE|.

Often, sets of finite perimeter are called Caccioppoli sets.

See Appendix A for further results on BV functions and sets of finite perimeter.

3.1. Γ-convergence. The following computation is rather simple but it underlies
the theory of limits of minimizers. Define

Φ(t) :=

ˆ t

0

√
2W (s)ds.

Then, we compute, using AM-GM4 and the chain rule:

Eε(u; Ω) =

ˆ
Ω

(
ε

2
|∇gu|2 +

1

ε
W (u)

)
dµg(3.1)

≥
ˆ
Ω

√
2W (u)|∇gu| dµg

=

ˆ
Ω

|∇g(Φ(u))| dµg.

Combined with BV compactness and some measure theoretic arguments we find
the following result that loosely speaking says that the behavior of the Allen–
Cahn energy is “controlled from below” as ε→ 0 by the perimeter functional.

Proposition 3.5 ([Mod85, MM77, Ste88, FT89]). For Ω ⊂ (M, g) a precompact
open set, suppose that uε satisfy Eε(uε; Ω) ≤ C. Then, there is a subsequence
εk → 0 and u0 ∈ BVloc(Ω) with u0 ∈ {±1} a.e., and

uεk → u0

in L1
loc(Ω). Moreover,

σP ({u0 = 1}; Ω′) ≤ lim inf
k→∞

Eεk(uεk ; Ω
′),

where σ = Φ(1)−Φ(−1) =
´ 1
−1

√
2W (s)ds, for any Ω′ compactly contained in Ω.

Sketch of the proof. We we can check that |Φ(t)| ≤ α+βW (t); thus, the uniform
energy bounds Eε(uε; Ω) ≤ C imply that ∥Φ(uε)∥L1(Ω) ≤ C. Thus, we can use
(3.1) and BV compactness to find v0 ∈ BVloc(Ω) so that a subsequence of Φ(uε)
converges in L1

loc(Ω) to v0 andˆ
Ω′
|Dv0| ≤ lim inf

k→∞
Eεk(uεk ; Ω

′).

4i.e., 2xy ≤ x2 + y2.
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The function Φ is invertible, and indeed Φ−1 is uniformly continuous. Moreover,
because W (t) ≥ ct4 for t sufficiently large, we see that ∥uε∥L4(Ω) ≤ C. These
facts suffice for us to find a further subsequence so that uεk → u0 := Φ−1(v0)
in L1

loc(Ω) and that u0 ∈ BVloc(Ω) with u0 ∈ {±1} a.e. in Ω. The fact that
u0 ∈ {±1} follows from:

δ2

4
|{x ∈ Ω′ : |uεk(x)2 − 1| > δ}| ≤

ˆ
Ω′
W (uε)dµg ≤ Cε

for any δ > 0.
Now, we compute

Φ(u0) = Φ(1)χ{u0=1} + Φ(−1)χ{u0=−1}

= (Φ(1)− Φ(−1))χ{u0=1} + Φ(−1)(χ{u0}=1} + χ{u0=−1})

= (Φ(1)− Φ(−1))χ{u0=1} + Φ(−1)χΩ

a.e. in Ω. Hence,ˆ
Ω′
|DΦ(u0)| = (Φ(1)− Φ(−1))P (χ{u0=1}; Ω

′) = (Φ(1)− Φ(−1))

ˆ
Ω′
|Du0|.

This completes the proof. □

Exercise 3.1. Fill in the details missing in the previous sketch:

(a) Show that |Φ(t)| ≤ α + βW (t).

(b) Show that Φ−1 exists and is uniformly continuous.

(c) Show that (after passing to a further subsequence) uεk converges to u0 :=
Φ−1(v0) in measure on Ω.5

(d) For (X,µ) a measure space with µ(X) <∞, if fi are measurable functions
converging to f in measure, and ∥fi∥Lp(X) ≤ C for some C > 0, p > 1,
show that fi → f in L1(X).

(e) Conclude that uεk converges to u0 in L
1(Ω′) and thus (passing to a further

subsequence via a diagonal argument) a.e. in Ω.

(f) Check that u0 ∈ BVloc(Ω) and u0 ∈ {±1} a.e. in Ω.

The counterpart to the previous result is the following “recovery” result. It
says that Proposition 3.5 is sharp along certain sequences. We emphasize that the
sequences uε constructed below are not critical points (but more on this later).

Proposition 3.6 ([Mod85, MM77, Ste88]). If E ⊂ Ω is a set of finite perimeter,
then there is a sequence uε ∈ H1(Ω) ∩ L4(Ω) with

σP (E; Ω) = lim
ε→0

Eε(uε; Ω)

and uε → χE − χΩ\E in L1(Ω).

5Recall that fi → f in measure if limi→∞ µ(|fi − f | ≥ δ) = 0 for all δ > 0.
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Sketch of the proof. Assume that ∂E is smooth and can be extended slightly be-
yond ∂Ω. In particular, the signed distance d∂E(·) is smooth near ∂E. Recall that
|∇d∂E| = 1. We consider uε = φ(ε−1d∂E(·)) for φ to be chosen. We assume that
φ ≡ ±1 outside of [−K,K]. Then, writing Σt = {d∂E(·) = t} for t sufficiently
close to 0, we find that

Eε(uε; Ω) =

ˆ
Ω

(
1

2ε
φ′(ε−1d∂E(x))

2 +
1

ε
W (φ(ε−1d∂E(x)))

)
dµg

=

ˆ Kε

−Kε

ˆ
Σt

(
1

2ε
φ′(ε−1t)2 +

1

ε
W (φ(ε−1t))

)
dµΣtdt

≈ area(∂E)

ˆ Kε

−Kε

(
1

2ε
φ′(ε−1t)2 +

1

ε
W (φ(ε−1t))

)
dt

≈ area(∂E)

ˆ K

−K

(
1

2
φ′(t)2 +W (φ(t))

)
dt.

Choosing φ(t) = H(t) (cut off to ±1 outside of [−K,K]), we find that

Eε(uε; Ω) ≈ area(∂E)

ˆ ∞

−∞

(
1

2
H′(t)2 +W (H(t))

)
dt = σP (E; Ω)

(see Exercise 2.3). □

Remark 3.7. The combination of the “lim-inf” lower bound from Proposition
3.5 for general sequences, with the “recovery” result from Proposition 3.6, means
that “the Allen–Cahn functional Γ-converges to the perimeter functional (times
σ).” This is a rather general phenomenon (first suggested by De Giorgi [DGF75,
DG79]) that is very powerful for the study of (local) minimizers of functionals (as
we will briefly discuss below). The main downside to using Γ-convergence comes
when considering more general critical points (in particular, it does not seem to
handle the issue of “multiplicity” well).

3.2. Consequences for (local) minimizers. We will consider (M, g) a closed
Riemannian manifold unless stated otherwise.

Definition 3.8. We say that a function u ∈ H1(M) ∩ L4(M) is a strict local
minimizer of Eε(·) if there is δ > 0 so that Eε(v) > Eε(u) for any v ∈ L1(M) with
0 < ∥u − v∥L1(M) ≤ δ. We will also write strict δ-local minimizer to emphasize
the size of δ.

Exercise 3.2 (+). Show that a local minimizer is a critical point of Eε(·) and
thus satisfies the Allen–Cahn equation.

Definition 3.9. For (M, g) not necessarily compact and Ω ⊂ (M, g) precompact,
we say that a set E ⊂ Ω minimizes perimeter in Ω (we will also drop Ω when
Ω =M) if for any E ′ ⊂ Ω with E∆E ′ compactly contained in Ω, then

P (E; Ω) ≤ P (E ′; Ω).
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We say that E is a (strict) local minimizer if there is δ > 0 so that the previous
holds (with the strict inequality) for E ′ with 0 < ∥χE − χE′∥L1(Ω) ≤ δ.

Proposition 3.10. Suppose that uε is a sequence of δ-local minimizers of Eε(·)
in a compact manifold (M, g). Assume that Eε(uε) ≤ C. Then, after passing to
a subsequence εk → 0, uεk → u0 in L1(M), with u0 ∈ BV (M) and u0 ∈ {±1}
a.e. in M . The set E := {u0 = 1} is a local minimizer of perimeter.

Proof. We only need to prove that E is a local minimizer of perimeter. If not,
there is Ẽ with

∥χE − χẼ∥L1(M) <
δ

2

and P (Ẽ) < P (E). Using Proposition 3.6, we can find ũεk with ũεk → χẼ in
L1(M) and

lim
k→∞

Eεk(ũεk) = σP (Ẽ)

On the other hand, we compute

∥ũεk − uεk∥L1(M) ≤ ∥ũεk − (χẼ − χM\Ẽ)∥L1(M) + ∥uεk − (χE − χM\E)∥L1(M)

+ ∥(χE − χM\E)− (χẼ − χM\Ẽ)∥L1(M)

= ∥ũεk − (χẼ − χM\Ẽ)∥L1(M) + ∥uεk − (χE − χM\E)∥L1(M)

+ 2∥χE − χẼ∥L1(M)

< δ + o(1)

as k → ∞. Thus, for k sufficiently large, we find that

Eεk(ũεk) ≥ Eεk(uεk)

Thus, we find that

σP (E) ≤ lim inf
k→∞

Eεk(uεk) ≤ lim inf
k→∞

Eεk(ũεk) = σP (Ẽ)

This is a contradiction. This completes the proof. □

The following result is a sort of strengthening of the “recovery” result in Propo-
sition 3.6 in the sense that it finds (for local minimizers of perimeter) recovery
sequences that are again themselves local minimizers.

Proposition 3.11 (Kohn–Sternberg [KS89]). Suppose that E ⊂ (M, g) is a strict
local minimizer of perimeter. Then, for ε sufficiently small, there exists uε solving
the Allen–Cahn equation and locally minimizing Eε(·) so that uε → (χE −χM\E)
in L1(M) and limε→0Eε(uε) = σP (E).

Exercise 3.3. Prove this. Hint: minimize Eε(·) in a (closed) L1-ball centered at
χE − χM\E. Is the minimizer in the interior of the ball or at the boundary?
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3.3. Regularity of minimal surfaces. We state without proof the regularity
of local-minimizers of perimeter. See [Sim83] for details.

Proposition 3.12 (De Giorgi, Flemming, Almgren, Federer, Simons). If a set
E ⊂ (Mn, g) is a local minimizer of perimeter for 3 ≤ n ≤ 7, then, after changing
E by a set of measure zero, the topological boundary of E, ∂E, is a smooth
hypersurface.

We note that the mean curvature of ∂E vanishes

H∂E = trT∂E A∂E(·, ·) = 0,

for A∂E the second fundamental form. and that ∂E is stable in the sense that
QΣ(φ, φ) ≥ 0 for all φ ∈ C∞(Σ) where QΣ is the second variation operator
defined below.

4. Non-minimizing solutions to Allen–Cahn

For Σn−1 ⊂ (Mn, g) an arbitrary (closed) minimal (two-sided6) surface, recall
that if we vary Σ with normal speed φ then

d2

dt2

∣∣∣
t=0

areag(Σt) =

ˆ
Σ

φJφdµ := QΣ(φ, φ).

is the second variation, where

(4.1) Jφ = −∆Σφ− (|AΣ|2 +Ricg(ν, ν))φ.

The Morse index of Σ is the largest dimension of a linear subspace W ⊂ C∞(Σ)
so that for φ ∈ W \ {0}, QΣ(φ, φ) < 0.

Exercise 4.1. For M = Sn = {x ∈ Rn+1 : |x| = 1} and Σ = {xn = 0} ∩ Sn,
check that Σ is minimal and has Morse index 1.

Similarly, for a function uε on (Mn, g) solving the Allen–Cahn equation ε2∆guε =
W ′(uε), we define

d2

dt2

∣∣∣
t=0
Eε(uε + tψ) := Quε(ψ, ψ).

As with minimal surfaces, we say that uε is stable if Quε(ψ, ψ) ≥ 0 for ψ ∈
C∞(M). Similarly, the Morse index of uε is the largest dimension of a linear
subspace W ⊂ C∞(M) so that for ψ ∈ W \ {0}, Quε(ψ, ψ) < 0.
We now analyze the Allen–Cahn second variation expression further. Observe

that

Quε(ψ, ψ) =

ˆ
M

(
ε|∇ψ|2 + 1

ε
W ′′(uε)ψ

2

)
dµg.

6Two-sided means that there is a consistent choice of unit normal. Compare to RP 2 ⊂ RP 3.
Note that if Σ = ∂E, then Σ is necessarily two-sided.
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It turns out to be crucial to rewrite this in a somewhat different form. Recall the
Bochner formula

1

2
∆g|∇f |2 = |D2f |2 + g(∇∆gf,∇f) + Ricg(∇f,∇f),

valid for any smooth function f on a Riemannian manifold. In particular we find
that

ε

2
∆g|∇uε|2 = ε|D2uε|2 +

1

ε
W ′′(uε)|∇uε|2 + εRicg(∇uε,∇uε),

Now, formally plugging in ψ|∇uε| into the second variation of energy, we we find

Quε(ψ|∇uε|, ψ|∇uε|)

=

ˆ
M

(
ε|∇(|∇uε|ψ)|2 +

1

ε
W ′′(uε)ψ

2|∇uε|2
)
dµg

=

ˆ
M

(
ε|∇|∇uε||2ψ2 +

ε

2
g(∇ψ2,∇|∇uε|2) + ε|∇ψ|2|∇uε|2 +

1

ε
W ′′(uε)ψ

2|∇uε|2
)
dµg

=

ˆ
M

(
ε|∇|∇uε||2ψ2 − ε

2
(∆g|∇uε|2)ψ2 + ε|∇ψ|2|∇uε|2 +

1

ε
W ′′(uε)ψ

2|∇uε|2
)
dµg

= ε

ˆ
M

(
|∇ψ|2|∇uε|2 − ((|D2uε|2 − |∇|∇uε||2) + Ricg(∇uε,∇uε))ψ2

)
dµg

Note that |∇uε| might not be smooth. However, we can justify the previous
computation to prove the following:

Proposition 4.1. If uε is a stable solution to the Allen–Cahn equation, thenˆ
{|∇uε|̸=0}

(
|∇ψ|2|∇uε|2 − ((|D2uε|2 − |∇|∇uε||2) + Ricg(∇uε,∇uε))ψ2

)
dµg ≥ 0.

Exercise 4.2. Prove this. Hint: For δ > 0, show that
√

|∇uε|2 + δ2 is smooth

so stability implies that Quε(ψ
√

|∇uε|2 + δ2, ψ
√

|∇uε|2 + δ2) ≥ 0. Then send
δ → 0. It might be useful to observe that |∇|∇uε||2 ≤ |D2u|2 when |∇uε| ̸= 0,
which follows from 2|∇uε|∇|∇uε| = ∇|∇uε|2 = 2D2uε(∇uε, ·).

The observation that |∇|∇uε||2 ≤ |D2u|2 when |∇uε| ̸= 0 yields the following
non-existence result.

Exercise 4.3. Suppose now that (Mn, g) has positive Ricci curvature.

(a) Show that there are no stable minimal (two-sided) hypersurfaces.

(b) Show that there are no stable (non-trivial) solutions to Allen–Cahn.

4.1. The Pacard–Ritoré construction. It turns out that solutions to Allen–
Cahn exist near minimal surfaces Σ beyond just local minimizers, e.g. for unstable
Σ. We say that Σ is non-degenerate if ker J = {0}.
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Theorem 4.2 (Pacard–Ritoré [PR03], cf. [JS09, Pac12]). If Σn−1 ⊂ (Mn, g) is
a smooth non-degenerate minimal hypersurface that divides M into two pieces,
then for ε0 = ε0(Σ,M, g) > 0 sufficiently small, there exists {uε}ε∈(0,ε0) solving
(4.2) ε2∆guε = W ′(uε)

and so that uε approximates Σ in the sense that uε converges to 1 on one side of
Σ and −1 on the other side of Σ and so that

lim
ε→0

Eε(uε) = σ areag(Σ).

At a high level, the proof consists of perturbing the function H(ε−1dΣ(·)) to a
solution of (4.2). See Problems 2 and 3 for important elements of the proof.

4.2. Gaspar–Guaraco existence theory. Theorem 4.2 shows how to find a
solution to Allen–Cahn given a (non-degenerate) minimal surface. However, re-
cently there has been a lot of activity regarding the other direction, i.e., using
the Allen–Cahn equation to find (unstable) minimal surfaces. As such, one needs
an existence result that does not depend on the existence of a minimal surface.
We describe such a result below.

Consider (Mn, g) closed Riemannian manifold. Recall that ±1 are the (unique)
global minimizers for Eε(·) (and they both have the same energy 0). This suggests
the use of a mountain-pass theorem. Because Eε(·) is defined on H1(M) an
infinite dimensional space, one must check the so-called Palais–Smale condition.
The idea of this (in reality, one must slightly modify this argument) is contained
in the following exercise:

Exercise 4.4. For ε > 0 fixed, consider uk ∈ H2(M) with |uk| ≤ 1, Eε(uk) ≤ C
and ∥∆uk−W ′(uk)∥L2(M) → 0. Show that a subsequence of uk converges strongly
in H1(M) to u which is a solution to the Allen–Cahn equation on (M, g).
Hint: Show that ∥uk∥H1(M) is uniformly bounded and then for a weak subse-

quential limit u of the uk, check that u solves the Allen–Cahn equation. Finally,
relate

´
|∇(uk − u)|2dµg to ⟨∆uk −W ′(uk), (uk − u)⟩L2(M) (up to other terms

tending to zero) to prove strong convergence in H1(M).

This implies (when combined with energy bounds for paths betwen +1 and
−1) the following result. In fact, higher index critical points exist as well, see the
work of Gaspar–Guaraco [GG19].

Theorem 4.3 (Guaraco [Gua18]). For (Mn, g) a closed Riemannian manifold
and ε > 0 sufficiently small, there exists uε solving the Allen–Cahn equation with
index(uε) ≤ 1 and C−1 ≤ Eε(uε) ≤ C, for C independent of ε > 0.

The function uε is constructed via a mountain pass result, by considering Υ,

the set of all paths [−1, 1] 7→ u
(s)
ε ∈ H1(M) with u

(±1)
ε = ±1. Then uε is found

by minimizing the quantity
sup
s∈[0,1]

Eε(u
(s)
ε ).
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over all paths in Υ.
By taking ε → 0 and using the regularity results of Hutchinson–Tonegawa,

Tonegawa–Wickramasekera [HT00, TW12], this yields a new proof of the exis-
tence of minimal hypersurfaces in a closed Riemannian manifold (Mn, g), origi-
nally proved by Almgren, Pitts, and Schoen–Simon [Pit81, SS81].

5. Entire solutions to the Allen–Cahn equation

Exercise 5.1 (+). Suppose that uε is a sequence of functions solving the Allen–
Cahn equation on (M, g). Choose xj ∈ M and εj → 0, and consider for K fixed
(large) the ball BKεj(xj) ⊂M .

(a) Make sense of what it means to “zoom in” by scale ε−1
j by defining a new

metric gj on BK and a rescaled function ũj.

(b) Show that gj converges smoothly to the flat Euclidean metric on BK(0) ⊂
Rn and (after passing to a subsequence) ũj converges smoothly to ũ solving
the Allen–Cahn equation on BK with ε = 1.

(c) If uεj was stable in Bρ(xj) for some ρ > 0 fixed, show that ũ is stable in
BK(0) for compactly supported variations.

(d) If index(uεj ;Bρ(xj)) ≤ I0 show the same for ũ.

(e) If uεj was δ-locally minimizing, what property does ũ satisfy?

(f) Writing ũK to emphasize the choice of K, show that we can send K → ∞
to find an entire solution to the Allen–Cahn equation on Rn with ε = 1.
What happens in cases (c)-(e)?

Exercise 5.1 motivates the study of entire solutions to Allen–Cahn with ε = 1 on
Rn with various additional conditions (e.g., stability, bounded index, minimizing).
However, this is not the original motivation for the study of entire solutions
to Allen–Cahn. Indeed, a motivating problem in the study of the Allen–Cahn
equation has been the following conjecture of De Giorgi made in 1978:

Conjecture 5.1 (De Giorgi [DG79]). Consider u ∈ C2(Rn) solving the Allen–
Cahn equation

∆u = W ′(u) = u3 − u

so that |u| ≤ 1 and ∂u
∂xn > 0. At least for n ≤ 8, is it true that u(x) = H(⟨a, x⟩−b)

is a one-dimensional solution?

This conjecture (and particularly the monotonicity ∂u
∂xn > 0 condition) here is

motivated by the classical Bernstein conjecture for minimal surfaces.

Theorem 5.2 (Bernstein [Ber27], Fleming [Fle62], De Giorgi [DG65], Almgren
[Alm66], Simons [Sim68], Bombieri–De Giorgi–Giusti [BDGG69]). Suppose that
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u : Rn−1 → R has the property that graph(u) ⊂ Rn is a minimal surface. Equiv-
alently,

n−1∑
i=1

Di

(
Diu√

1 + |Du|2

)
= 0.

Then, for n ≤ 8, u(x) = ⟨x, a⟩ + b is an affine function. For n > 8, non-flat
minimal graphs exist.

Unlike the Bernstein conjecture for minimal surfaces, the De Giorgi conjecture
is not entirely resolved. It is completely understood in low dimensions

Theorem 5.3 (Ghoussoub–Gui [GG98] (n = 2), Ambrosio–Cabre [AC00] (n = 3)).
For n = 2, 3, consider u ∈ C2(Rn) solving the Allen–Cahn equation with |u| ≤ 1
and ∂u

∂xn > 0. Then, u(x) = H(⟨a, x⟩ − b).

It is also completely understood in high dimensions (here, the dimensional
restriction is expected to be sharp).

Theorem 5.4 (del Pino–Kowalczyk–Wei [dPKW11]). For n ≥ 9, there is u ∈
C∞(Rn) solving the Allen–Cahn equation with |u| ≤ 1 and ∂u

∂xn > 0 that does not
have flat level sets.

For n ∈ {4, 5, . . . , 8}, the De Giorgi conjecture is still open. However, Savin
has shown that it is true under an additional hypothesis.

Theorem 5.5 (Savin [Sav09]). For n ≤ 8, consider u ∈ C2(Rn) solving the
Allen–Cahn equation with |u| ≤ 1 and ∂u

∂xn > 0. Assume in addition that

lim
xn→±1

u(x) = ±1.

Then, u(x) = H(⟨a, x⟩ − b).

See also [Wan17a].

5.1. Stability and minimizing properties of monotone solutions. Recall
that u ∈ C2(Rn) solving the Allen–Cahn equation

∆u = W ′(u)

is stable if it is stable on compact sets, and minimizing if it minimizes E1(·) on
compact sets.

We now discuss the role of the De Giorgi monotonicity condition as well as
Savin’s limit condition.

Lemma 5.6. If u solves the Allen–Cahn equation on Rn and satisfies the De
Giorgi monotonicity condition ∂u

∂xn > 0, then u is stable.

Proof. Set v = ∂u
∂xn > 0. Differentiating the Allen–Cahn equation in the xn-

direction, we find that
∆v = W ′′(u)v.
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In other words, v is a positive solution to the linearized Allen–Cahn equation.
We use this to show that u is stable.
Consider φ the first eigenfunction associated toQu(·, ·) with Dirichlet boundary

conditions on BR(0), i.e., φ achieves the Rayleigh quotient

λ = inf
φ∈H1

0 (BR)\{0}

Qu(φ, φ)

∥φ∥2L2

We have that
∆φ+ λφ = W ′′(u)φ.

If we can prove that λ ≥ 0 (for all R) then u must be stable.
We know that (after possibly replacing φ by −φ) φ > 0; indeed, if not we

could lower the Rayleigh quotient by replacing φ by |φ|. Choose µ > 0 so that
v − µφ ≥ 0 with equality for some x ∈ BR(0) (we know that x ̸∈ ∂BR because φ
has Dirichlet boundary conditions).

We have that

0 ≤ ∆(v − µφ)−W ′′(u)(v − µφ) = µλφ < 0

at x. Hence, λ ≥ 0, completing the proof. □

We emphasize that the previous result shows that H(⟨x, a⟩) is a stable solu-
tion to Allen–Cahn on Rn. Before proving that the Savin condition implies a
minimizing property, we first prove the following comparison result:

Lemma 5.7. Suppose that u, v are solutions to the Allen–Cahn equation on
Bδ(0) ⊂ Rn with u ≤ v and u(0) = v(0). Then u = v on Bδ(0).

Proof. Write w = u − v on Bδ. Note that w ≤ 0 with w = 0. We would like
to apply the maximum principle to w. To this end, we must find a linear PDE
satisfied by w. Note that

∆w = W ′(u)−W ′(v)

=

ˆ 1

0

d

dt
W ′(tu+ (1− t)v)dt

=

(ˆ 1

0

W ′′(tu+ (1− t)v)dt

)
︸ ︷︷ ︸

:=Ξ

w

Thus w satisfies the linear PDE ∆w = Ξw. The maximum principle thus applies
to prove that w = 0 on Bδ(0). □

Proposition 5.8. Suppose that u solves the Allen–Cahn equation on Rn, and
that we have |u| < 1, the De Giorgi monotonicity condition ∂u

∂xn > 0, and Savin’s
condition

lim
xn→±∞

u(x′, xn) = ±1

for all x′ ∈ Rn−1. Then, u minimizes E1(·) on compact subsets of Rn.
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Proof. Fix R > 0 and choose v ∈ C∞(BR) achieving (see Exercise 5.2 for the
existence of v)

(5.1) inf{E1(v) : v ∈ C∞(BR), v|∂BR
= u|∂BR

}

We claim that |v| < 1. First, observe that truncating v at ±1, i.e.,

ṽ := 1{v∈[−1,1]}v + 1{v>1} − 1{v<−1}

does not increase the Dirichlet energy or the potential term, i.e., E1(ṽ) ≤ E1(v).
Thus, |v| ≤ 1 by elliptic theory (if not, ṽ would be a non-smooth minimizer).
Because ±1 solve the Allen–Cahn equation, Lemma 5.7 implies that either |v| < 1
on BR(0) or v = ±1 on BR, which cannot happen since we assumed that v = u
on ∂BR and |u| < 1.
Now, let τ denote the smallest number so that for

uτ (x
′, xn) := u(x′, xn + τ),

we have uτ ≥ v on BR. Observe that limτ→∞ uτ = 1 uniformly on BR, so for τ
sufficiently large the desired condition is satisfied. By Exercise 5.2, τ ≥ 0 exists
and there is x̂ ∈ BR with uτ (x̂) = v(x̂).
If τ > 0, then x̂ ̸∈ ∂BR, since on ∂BR, uτ > u = v by the De Giorgi mono-

tonicity condition. Hence, in this case we can apply Lemma 5.7 to conclude that
uτ = v in a neighborhood of x̂ and thus all of BR by unique continuation. This
is a contradiction, since uτ ̸= v on ∂BR. Thus τ = 0, so u ≥ v on BR.
A similar argument proves that v ≤ u on BR, so u = v on BR. This implies

that u attains the minimum in (5.1), completing the proof. □

Exercise 5.2 (+). Fill in the following steps of the proof of Proposition 5.8.

(a) Check that a smooth function v achieving the infimum in (5.1) exists.

(b) Check that τ exists and there is some point x̂ ∈ BR so that uτ (x̂) = v(x̂).

Exercise 5.3. For u solving the Allen–Cahn equation with |u| < 1, suppose that
u satisfies De Giorgi’s monotonicity condition ∂u

∂xn > 0 but not necessarily Savin’s
condition. Show that u±(x

′) := limxn→±∞ u(x′, xn) exist (and solve the Allen–
Cahn equation). Show that u minimizes E1(·) on BR among functions v(x′, xn)
with u−(x

′) ≤ v(x′, xn) ≤ u+(x
′) for all (x′, xn) ∈ BR.

Exercise 5.4. Suppose that |u| ≤ 1 minimizes E1(·) on compact sets. Show that
there is C > 0 so that E1(u;BR) ≤ CRn−1 for all R > 0.

5.2. Classifying stable entire solutions. As such, we see that to solve De
Giorgi’s conjecture it makes sense to study entire stable solutions.7 The following
results represent the state of affairs of the classification of stable solutions in Rn.

7Additionally, the understanding of entire stable solutions is intimately linked with the local
behavior of stable/bounded index solutions on a manifold, cf. [WW19, CM18, WW18].
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Theorem 5.9 (Ghoussoub–Gui [GG98]). Consider u ∈ C2(R2) a stable solution
to the Allen–Cahn equation with |u| < 1. Then u(x) = H(⟨a, x⟩ − b) is the
1-dimensional solution.

See also [FMV13], who give a slightly different strategy of proof (this is the
basis for the proof we give below).

Theorem 5.10 (Ambrosio–Cabre [AC00]). Consider u ∈ C2(R3) a stable so-
lution to the Allen–Cahn equation with |u| ≤ 1 and E1(u;BR) ≤ CR2 for some
C > 0 independent of R. Then u(x) = H(⟨a, x⟩−b) is the 1-dimensional solution.

Theorem 5.11 (Pacard–Wei [PW13]). For n ≥ 8, there exists u ∈ C∞(Rn) a
stable solution to the Allen–Cahn equation with E1(u;BR) ≤ CRn−1 but the level
sets of u are not flat.

Liu–Wang–Wei [LWW17] have recently extended this result to construct min-
imizers in Rn for n ≥ 8.

5.3. Stable solutions in R2. We prove Theorem 5.9. The beginning of the
argument will work in all dimensions. We will indicate where we specialize to
n = 2 below. Assume that u is a stable solution to Allen–Cahn on Rn with
|u| ≤ 1. By Proposition 4.1, stability implies that we haveˆ

Rn

|∇φ|2|∇u|2dµ ≥
ˆ
Rn

|B|2φ2|∇u|2dµ

for any compactly supported smooth function φ, where

|B|2 = |∇u|−2(|D2u|2 − |∇|∇u||2)

at points where ∇u ̸= 0 and |B|2 = 0 when ∇u = 0.

Exercise 5.5 (+). This problem concerns the quantity |B|2.
(a) Show that a solution to Allen–Cahn on Rn with |u| < 1 cannot have

∇u = 0 everywhere.

(b) Show that |D2u|2 − |∇|∇u||2 ≥ 0 at a point with ∇u ̸= 0.

(c) Suppose a solution to Allen–Cahn with |u| < 1 has |B|2 = 0 on all of Rn.
Show that ∇u

|∇u| is a parallel vector field on {∇u ̸= 0}. Hint: Compute

|D(∇u/|∇u|)|2.
(d) Use unique continuation to prove that a solution to Allen–Cahn with |u| <

1 and |B|2 = 0 on all of Rn must be one-dimensional, i.e.,

u(x) = ũ(⟨a, x− x0⟩).

(e) Assume that |B|2 ≡ 0 and |u| < 1 is stable. Show that u(x) = H(⟨a, x− x0⟩)
for some |a| = 1, x0 ∈ Rn. Is this true without the stability condition?
What if stability is replaced by E1(u;BR) ≤ CRn−1?
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(f) The quantity |B|2 is often thought of as the (square) norm of the “second
fundamental form” of u. Justify this heuristic.

As such, this problem shows that the 1-dimensional solution is the unique stable
solution on Rn with vanishing second fundamental form and |u| < 1.

Exercise 5.6 (+). Using interior Schauder estimates and |u| < 1, prove that
|∇u| ≤ C on Rn, for C = C(n) (note that this does not depend on the stability
condition).

Now, we specialize to n = 2. We would like to choose cutoff functions φi that
tends to 1 pointwise on R2 and so thatˆ

R2

|∇φi|2 → 0.

The function ψR cutting linearly (perhaps with a bit of smoothing) off between
R and 2R only gives ˆ

R2

|∇ψR|2 ≲ R−2R2 ≤ C,

which is just barely failing what we want. It turns out that the solution is to
use the log-cutoff trick which appears all over the place in similar problems (e.g.
stable minimal surfaces in R3). Motivated by the fundamental solution to the
Laplacian on R2, we set

φR(x) :=


1 |x| ≤ R

2− log |x|
logR

R < |x| < R2

0 |x| ≥ R2

for R > 1. As usual, φ is only Lipschitz, but we can justify plugging it into the
stability inequality by an approximating argument. We thus find that
ˆ
R2

|∇φR|2 =
ˆ
BR2 (0)\BR(0)

1

|x|2 log2R
≲

1

log2R

ˆ R2

R

r−1dr =
logR

log2R
=

1

logR
→ 0

as R → ∞. We now use the previous two exercises: because |∇u| ≤ C we get
that

lim inf
R→∞

ˆ
R2

|∇φR|2|∇u|2 ≤ C2 lim inf
R→∞

ˆ
R2

|∇φR|2 = 0.

Moreover, combining φ → 1 pointwise and the fact that the right hand side of
the stability inequality is non-negative, Fatou’s lemma implies thatˆ

R2

|B|2|∇u|2 ≤ 0.

Thus |B|2 = 0, so the proof is finished.
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5.4. Stable solutions in R3. The strategy we used before has no hope of work-
ing if we try to repeat the steps verbatim.

Exercise 5.7. Show that if φ ≡ 1 on BR(0) ⊂ R3 and φ has compact support,
then

´
R3 |∇φ|2 ≥ 4πR.

However, under the energy growth assumption E1(u;BR) ≤ CR2, we can do
better by not using |∇u| ≤ C. Using φR (the log-cutoff function), we findˆ

R3

|B|2φ2
R|∇u|2 ≤

ˆ
R3

|∇φR|2|∇u|2 =
1

log2R

ˆ
BR2 (0)\BR(0)

|x|−2|∇u|2.

For simplicity, assume that R = 2k for some k = logR
log 2

∈ N. Then, write

R0 = 2k, R1 = 2k+1, . . . , Rk = 22k = R2.

so ˆ
BR2 (0)\BR(0)

|x|−2|∇u|2 =
k−1∑
j=0

ˆ
BRj+1

\BRj

|x|−2|∇u|2

≤
k−1∑
j=0

R−2
j

ˆ
BRj+1

\BRj

|∇u|2

≤
k−1∑
j=0

R−2
j

ˆ
BRj+1

|∇u|2

≤ C
k−1∑
j=0

R−2
j R2

j+1

≤ C
k−1∑
j=0

4

= Ck

=
C logR

log 2
.

Because this integral is multiplied by (logR)−2, we find thatˆ
R3

|∇φR|2|∇u|2 → 0

as before. The proof is then completed as for n = 2.

5.5. Area growth of monotone solutions in R3. Finally, we present the proof
of De Giorgi’s conjecture in R3 by Ambrosio–Cabre (Theorem 5.3). Note that in
n = 2, because monotone solutions are stable, the n = 2 classification of stable
solutions of Ghoussoub–Gui (Theorem 5.9) automatically resolves the problem.
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In R3, to apply the classification of stable solutions we must verify that monotone
solutions have the quadratic area growth E1(u;BR) ≤ CR2.

Define ut(x) = u(x1, x2, x3 + t). By monotonicity,

u±∞(x) := lim
t→±∞

ut(x)

exists and is independent of x3. Moreover, by using Schauder estimates, we see
that the limit occurs smoothly on compact subsets of R3.

Exercise 5.8 (+). Show that u±∞(x1, x2) is a stable solution to Allen–Cahn
on R2. Thus, the classification of stable solutions on R2 shows they are 1-
dimensional. Use this to show that (as functions on R3) we have

E1(u
±∞;BR ⊂ R3) ≤ CR2

for some C > 0 independent of R. Thus, conclude that

lim
t→±∞

E1(u
t;BR ⊂ R3) ≤ CR2

for some C > 0 independent of R.

Note that because u is monotone, ∂tu
t > 0. Now, consider

E1(u
t;BR) :=

ˆ
BR

1

2
|∇ut|2 +W (ut)

The idea is to differentiate this with respect to t and use the information just
gained as t→ ∞. Recall that |∇ut| ≤ C. We now compute:

∂tE1(u
t;BR) =

ˆ
BR

〈
∇∂tut,∇ut

〉
+W ′(ut)∂tu

t

=

ˆ
BR

−(∂tut)∆ut +W ′(ut)∂tu
t +

ˆ
∂BR

∂tu
t∂νu

t

=

ˆ
∂BR

∂tu
t∂νu

t

≥ −C
ˆ
∂BR

∂tu
t.

In the final inequality we crucially used (again) the monotonicity property of u.
Thus, integrating this with respect to t, we find that

E1(u
+∞;BR)− E1(u;BR) ≥ −C

ˆ
∂BR

(u+∞ − u) ≥ −CR2.

In the final inequality, we used |u| ≤ 1 and |∂BR| = 4πR2. Putting this together,
we find that

E1(u;BR) ≤ CR2.

This completes the proof.
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Appendix A. BV basics

We discuss some basic facts about BV functions. Further references for BV
functions and sets of finite perimeter include [Sim83, Giu84, AFP00, Mag12,
Leo17].

Recall that for Ω ⊂ (Mn, g) an open set, u ∈ L1(Ω) is in BV (Ω) if Du is a
TM -valued Radon measure, i.e., for any vector field X ∈ C1

c (Ω;TM)ˆ
Ω

u divgX dµg = −
ˆ
Ω

g(X,Du).

Recall that |Du| is then a (usual) Radon measure defined byˆ
Ω′
|Du| = sup

{ˆ
Ω′
u divgX dµg : X ∈ C1

c (Ω
′;TM), ∥X∥L∞ ≤ 1

}
.

Then, we set

∥u∥BV (Ω) := ∥u∥L1(Ω) +

ˆ
Ω

|Du|.

This is clearly a norm.

Lemma A.1. The space BV (Ω) is a Banach space.

Proof. We only need to check completeness. A Cauchy sequence uk ∈ BV (Ω)
converges in L1 to u ∈ L1(Ω), since L1(Ω) is complete. Now,ˆ

Ω

uk divgXdµg →
ˆ
Ω

u divgXdµg,

so u ∈ BV (Ω). Finally, for X as in the definition of the BV norm, we haveˆ
Ω

(u− uk) divgXdµg =

ˆ
Ω

(u− uj) divgXdµg +

ˆ
Ω

(uj − uk) divgXdµg

=

ˆ
Ω

(u− uj) divgXdµg −
ˆ
Ω

g(D(uj − uk), X).

For any X ∈ C1
c (Ω;TM) there is j sufficiently large so thatˆ

Ω

(u− uj) divgXdµg <
δ

2
,

since uj
L1

−→ u. Moreover, for all j, k sufficiently large,

sup
X∈C1

c (Ω;TM),∥X∥∞≤1

ˆ
Ω

g(D(uj − uk), X) <
δ

2
,

by the Cauchy sequence property. Putting this together, we find thatˆ
Ω

|Du−Duk| < δ

for k large. This completes the proof. □
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Exercise A.1. In single-variable real analysis one often says that a function f
defined on an interval, say [0, 1] is of bounded variation to mean

V (f) := sup
P∈P

|P |−1∑
i=0

|f(xi+1)− f(xi)| <∞

where P is the set of finite partitions 0 = x0 < x1 < · · · < x|P | = 1 of [0, 1]. Show
that V (f) <∞ implies that f ∈ BV ((0, 1)) (in the sense described above) andˆ

[0,1]

|Df | ≤ V (f).

You might use the following steps (although there are several proofs):

(a) Assume that V (f) < ∞. For φ ∈ C1
c ((0, 1)) and ε > 0 given, show that

there exists a partition P ∈ P so that

ˆ 1

0

f(x)φ′(x)dx ≤
|P |−1∑
i=0

f(xi)(φ(xi+1)− φ(xi)) + ε.

You should check that the left-hand side makes sense as a Riemann inte-
gral.

(b) Conclude that ˆ 1

0

f(x)φ′(x)dx ≤ ∥φ∥C0
c ((0,1))

V (f)

(c) Use this and the dual characterization of Radon measures to conclude that
f ∈ BV (Ω) with

´
[0,1]

|Df | ≤ V (f).

Conversely, it is possible to show that if f ∈ BV ((0, 1)) then there is a right
continuous representative f̄ of f on [0, 1] with V (f̄) =

´
[0,1]

|Df̄ | < ∞, but this

is slightly more involved.

Exercise A.2. (a) Show that W 1,1(Ω) ⊂ BV (Ω) is a continuous embedding.

(b) Show that if E is an open set in Ω with ∂E a C2-hypersurface, then χE ∈
BV (Ω) but χE ̸∈ W 1,1(Ω). You might begin by considering Ω = (0, 2)
and E = (0, 1), so ∂E = {1}.

(c) Conclude that smooth functions are not dense in BV (Ω).

In spite of the previous exercise, it is possible to approximate BV functions
by smooth functions in a certain sense. For simplicity, we restrict to Ω ⊂ Rn

although this can easily be extended to a manifold by using local coordinate
charts.

Fix ψ ∈ C∞
c a symmetric mollifier, i.e., ψ ≥ 0, suppψ ⊂ B1(0),

´
Rn ψ(x)dx = 1,

and ψ(−x) = ψ(x). Set ψσ(x) = σ−nψ(x/σ). For u ∈ BVloc(Ω), consider the
mollified function u(σ) := u ∗ψσ (where we consider u = 0 outside of Ω, so u(σ) is
well defined on Rn). Set Ωσ := {x ∈ Ω : d(x,Ωc) > σ}.
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Lemma A.2. The function u(σ) is smooth on Rn and as σ → 0, we have u(σ) → u
in L1

loc(Ω) and |Du(σ)| → |Du| as Radon measures on Ω.

Proof. We only prove that |Duσ| → |Du| as Radon measures, the L1 convergence
is standard. For f ∈ C0

c (Ω), we want to show that (for σ < d(supp f,Ωc))ˆ
Ω

f |Du(σ)| →
ˆ
Ω

f |Du|.

We can clearly restrict to f ≥ 0. Note thatˆ
Ω

f |Du(σ)| = sup
X∈C1

c (Ω:Rn),|X|≤f

ˆ
Ω

X · ∇u(σ)dµ

Choose X as above, and note thatˆ
Ω

X · ∇uσdµ = −
ˆ
Ω

u(σ) divX dµ

= −
ˆ
Ωσ

u(σ) divX dµ

= −
ˆ
Ωσ

u ∗ ψσ divX dµ

= −
ˆ
Ωσ

u div(X ∗ ψσ) dµ

≤
ˆ
Ω

(f + o(1))|Du|

as σ → 0. In the last step, we used the fact that |X ∗ ψσ| ≤ |X| ∗ ψσ ≤ f ∗ ψσ

and f ∗ ψσ → f locally uniformly in Ω. Thus,

lim sup
σ→0

ˆ
Ω

f |Du(σ)| ≤
ˆ
Ω

f |Du|.

On the other hand, since X ∗ ψσ → X uniformly on Ω,ˆ
Ω

X ·Dudµ = lim
σ→0

ˆ
Ω

(X ∗ ψσ) ·Dudµ

= lim
σ→0

ˆ
Ω

X · ∇uσdµ

≤ lim inf
σ→0

ˆ
Ω

f |Duσ|

so the opposite inequality holds. This completes the proof. □

Exercise A.3. Note that we are not claiming that u(σ) → u in BV. Convince
yourself that for Ω = (0, 2), u = χ(0,1), u

(σ) converges to u in L1((0, 2)) but u(σ)

is not Cauchy in BV ((0, 2)).
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Proposition A.3. Choose a constant c(Ω′) > 0 for each Ω′ ⋐ Ω. Then the set

{u ∈ C∞(Ω) : ∥u∥W 1,1(Ω′) ≤ c(Ω′),∀Ω′ ⋐ Ω}

is precompact in L1
loc(Ω).

Proof. This is just a version of the Rellich–Kondrachov compactness result, i.e.,
thatW 1,1(Ω′) ⊂ L1(Ω′′) is a compact embedding for Ω′′ ⋐ Ω′ (or we could consider
Ω′ with Lipschitz boundary). See e.g., [GT01, Theorem 7.22]. □

Exercise A.4. Combine Lemma A.2 with Proposition A.3 to prove BV com-
pactness (Proposition 3.2), i.e., if uk ∈ BV (Ω) has

sup
k

∥uk∥BV (Ω′) <∞

for all Ω′ ⋐ Ω, then a subsequence (not relabeled) converges in L1
loc(Ω) to u ∈

BVloc(Ω) and ˆ
Ω′
|Du| ≤ lim inf

k→∞

ˆ
Ω′
|Duk|.

Exercise A.5. Note that we mostly use BV compactness on a manifold. For
(M, g) a closed Riemannian manifold, and uk ∈ BV (M, g) with supk ∥uk∥BV <
∞, explain how to modify the results of this section to show that a subsequence
converges in L1(M) to u ∈ BV (M, g).

Now recall as well that an open set E ⊂ Ω ⊂ (M, g) is a set of finite perimeter
(or Caccioppoli set) if χE ∈ BV (Ω). In this case,

P (E; Ω) :=

ˆ
Ω

|DχE|.

Exercise A.6. For E ⊂ Rn a set with ∂E a C2-hypersurface, show that P (E; Ω) =
Hn−1(∂E ∩Ω). Hint: P (E; Ω) ≤ Hn−1(∂E ∩Ω) follows from the divergence the-
orem. To prove the other direction, first show that the unit normal ν may be
extended appropriately to a vector field on Ω.

Exercise A.7. Show that if (M, g) is a closed Riemannian manifold, and V ∈
(0, volg(M)) is fixed, then there exists a set of finite perimeter E ⊂ (M, g) at-
taining

inf{P (E ′) : E ′ has finite perimeter and Ln
g (E

′) = V }.
The set E is said to be an isoperimetric region of volume V .

After learning the Γ-convergence theory for the Allen–Cahn functional (Section
3) you might figure out how to relate the Allen–Cahn functional to isoperimetric
regions by considering minimizers of the Allen–Cahn energy with a constraint´
M
u = λ. How does λ relate to the enclosed volume as ε→ 0?
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Appendix B. Additional problems

Problem 1. This problem concerns Modica’s inequality [Mod85] and the related
monotonicity formula.

Suppose that u ∈ C2
loc(Rn) has |u| ≤ 1 and solves the Allen–Cahn equation

∆u = W ′(u). Define
P = |∇u|2 − 2W (u).

This part of this problem asks you to show that P ≤ 0.

(a) Show that infRn |∇u| = 0.

(b) Show that

|∇u|2∆P ≥ 1

2
|∇P |2 + 2W ′(u)∇u · ∇P.

(c) Assume that supRn P = P (0) > 0. Use (b) to show that P is constant
and then use (a) to obtain a contradiction. This proves that P ≤ 0 when
supRn P is attained.

(d) Show that P ≤ 0 still holds even when the supremum is not attained.
Hint: Assume that P (xi) → supRn P > 0 and set ui(x) := u(x− xi). Pass
to a C2

loc subsequence and use (c) in the limit.

(e) Suppose that P = 0 somewhere. Conclude that u(x) = H(⟨a, x− x0⟩) for
some x0 ∈ Rn, a ∈ Sn−1.

We now use P ≤ 0 to derive a monotonicity formula for the Allen–Cahn energy.

(f) Denote by

ER := R1−n

ˆ
BR(0)

(
1

2
|∇u|2 +W (u)

)
dµ

the (rescaled) Allen–Cahn energy on BR, check that

dER

dR
= −(n− 1)R−1ER +Rn

ˆ
∂BR(0)

(
1

2
|∇u|2 +W (u)

)
⟨x, ν⟩ dµ,

for ν the outwards pointing unit normal to ∂BR. Integrate by parts to
conclude that

dER

dR
= R−n

ˆ
BR(0)

(−P )dµ+R1−n

ˆ
∂BR(0)

(∂νu)
2dµ ≥ 0.

(g) For u = H(xn) compute limR→0ER and limR→∞ER. Compare your answer
with the behavior of the monotonicity formula for minimal surfaces when
applied to a flat plane.

For (M, g) a closed manifold, we now consider u ∈ C∞(M) solving

ε∆gu = ε−1W ′(u)

Set
P = ε|∇u|2 − 2ε−1W (u)
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(h) Compute an equation for P analogous to the one in (b).

(i) If Ricg ≥ 0 show that P ≤ 0.

(Note: Without assuming Ricg ≥ 0, it is still possible to prove P ≤ C = C(M, g)
independent of ε. For example, one can apply a similar argument to PG =
ε|∇u|2 − 2ε−1W (u)−G(u) for a well-chosen function G. See [HT00, Proposition
3.3]. Using this, we can prove that in (M, g) the expression eΛRER is monotone
non-decreasing for R small and Λ large, just as minimal surfaces satisfy a weighted
monotonicity formula in Riemannian manifolds.)

Problem 2. This problem asks you to prove the following result (used in the
proof of Theorem 4.2 and also in the regularity theory for stable solutions [WW19,
CM18, WW18], among other places), see [PR03, Corollary 7.5] (cf. [Pac12]).

Suppose that w ∈ L∞(Rn−1 ×R) is in the kernel of the linearized Allen–Cahn
operator at the heteroclinic solution:

L∗w := ∆w −W ′′(H(xn))w = 0.

We claim that w(x′, xn) = cH′(xn) for some c ∈ R. Prove this as follows:

(a) Check that H′(xn) ∈ L∞(Rn) satisfies L∗(H′(xn)) = 0.

(b) Prove the claim for n = 1. Hint, consider (logH′(t))′′.

(c) Still when n = 1, argue that there is some µ > 0 so that if u(t) satisfies´∞
−∞ u(t)H′(t)dt = 0, then

ˆ ∞

−∞
u′(t)2 +W ′′(H(t))u(t) dt ≥ µ

ˆ ∞

−∞
u(t)2 dt.

(d) For n ≥ 2, write a solution to L∗w = 0 as w(x′, xn) = c(x′)H′(xn) +
w̄(x′, xn) where ˆ ∞

−∞
w̄(x′, t)H′(t)dt = 0

for each x′ ∈ Rn−1. Show that c is bounded and harmonic and thus
constant.

(e) Show that for σ ∈ (0,
√
2), δ ∈ (0, 1), and all η > 0, the function

Υ(x) := e−σ|xn| + η cosh(δxn)
n−1∑
i=1

cosh(δxi)

satisfies L∗Υ < 0 when |xn| ≥ Λ for Λ = Λ(σ, δ) large. Conclude that for
all η > 0,

|w(x′, xn)| ≤ ∥w∥L∞(Rn)

(
eσ(Λ−|xn|) + η cosh(δxn)

n−1∑
i=1

cosh(δxi)

)
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for |xn| ≥ Λ. Let η → 0 to find some C depending on w (and σ) but not
|xn| so that

|w(x′, xn)| ≤ Ce−σ|xn|.

Show that |∇w| satisfies a similar inequality.

(f) Consider,

V (x′) :=

ˆ ∞

−∞
w̄(x′, t)2dt.

Use (e) to justify differentiating under the integral sign to conclude that

∆Rn−1V − µV ≥ 2

ˆ ∞

−∞
|∇w̄(x′, t)|2dt ≥ 0.

(g) Conclude that V ≡ 0 and thus prove the claim.

Problem 3. This problem can be concerns a formal power series expansion in ε
of the Allen–Cahn equation around a minimal surface Γ ⊂ R3. We will make finer
and finer approximations for a solution to the Allen–Cahn equation. Understand-
ing of these calculations are the first step towards perturbing these functions to
be exact solutions (see Theorem 4.2) as well as understanding arbitrary solutions
under certain hypothesis (see [WW19, CM18, WW18]).

The problem requires some knowledge of Riemannian geometry, particularly
the Gauss equations for the Levi–Civita connection induced on a hypersurface.
The problem might look very long, but this is because you will build up the
approximate solution piece-by-piece, rather than all at once.

Consider Γ2 ⊂ R3 a smooth embedded surface with unit normal p 7→ N(p).
For z ∈ R, set

Xz : Γ ∋ p 7→ p+ zN(p) ∈ R3.

We begin by computing various quantities associated to this map.

(a) Choose coordinates y1, y2 near p ∈ Γ and compute ∂yiXz for z fixed. Show

that (with the convention that ∂yiN(p) =
∑2

j=1Aij(p)∂yj) we have

∂yiXz = ∂yi + zAij∂yj

Assuming that Aij(p) = λiδij is diagonal at p determine the largest interval
(z(p), z(p)) containing 0 so that dXz(p) injective for all z ∈ (z(p), z(p)).
In the remainder of this problem, assume that z ∈ (z(p), z(p)).

(b) Assume that (−δ, δ) ⊂ (z(q), z(q)) for all q in some neighborhood U of
p. Consider the map U × (−δ, δ) ∋ (q, z) 7→ Xz(q). Using the coordi-
nates y1, y2 for q and map yields Fermi coordinates y1, y2, z around Γ (a
generalization of normal coordinates). Show that

gR3 = dz2 + gz

where (gz)ij = (∂yiXz)·(∂yjXz) is the induced metric on the smooth surface
Γz := Xz(U).
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(c) Show that the R3-Laplacian satisfies

∆ = ∂2z +HΓz∂z +∆Γz

where ∆Γz is the gz-Laplacian.
Hint: you can do this by computing in local coordinates, but it might be

easier to prove the general formula for the Laplacian of functions restricted
to a hypersurface Σn−1 ⊂ (Mn, g) with unit normal ν: ∆gf = D2f(ν, ν)+
HΣ∇νf +∆Σf . To prove this, recall how the connections on Σ and M are
related by the second fundamental form.

(d) If Γ is a minimal surface, show that

Hz(Xz(p)) = −z|AΓ(p)|2 +O(z3).

Note that is easier to prove that the error term is O(z2); this weaker
estimate will suffice until part (m) below.

Similarly, show that for a function w(y) on Γ,

∆Γzw = ∆Γw +O(|z|(|Dw|+ |D2w|)).
for z ∈ (−δ, δ).

Define an ansatz u on Xz(U × (−δ, δ)) by u(y, z) = H(ε−1z).

(e) Show that ε2∆u−W ′(u) = O(ε) on U × (−δ, δ) as ε → 0. Show that for
general surfaces Γ, this cannot be improved.

(f) Assuming that Γ is a minimal surface, show that ε2∆u−W ′(u) = O(ε2) as

ε→ 0. Hint: note that H′(t) = O(e−
√
2|t|) as |t| → ∞, so tH′(t) ∈ L∞(R).

(g) Suppose that u(y, z) = H(ε−1z) is an exact solution to Allen–Cahn on
U × (−δ, δ). Show that Γ ∩ U is a piece of a flat plane.

From now on, we assume that HΓ = 0. For Γ non-planar, (g) shows that we must
consider a more flexible ansatz. To this end, set u(y, z) = H(ε−1z) + εu1(y, ε

−1z)
where u1(y, ζ) is a smooth function with all derivatives bounded on U × R.

(h) Compute ε2∆u−W ′(u) and show that ε2∆u−W ′(u) = O(ε).

(i) Show that ∂2ζu1(y, ζ)−W ′′(H(ζ))u1(y, ζ) = 0 for each y ∈ U implies that

ε2∆u−W ′(u) = O(ε2).

(j) Show that ∂2ζu1(y, ζ) −W ′′(H(ζ))u1(y, ζ) = 0 is equivalent to u1(y, ζ) =
−h(y)H′(ζ) for some smooth function h(y) (see Problem 2).

(k) Show that

H(ε−1z)− εh(y)H′(ε−1z) = H(ε−1z − εh(y)) +O(ε2)

uniformly as ε→ 0 (along with all derivatives).

We now the next term in the expansion, i.e.,

u(y, z) = H(ε−1z − εh(y)) + ε2u2(y, ε
−1z).

for u2(y, ζ) a smooth function with all derivatives bounded on U × R.
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(l) Show that

ε2∆u−W ′(u) = (εHΓz − ε3∆Γzh)H′ + ε2(ε2∆u2 −W ′′(H)u2) +O(ε4)

(m) Assume that

∂2ζu2(y, ζ)−W ′′(H(ζ))u2(y, ζ) = |AΓ|2(y)ζH′(ζ)

Show that ε2∆u−W ′(u) = O(ε3).

(n) Show that J(t) = H′(t)
´ t
0

´ s
−∞ τH′(s)−2H′(τ)2dτds is the unique solution

of

J′′(t)−W ′(H(t))J(t) = tH′(t), J(0) = 0,

so we can take u2(y, ζ) = |AΓ|2(y)J(ζ).
Now, consider one more final ansatz. We assume that y = 0 corresponds to p ∈ Γ.

u(y, z) = H(ε−1z − εh(y)) + ε2|AΓ|2(y)J(ε−1z) + ε3u3(ε
−1y, ε−1z)

for u3(ω, ζ) a smooth function on R2×R. Note the difference between u1 and u2.
(o) Show that

ε2∆u−W ′(u)

= ε3(∆R3u3 −W ′′(H(ζ))u3)

− ε3
(
H′(ζ)∆Γh(y)− (W ′′′(H(ζ))H′(ζ)J(ζ) + ζH′′(ζ)) |AΓ|2(y)h(y)

)
+O(ε4)

as ε→ 0.

(p) The first term is ε3L∗u3, studied in Problem 2. Computeˆ ∞

−∞

(
H′(ζ)∆Γh(y)− (W ′′′(H(ζ))H′(ζ)J(ζ) + ζH′′(ζ)) |AΓ|2h(y)

)
H′(ζ)dζ

How does the answer compare to the hypothesis in Theorem 4.2?

Having finished this problem, you can now understand much more of the proof of
Theorem 4.2. The H′-directions in the error O(ε4) can be handled by modifying h
appropriately (as shown in (p)) and the other error can be handled by adjusting
u3. See [Pac12] for a proof along these lines.

Problem 4. This problem concerns the appearance of “multiplicity” in non-
minimizing limits of Allen–Cahn.

(a) Show that the following situation is not possible: for δ > 0 fixed, uε
are δ-minimizers of the Allen–Cahn energy on a compact manifold (M, g)
and uε → −1 in L2(M) but ε|∇uε|2dµg converges weakly to the measure
2σHn−1|Σ for some smooth closed hypersurface Σ.
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(b) Show that the previous phenomenon (multiplicity) can occur for limits
of stable solutions. Hint: consider (Mn, g) a closed manifold contain-
ing a region isometric to a warped product on (−1, 1) × Sn−1 with met-
ric dt2 + f(t)2gSn−1 . Choose f so that there is a sequence τi → 0 with
{±τi} × Sn−1 are non-degenerate stable minimal surfaces. Use Theorem
4.2. Alternatively, you can use the fact that non-degenerate stable surfaces
are locally L1-minimizing [Whi94, MR10] and apply Proposition 3.11.8

(c) Check that {0} × Sn−1 is a degenerate minimal surface.

(d) What is the L1-limit of the solutions uε constructed in (b)?

Problem 5. The parabolic version of the Allen–Cahn equation

∂tu = ∆u− ε−2W ′(u)

is known to approximate mean-curvature flow in a similar manner to the static
situation discussed in these notes (see [Ilm93]). Assume that (M, g) is closed.
Standard parabolic theory implies that for initial conditions with |u0| < 1, there
is a unique solution (which exists for all time).

(a) Show that |u| < 1 for all t > 0.

(b) Show that

∂tEε(u(·, t)) = −ε−1

ˆ
M

(
−ε∆u+ 1

ε
W ′(u)

)2

dµg ≤ 0.

(c) Show that any sequence tk → ∞ has a further subsequence tk′ so that
u(·, tk′) → u∞ in C∞(M).

(d) Show that

∆u− ε−2W ′(u) > 0

(or similarly < 0) is preserved along the flow. This is analogous to the
preservation of mean convexity along mean curvature flow.

(e) Suppose that

∆u− ε−2W ′(u) > 0

along the flow. For tk′ → ∞ and u∞ as in (c), show that u∞ is stable (see
Section 4).

(f) If (M, g) has positive Ricci curvature show that if u is a solution to the
Allen–Cahn equation, then there is ut solving the parabolic Allen–Cahn
equation with

lim
t→−∞

ut = u, lim
t→∞

ut = 1.

8The latter option shows that the resulting solutions are stable (why?), while if one applies
Theorem 4.2, then to prove that the solutions are stable one can refer to e.g. [CM18].
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Conclude that for any u solving the Allen–Cahn equation on a manifold of
positive Ricci curvature, there is a continuous map [−1, 1] 7→ us ∈ H1(M)
with u±1 = ±1, u0 = u and

max
s∈[−1,1]

Eε(us) = E(u0).

Compare with Theorem 4.3.

Problem 6. Higher co-dimension analogues of Allen–Cahn are also studied. For
example, the Allen–Cahn equation is naturally associated with hypersurfaces,
since they (roughly) correspond to u−1

ε (0) as ε → 0; hence, a natural way to
study higher-codimension minimal surfaces via this approach is to increase the
dimension of the range of u. To this end, it is natural to consider the Ginzburg–
Landau equation, coming from the energy

Eε(u) =

ˆ
Ω

1

2
|∇u|2 + 1

4ε2
(1− |u|2)2

for u : Ω → C. We will consider Ω ⊂ Rn (but one could also consider subsets of
a Riemannian manifold as we have done above). Note that the scaling in ε > 0
differs from the Allen–Cahn setting considered above, the reasons for this will
become apparent from this problem.

(a) Compute the PDE satisfied by a critical point of Eε.

(b) Take Ω = B1(0) ⊂ R2. Let αε denote the infimum of Eε(u) over all smooth
functions with u(x) = x on ∂B. Show that

αε ≤ π log
1

ε
+ C

as ε → 0. How does this compare to the case of Allen–Cahn? (Note the
shift in powers of ε).

(c) Show that there exists uε ∈ C∞(B1;C) attaining αε.

(d) Show that given εk → 0, there is a subsequence (not relabeled) so that
|uεk | → 1 a.e. in B1 as k → ∞.

(e) Use the fact9 that there is no u ∈ H1(B1;C) with |u| = 1 a.e. and u(x) = x
on ∂B1 to conclude that αε → ∞ as ε→ 0.

In fact, one can prove that αε = π log 1
ε
+ O(1) and uε(x) → x

|x| a.e. in B1 (and

there is a rich story for other domains Ω). See e.g., [BBH17].

9Loosely speaking, this says that the identity map S1 → S1 is not null-homotopic along a
continuous family of H1/2-maps (normally one would consider a continuous family of C0-maps).
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Appendix C. Further reading

We give (a non-exhaustive) list of some references (in addition to those given
above):

• The varifold theory of solutions to Allen–Cahn and related results: [Ilm93,
HT00, TW12, Hie17, Gas17]

• De Giorgi conjecture and classification stable solutions (besides those dis-
cussed above, there are several other related results): [GG03, JM04, FS17].

• Gibbons conjecture (the De Giorgi conjecture with a stronger condition
as xn → ±∞ is proven in all dimensions): [Far99, BBG00, BHM00].

• Existence/classification of solutions on R2 (our understanding of entire
solutions is best in dimension 2; however, many uniqueness questions are
still open): [KL11, Gui12, KLP13, dPKP13, KLPW15, GLW16, Wan17b,
WW19].

• Other entire solutions in Rn (in higher dimensions there are many in-
teresting entire solutions; only a few classification results are known):
[dP10, dPMP12, dPKW13, AdPW15, LWW19, GWW19].

• The Allen–Cahn equation on manifolds (further existence and qualitative
results not discussed above): [Man17, GG19, CM18]

• Higher co-dimension analogues of Allen–Cahn, including the Ginzburg–
Landau equation: [LR99, BBO01, LR01, BOS05, Ste19, Che17, PS19]
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ern Birkhäuser Classics, Birkhäuser/Springer, Cham, 2017, Reprint of the 1994
edition [ MR1269538]. MR 3618899



GEOMETRIC FEATURES OF ALLEN–CAHN 35

[BBO01] F. Bethuel, H. Brezis, and G. Orlandi, Asymptotics for the Ginzburg-Landau
equation in arbitrary dimensions, J. Funct. Anal. 186 (2001), no. 2, 432–520.
MR 1864830

[BDGG69] E. Bombieri, E. De Giorgi, and E. Giusti, Minimal cones and the Bernstein problem,
Invent. Math. 7 (1969), 243–268. MR 0250205

[Ber27] Serge Bernstein, über ein geometrisches Theorem und seine Anwendung auf die
partiellen Differentialgleichungen vom elliptischen Typus, Math. Z. 26 (1927), no. 1,
551–558. MR 1544873

[BHM00] H. Berestycki, F. Hamel, and R. Monneau, One-dimensional symmetry of bounded
entire solutions of some elliptic equations, Duke Math. J. 103 (2000), no. 3, 375–
396. MR 1763653

[BOS05] Fabrice Bethuel, Giandomenico Orlandi, and Didier Smets, Improved estimates for
the Ginzburg-Landau equation: the elliptic case, Ann. Sc. Norm. Super. Pisa Cl.
Sci. (5) 4 (2005), no. 2, 319–355. MR 2163559

[CH58] John W Cahn and John E Hilliard, Free energy of a nonuniform system. i. inter-
facial free energy, The Journal of chemical physics 28 (1958), no. 2, 258–267.

[Che17] D. R. Cheng, Geometric variational problems: Regular and singular behavior, Ph.D.
thesis, Stanford University, 2017.

[CM18] Otis Chodosh and Christos Mantoulidis, Minimal surfaces and the Allen-Cahn
equation on 3-manifolds: index, multiplicity, and curvature estimates, https:

//arxiv.org/abs/1803.02716 (2018).
[DFP92] Ha Dang, Paul C. Fife, and L. A. Peletier, Saddle solutions of the bistable diffusion

equation, Z. Angew. Math. Phys. 43 (1992), no. 6, 984–998. MR 1198672
[DG65] Ennio De Giorgi, Una estensione del teorema di Bernstein, Ann. Scuola Norm. Sup.

Pisa (3) 19 (1965), 79–85. MR 0178385
[DG79] , Convergence problems for functionals and operators, Proceedings of the

International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978),
Pitagora, Bologna, 1979, pp. 131–188. MR 533166

[DGF75] Ennio De Giorgi and Tullio Franzoni, Su un tipo di convergenza variazionale, Atti
Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 58 (1975), no. 6, 842–850.
MR 0448194

[dP10] Manuel del Pino, Minimal surfaces and entire solutions of the Allen-Cahn equation,
http://math.stanford.edu/~ryzhik/BANFF/delpino.pdf (2010).

[dPKP13] Manuel del Pino, Micha lKowalczyk, and Frank Pacard, Moduli space theory for
the Allen-Cahn equation in the plane, Trans. Amer. Math. Soc. 365 (2013), no. 2,
721–766. MR 2995371

[dPKW11] Manuel del Pino, Michal Kowalczyk, and Juncheng Wei, On De Giorgi’s conjecture
in dimension N ≥ 9, Ann. of Math. (2) 174 (2011), no. 3, 1485–1569. MR 2846486

[dPKW13] , Entire solutions of the Allen-Cahn equation and complete embedded mini-
mal surfaces of finite total curvature in R3, J. Differential Geom. 93 (2013), no. 1,
67–131. MR 3019512

[dPMP12] Manuel del Pino, Monica Musso, and Frank Pacard, Solutions of the Allen-Cahn
equation which are invariant under screw-motion, Manuscripta Math. 138 (2012),
no. 3-4, 273–286. MR 2916313

[Far99] Alberto Farina, Symmetry for solutions of semilinear elliptic equations in RN and
related conjectures, Ricerche Mat. 48 (1999), no. suppl., 129–154, Papers in memory
of Ennio De Giorgi (Italian). MR 1765681

[Fle62] Wendell H. Fleming, On the oriented Plateau problem, Rend. Circ. Mat. Palermo
(2) 11 (1962), 69–90. MR 0157263

https://arxiv.org/abs/1803.02716
https://arxiv.org/abs/1803.02716
http://math.stanford.edu/~ryzhik/BANFF/delpino.pdf


36 OTIS CHODOSH

[FMV13] Alberto Farina, Luciano Mari, and Enrico Valdinoci, Splitting theorems, symmetry
results and overdetermined problems for Riemannian manifolds, Comm. Partial
Differential Equations 38 (2013), no. 10, 1818–1862. MR 3169764

[FS17] Alessio Figalli and Joaquim Serra, On stable solutions for boundary reactions: a De
Giorgi-type result in dimension 4+1, https://arxiv.org/abs/1705.02781 (2017).

[FT89] Irene Fonseca and Luc Tartar, The gradient theory of phase transitions for systems
with two potential wells, Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), no. 1-2,
89–102. MR 985992

[Gas17] Pedro Gaspar, The second inner variation of energy and the Morse index of limit
interfaces, https://arxiv.org/abs/1710.04719 (2017).

[GG98] N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems,
Math. Ann. 311 (1998), no. 3, 481–491. MR 1637919

[GG03] Nassif Ghoussoub and Changfeng Gui, On De Giorgi’s conjecture in dimensions 4
and 5, Ann. of Math. (2) 157 (2003), no. 1, 313–334. MR 1954269

[GG19] Pedro Gaspar and Marco A. M. Guaraco, The Weyl Law for the phase transition
spectrum and density of limit interfaces, Geom. Funct. Anal. 29 (2019), no. 2,
382–410. MR 3945835

[Giu84] Enrico Giusti, Minimal surfaces and functions of bounded variation, Monographs
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