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ABSTRACT

Repetition priming (RP) is a form of learning, whereby classification or identification
performance is improved with item repetition. Various theories have been proposed to
understand the basis of RP, including alterations in the representation of an object and
associative stimulus-response bindings. There remain several aspects of RP that are still
poorly understood, and it is unclear whether previous theories only apply to well-established
object representations. This paper integrates behavioral, neuroimaging, and computational
modeling experiments in a new RP study using novel objects. Behavioral and neuroimaging
results were inconsistent with existing theories of RP, thus a new perceptual memory-based
caching mechanism is formalized using computational modeling. The model instantiates a
viable neural mechanism that not only accounts for the pattern seen in this experiment but
also provides a plausible explanation for previous results that demonstrated residual
priming after associative linkages were disrupted. Altogether, the current work helps
advance our understanding of how brain utilizes repetition for faster information processing.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

of repetition priming, which includes reduction in response
time and reduction in neural activity in specific cortical

Repeated encounters of the same item facilitate faster
information processing in the brain; as a result a person is
able to respond sooner and more accurately. This facilitation
is referred to as repetition priming (Roediger and McDermott,
1993; Tulving and Schacter, 1990; Schacter, 1987). Repetition
priming has been widely used to study implicit memory—a
form of learning that is reflected in the performance of a task
without being dependent on conscious awareness of the
previous experience (Schacter, 1987). Recent human studies
have consistently elicited both behavioral and neural effects
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regions (Henson, 2003; Schacter and Buckner, 1998; Wiggs
and Martin, 1998). Repetition-related reductions in single-unit
recordings have also been identified in monkeys (Rainer and
Miller, 2000). Despite a wealth of studies on repetition priming,
there are still many open questions and there remains a lack
of consensus on what neural mechanisms are directly
responsible for behavioral performance gains.

Several mechanisms have been proposed to account for the
performance gains in repetition priming. For example, it has
been proposed that repeated presentations of an object could
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resultin a “tuned” neural response (Wiggs and Martin, 1998),i.e.,
neurons that are not essential for object identification or
retrieval of task-relevant object knowledge respond less in-
tensely with repetition. Thus, the neural processing becomes
more selective, and this “tuning” or sharpening results in a
faster and more efficient response.

In a recent series of studies, it has been argued that if
repetition priming reflects tuning of object knowledge, then the
magnitude of priming should be unaffected by changes at the
level of decision orientation (Dobbins et al., 2004; Schnyer et al.,
2006). In one of these studies (Dobbins et al., 2004), participants
were asked to make size judgments about visually presented
objects (“isitbigger than a shoebox?”). After they were exposed to
items either once or three times, the decision cue was inverted
(“is it smaller than a shoebox?”), a manipulation that should not
significantly alter the processes associated with item identifica-
tion or access to item-related size knowledge. However, inverting
the decision cue resulted in a significant disruption of behavioral
facilitation, associated with repetitions, and a loss of repetition-
related neural signal reductions in critical regions of prefrontal
cortex and fusiform gyrus. This findingled to the conclusion that
participants were learning their responses to items, and in doing
so, they shifted from a resource-demanding analysis of specific
object-size information to a more automatic stimulus-response-
based strategy (Logan, 1990; Schacter et al., 2004).

Hence, a mechanism of response or decision learning (DL),
whereby a particular response or decision becomes associated
with an item through repetition, was proposed to account for the
portion of observed priming gains that are specific to a particular
decision orientation (Schnyer et al., 2006). The typical behavioral
signatures of DL, as found in the literature (Dobbins et al., 2004;
Schnyer et al., 2006; Horner and Henson, 2008; Race et al., 2008),
include increasing reductions in response time with multiple
repetitions, robust priming, and a significant disruption in
priming gains as a result of inverting the decision cue. Neural
signatures of DL include reduced cortical activity with repeti-
tions in regions of left inferior prefrontal cortex (LIPC) and
temporal regions, including the fusiform gyrus. Inverting the
decision cue also significantly disrupted these neural reductions.

In another set of experiments, DL in amnesic patients, with
damaged medial temporal lobe (MTL) structures, was examined
(Schnyer et al., 2006). Since amnesic patients can access object
knowledge, a tuning model would predict that greater priming
should be observed across multiple repetitions. Although
significant behavioral priming was observed in amnesic patients,
i.e., reduction in response time with repetition, was found, there
was no indication that multiple repetitions provide any further
gains in facilitation. Further, inversion of the decision cue did not
disrupt observed priming gains in these same patients. Alto-
gether, the study indicated that amnesic patients lack the
evidence for typical DL signatures, and this led to the conclusion
that DL depends on an MTL-based learning mechanism.

Although DL has been demonstrated to be a critical
component of repetition-related priming changes, several key
issues remain unresolved and should be addressed to fully
understand the underlying mechanisms of repetition priming:

1. Scope of decision learning: Previous research on decision
learning in repetition priming has utilized commonly known
objects or words, each of which have well-established

preexisting representations. Thus, the observed priming
gains can be explained through a mechanism of DL, i.e.,
associatingitems with previous decisions, thereby bypassing
intermediate stages of information retrieval and comparison
(Fig. 1, curved solid arrow). However, it remains unclear
whether such a linkage requires a preexisting representation
or whether a similar association can be formed for novel,
never before encountered, visual stimuli (Fig. 1, curved
dashed arrow). The answer to this question will indicate
the extent to which DL depends on well-structured object
knowledge representations and whether the scope of DL
could be extended to more flexible levels of automaticity.

2. Explanation for residual priming in healthy population:
Although the priming gains associated with DL were
significantly disrupted by inverting the decision cue, the
response time for repeated items was still found to be
significantly lower than for those that were shown for the
first time. In addition, neural changes have been associated
with these preserved advantages (Race et al.,, 2008). As
previously indicated, such preserved priming may be due
to changes at the stimulus level. It is unclear whether these
changes rely on preexisting representations or would also
be found in repetition of novel visual stimuli.

3. Explanation for intact priming in amnesic patients: DL
signatures were not found in repetition priming in amnesic
patients, but instead a different pattern of priming gains
was observed. One possibility is that these gains are also
due to changes in the stimulus level as described in no. 2
above. These changes need to be more clearly specified.

The currently available evidence suggests that repetition
priming, even within a single task, may result from multiple
mechanisms. This paper integrates behavioral, neuroimaging,
and computational modeling experiments to build a more
complete and plausible model of repetition priming. First, the
dependence of DL on well-established representations was
tested with a repetition priming experiment using novel 2-D
objects. Any evidence found for DL across repetitions of novel
objects would suggest that the systems form associations
between transient visual representations and previous deci-
sions. However, if such criterion is not found, it suggests that
well-established representations are necessary for DL. Indeed,
the results revealed that novel objects result in a short-lived
priming effect both behaviorally and neurally and that
multiple repetitions did not provide additional facilitations
in response times. This pattern does not fit previous explana-
tions based on DL or tuning theory. To test whether this result
is only due to the novel stimuli and not due to the
experimental design, a control behavioral experiment using
common or well-known objects was implemented with the
identical design as with novel objects. The results from this
common object priming experiment clearly showed the
previously demonstrated signatures of DL. Thus, to explain
the short-lived priming and to account for the transient
stimulus-level changes in case of novel objects, a perceptual
memory-based caching system (PCS) is proposed. Behavioral
and neuroimaging results reported in the paper support this
formulation and establish the characteristic properties of PCS.

Second, to formalize and test this postulated caching
mechanism, a computational model is developed. The model
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Fig. 1- A series of cognitive steps required in a classification task with decision learning. When the stimulus is shown for the first
time, visual representation is formed, due to initial visual processing. Based on that representation, memory-based search tries
to identify the object, returning its name. Given that name, task related information is retrieved, like real-world size information
(Schnyer et al., 2006), which in turn helps in comparison and decision making. Finally, a decision, like yes or no, is the output.
However, during future encounters of the same visual stimuli, MTL-based decision-learning association (solid arrow) is used to
bypass the information extraction and decision-making steps. In the case of common objects, these associations have been
shown to account for significant portion of the observed priming gains (Schnyer et al., 2006). However, it is unclear whether
similar associations in case of novel objects would develop (dashed arrow), since they lack well-established representations.

is further extended to examine priming using commonly
known objects, thereby providing a plausible explanation for
stimulus level priming effects such as those seen in case of cue
inversion in the healthy population and in case of intact
priming in amnesic patients. In addition, the model provides
conclusive predictions to shape future research in this area.

Altogether, this paper makes the case for an explicit model
for the phenomenon of perceptual memory-based caching
and addresses the key issues to provide a more complete
theory behind repetition priming.

2. Results

2.1. Behavioral and neuroimaging experiment using novel
objects

Dependence of DL on well-established representations was
tested by engaging participants in a perceptual classification
task with simple 2-D novel objects (Slotnick and Schacter, 2004).

Participants were asked to make size judgments, indicating
whether a viewed stimulus should be classified as “fat” (or
“slim,” during cue-switching). The design of the experiment and
a sample run are provided in Fig. 2. It is important to note here
that the repetitions were distributed evenly throughout the run.

A schematic of the cognitive processes that an individual
may engage in when making such decisions are shown in
Fig. 3. When presented with a visual stimulus for the first time,
initial visual processing activates a representation. Based on
this representation, task-based perceptual information is
extracted, like area or aspect ratio, as would be the case in
the current experiment. Following information extraction, a
decision is rendered. On successive encounters with the same
stimulus, one of the three pathways can be implemented to
provide a higher degree of automaticity, and thereby facilitate
processing. For example, consider a situation where Pathway 1
is implemented. During successive encounters with the same
stimulus, immediately after the perceptual information is
extracted, Pathway 1 can activate previous decision made on
that perceptual information and thereby bypass the decision-
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Fig. 2 - Experimental design for repetition priming using novel objects. The participants were shown a stimulus and asked to
decide whether the shown stimulus is fat (or slim, during cue inversion). The experiment was divided into four runs; each run
was further divided into two phases, a study phase and a test phase. Every study phase had a total of four conditions: no-prime
(shown first-time, and repeated later; NPR), low-prime (shown second-time; LP), high-prime (shown third-time; HP) and
no-prime items that were never repeated (NPNR). Each condition was presented 20 times. The test phase consisted of 20
high-prime trials from study phase (shown fourth-time; VHP) and 20 trials that were never shown before (NP). Each trial was
shown for 3 seconds, except the null trials, where a blank screen was shown. The duration and location of null trials was
determined by optseq2 (Dale et al., 1999; Dale, 1999), which generates optimal time and ordering sequences for event-related
fMRI designs. The design was kept similar to previous studies of DL so that a fair comparison can be done.

making step. Further, Pathways 1 and 2 correspond to DL by
associating previous decisions with either the extracted object
knowledge information or a specific visual representation,
respectively. On the other hand, additional pathways, such as
Pathway 3, can bypass the perceptual information extraction
step by linking visual representation with previously extracted
perceptual information. This linkage can be achieved by a
lower-level perceptual memory-based mechanism.

If, after repetition of novel objects, typical DL signatures are
found, it can then be concluded that the priming gains
observed likely reflect Pathway 1 or 2. Furthermore, we can
conclude that DL does not depend on well-established
representations. Alternatively, if DL signatures are not found
but priming gains are still evident, then a mechanism similar
to Pathway 3 may be responsible.

2.1.1. Behavioral data
Reaction times (RTs) were examined separately for the study
phase and the test phase (with the same and inverted cue). In

the study phase, three conditions were included in the
analysis: (1) items presented for the first time but repeated
later (NPR), (2) the second presentation of an item or a low
prime (LP), and (3) the third presentation of an item or a
high prime (HP). A fourth condition, shown-once but never
repeated (NPNR), was excluded from the analysis because
items in this condition were not counterbalanced. These items
were included in the study phase to avoid participant
perception that all items would be repeated eventually. A
repeated-measures ANOVA across the three included condi-
tions revealed a significant effect of condition (F[2,38]=9.101,
p<0.0007). Follow-up two-tailed, pairwise t-tests found signif-
icant priming between the stimulus shown once (NPR) and the
LPitems (t(19)=3.5767, p<0.01), between NPR and the HP items
(t(19)=3.5297, p<0.01), and between NPR and primed (i.e., LP
and HP) items (t(19)=3.9643, p<0.01). However, no difference
was found between LP and HP items (t(19)=-0.3857, ns),
suggesting that RT priming did not interact with the number
of repetitions. Thus, repetition of novel items result in a single
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Fig. 3 - A series of cognitive steps required with novel objects. Based on the success of DL theory in explaining priming gains,
with common objects, this figure represents three different pathways that could explain any performance gain that would be
achieved in the presented experiment with novel objects. Pathways 1 and 2 show associating previous decision with extracted
perceptual information, like area or aspect ratio, and visual representation, respectively. Thus, if the signatures of DL are
observed, then it could be due to one of these two associations. However, if DL signatures are not found, then any priming gains
observed in this experiment could be related to Pathway 3, which bypasses task-based perceptual information extraction
during successive encounters of the same item. Further, the results of this experiment would provide characteristics of this

previously hidden linkage.

stepwise reduction in reaction times that is not increased with
additional repetitions (Fig. 4).

In contrast with the results in the study phase, in the
test phase, a repeated-measures ANOVA with condition
(fourth presentation (VHP) or shown once (NP)) and cue
(same or reversed) revealed a significant effect of the
decision cue (F[1,19]=34.65 and p<0.00006) but no effect of
condition (F[1,19]= 0.88 and p<0.4) or any interaction between
cue and repetition (F[1,19]=1.37 and p<0.3; Fig. 4).

There was no evidence for a decision-same advantage or
decision-switch cost during the test phase. However, one
additional way to assess for evidence of DL would be to
examine the response consistency across task switches. If the
error rate increases significantly with cue switches relative to
the same cues, then that would provide some evidence for
memory of the previous decisions that was notrevealed in RTs.
To examine this question, correct classifications for any given
item were computed by selecting the response that was
selected by 85% or greater participants. This assessment was
performed for the first presentation of repeated items during
the study phase and then the test of response consistency was
performed for the test phase only. Using repeated-measures
ANOVA, with cue (same or switch) and condition (no-prime or
fourth-presentation) as factors, the only significant finding
was a main effect of cue (F[1,19]=5.499, p<0.05). The main

effect of condition and the interaction were not found to be
significant (condition, F[1,19]=0.073, p<0.8 and cue x condition,
F[1,19]=2.002, p<0.2). The mean percentage of errors for the
conditions was as follows, no-prime items (or NP): 10.68% in
same-cue and 12.58% in switched-cue condition, and fourth-
presentation items (or VHP): 8.47% in same-cue and 14.04% in
switched-cue condition. Thus, this analysis supports only a
nonspecific increase in error rates for the switch condition.

However, examining the between condition effects with a
two-tailed paired t-test, it was found that the number of errors
recorded for NP items was similar in both same- and switched-
cue condition (t(19)=-0.885, p<0.4). However, the number of
errors recorded for VHP items were significantly lower in the
same-cue condition than in the switched-cue condition (t(19)=
-2.856, p<0.05). This finding is a weak evidence for memory of
decisions, associated with respective items, such that partici-
pants made more errors when classifying highly primed items
during a cue-switch relative to a cue-same condition. Howev-
er, in the current experiment, this signature of DL was weak
and unreliable.

In sum, the commonly seen behavioral signatures of DL
were not observed with the repetition of novel objects.
Instead, a single stepwise reduction in response time was
found, in the study phase that is relatively short-lived, as it did
not transfer to the test phase.
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Fig. 4 - Behavioral results (experiment I). Reaction times in study and test phases (with and without cue inversion) in the novel
object priming experiment. Significant priming was found only in the study phase, between shown-once (NPR) and primed
conditions (LP and HP), and as a stepwise reduction. However, no significant difference in reaction times was found between
stimuli that were shown once (NP) and those shown four times (VHP) in either the same cue or switched cue condition during
the test phase. Further, overall increase in response time, in the phase, was evident with cue switching. This pattern of
response facilitation does not fit the established characteristics of DL.

2.1.2.  Functional imaging data

When the neural responses during the study phase for LP and HP
items were compared to that of items that were shown once
(NPR), reduced cortical activity was found in fusiform gyrus,
superior parietal lobule, temporal-occipital cortex, and lateral
occipital cortex regions. In addition, significant reductions in
cortical activity were found in right inferior frontal gyrus for HP
condition, i.e., items shown thrice, compared to NPR items (Fig. 5).
Table 1 shows the neural regions where reduced activity was
found during LP and HP conditions relative to NPR. (Z, Gaussia-
nised T/F, statistic images were thresholded using clusters
determined by Z>2.3 and a (corrected) cluster significance
threshold of p=0.05; Worsley, 2001.)

During the test phase, there were reductions in cortical
activity in the left lingual and occipital gyrus in cue-switch
condition only, when corrections for multiple comparisons
were applied. No cortical activity reductions were found
during same-cue condition (Table 2). Examining the results
of the test phase with a more liberal uncorrected statistical
threshold (p<0.01) revealed reductions, with NP>VHP, in
occipital, temporal, and frontal gyrus during the same
decision cue and in occipital, temporal, and parietal regions
during the switched decision cue condition (Table 3).

In previous studies, the left prefrontal cortical regions were
reliably found to reflect DL. In the current study, reduced
activity, with priming, in the right inferior prefrontal cortex
during the study phase and reduced activity in frontal gyrus,
during same-cue condition in test phase, could potentially
reflect weak DL.

To determine whether response time reductions correlate
with the regional activity reductions, MR signal was extracted
from specific regions of interest (ROIs). The regions that were
focused on were those implicated in previous priming studies
(Dobbins et al., 2004) that demonstrated reduction in cortical
activity with repetitions, namely the prefrontal cortex and
ventral-temporal cortex—in particular, the fusiform gyrus. As
shown in Fig. 6, in the study phase, significant reductions

(two-tailed pairwise t-tests) in the cortical activity for primed
items relative to items shown for the first time were found in
both right inferior frontal (t(3)=3.580, p<0.05) and bilateral
occipital-fusiform gyrus (t(3)=3.693, p<0.05). Both ROIs
depicted a similar pattern of stepwise reduction as found in
behavioral response time data. Further, significant correla-
tions were also found between the mean MR signal from ROIs
and the response time data (r=0.577, p<0.05 for right inferior
frontal and r=0.504, p<0.05 for bilateral occipital-fusiform
gyrus).

Only weak priming was seen in the test phase, both in the
behavioral and neuroimaging results. This result contrasts
with priming studies using familiar stimuli. There are a
number of possible explanations including the possibility of
interference between novel objects and temporal decay of
activation with time. To investigate temporal decay, reduc-
tions in reaction time associated with repetition were exam-
ined with respect to the distance from the first presentation
(NPR) of an item. Distance was measured in terms of the
number of items between the NPR and the specific priming
condition. The results in the study phase indicate that
reduction in RT after the second presentation (LP) and the
distance between the first and second presentations follows a
log relationship (F=5.473, p<0.05). Thus, as the distance
between the presentations is increased, priming gains were
reduced, i.e., reduction in RT was lower, until the gains die-off
after a distance of about 15 items or so (Fig. 7). Furthermore,
while not significant, a similar relationship was found between
NPR and HP items (F=1.699, p<0.2). This log relation provides
evidence for a relatively rapid temporal decay of priming
effects for these novel objects, which no doubt is the basis of
the lack of significant RT priming effects in the test phase.

Overall, behavioral and functional neuroimaging revealed
relatively weak and short lived repetition-related effects
during the study phase, while there were no reliable priming
changes that continued into the test phase. Also, the
behavioral facilitation that was evident with repetition did
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Fig. 5 - Functional neuroimaging results (experiment I). Significant comparisons were found in the study phase. Regions
revealed by comparing conditions, where the stimulus was shown only once (NPR) and shown (a) twice (LP), (b) thrice (HP), and
(c) average of LP and HP, are shown. Repetition related reductions in cortical activity were found in superior parietal lobule,
lateral occipital, temporal-occipital-fusiform cortex, and medial temporal regions. In addition to reductions found in regions
revealed by (a), reduced cortical activity was also found in right inferior frontal gyrus when NPR was compared with HP items.

not gain additional benefit from multiple repetitions in the
study phase. These two results are not consistent with a DL
mechanism being responsible for RP with novel objects. This
suggests that well-established representations are required
for DL. It is possible that given DL is reliant on an episodic
memory-based association system, such a system would be
overwhelmed by multiple novel objects that are highly similar.
Given lack of evidence for DL in this novel object priming
experiment and the fact that previous experiments examining
DL in common objects did not utilize exactly the same
parameters of experimental design, a behavioral experiment
was conducted to demonstrate the nature of DL in this design
for common objects.

2.2. Behavioral experiment using non-novel or common
objects

To examine the pattern of DL with common objects, a control
experiment was conducted where the design was kept exactly
identical to the previous experiment using novel objects. The
only difference was the stimulus material. In this task, a different
set of participants were engaged in a classification task using
common objects or well-known objects (as used in Schnyeretal.,
2006). Participants were 12 young adults (mean age=18.5 years, 6
females) and were asked to make size judgments, indicating

whether a viewed stimulus should be classified as “bigger” than
a shoebox (or “smaller” than a shoebox, during cue-switching).

If, after repetition of common objects, typical DL signatures
are found, it can then be concluded that the priming gains
observed are likely due to the stimulus material employed.
Furthermore, it can be concluded that lack of DL in case of
novel objects should also be due to the stimulus material and
not due to the design of the experiment.

2.2.1. Behavioral data

Reaction times were examined separately for the study phase
and the test phase (with the same and inverted cue). In the
study phase, three conditions were included in the analysis:
(1) items presented for the first time but repeated later (NPR),
(2) the second presentation of an item, or a low prime (LP), and
(3) the third presentation of an item, or a high prime (HP). A
fourth condition, shown-once but never repeated (NPNR) was
excluded from the analysis. These items were included in the
study phase to avoid participant perception that all items
would be repeated eventually. A repeated-measures ANOVA
with condition as a within-subjects factor, revealed a signif-
icant effect of condition (F[2,22]=98.89, p<0.0001). Follow-up
two-tailed, pairwise t-tests found significant priming between
the stimulus shown once (NPR) and the LP items (t(11) =10.458,
p<0.0001), between NPR and the HP items (t(11)=12.144,
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Table 1 - Regions where reduced cortical activity (cluster-
corrected) was found in study phase with priming. Table

shows Broadmann area (BA) and Talairach coordinates (x,

Table 3 -Regions where reduced cortical activity
(uncorrected at p<0.01) was found in the test phase with

priming. Table shows Broadmann area (BA) and Talairach

y, and z).

coordinates (x, y, and z).

Region BA X y z Region BA X y z
(a) NPR>LP (a) NP>VHP (Same same cue)
Right cerebellum culmen * 21.51 -49.7 -12.51 Left brainstem * 0.82 -8.04 -6.3
Left cerebellum culmen * -20.16 -51.58 -7.46 Right anterior cingulate 32 1.01 45.04  -285
Left cerebellum declive * -27.79 -70.24 -12.34 Left anterior cingulate 32 -14.17 389 5.71
Right fusiform gyrus 19 25.25 -59.45 -95 Right caudate (tail) * 29.09  -33.87 6.67
Left fusiform gyrus 37 -448  -6262 -10.14 Left caudate (tail) * -27.71 -3372 1175
Left lingual gyrus 19 -18.33 -66.88 -6.63 Left caudate (body) * -20.08 -9.6 20.61
Right lingual gyrus 19 28.99 -65.63 -2.64 Left cingulate gyrus 24 -117 -1035 29.72
Left middle occipital gyrus 19 -2413 -8884 10 Right cingulate gyrus 31 2144  -302 3943
Left middle temporal gyrus 37 -4481 -61.19 -281 Left cuneus 18 045 -86.2 248
Right parahippocampal gyrus 36 27.24 -34.59 -11.49 Right insula 13 29.04 -3313 24381
Right postcentral gyrus 2/3 49.84 -23.21 45.49 Left lentiform nucleus (putamen) * -27.64 -11.08 15.04
Right posterior cingulate 30 8.13 -66.26  9.86 Right lentiform nucleus * 14.08 -804 -803
Right precentral gyrus 6 49.92 -14.47 27.96 (medial globus pallidus)
Right precuneus 7 25.09 -57.7 52.14 Left middle frontal gyrus 46  -4643 26.88 19.2
Left precuneus 31 -2221 -7071 23.86 Right middle frontal gyrus 10 3503 3824 959
Left superior occipital gyrus 19 -31.72 -84.02 2474 Left middle temporal gyrus * -524  -63.25 063
Right superior parietal lobule 7 25.1 -61.03 44.68 Left paracentral lobule 5 -513 -36.82 56.93
(b) NPR>HP Right parahippocampal gyrus 28 2351 -19.39 -10.52
Right cuneus 17 23.23 -79.55 7.28 Left parahippocampal gyrus 28 -2379 -15.06 -12.34
Left cerebellum declive * -27.77 -6455 -11.97 Right postcentral gyrus 43  48.07 -102  20.99
Left fusiform gyrus 19/37 -25.85 -5532 -7.74 Right posterior cingulate 29 82 -45.64 14.82
Right inferior frontal gyrus 9 50 6.38 29.32 Right posterior cingulate 30 27.06 -69.99 6.11
Right inferior parietal lobule 40 51.72 -27.02 4525 Left precentral gyrus 4 -59.89 -15.87 3443
Left middle occipital gyrus 18/37 -3549 -86.96 11.86 Right precentral gyrus 6 4993  -557 3759
Right postcentral gyrus 2 49.84 -26.77 41.64 Left precuneus 7 =23 -55.56 52.1
Left precuneus 7 -20.35 -69.76 3841 Right precuneus 7 2.47 -36.19 46.16
Right precuneus 7 23.21 -57.45 4852 Left subcallosal gyrus 11 -1229 2465 -9.69
Right superior parietal lobule 7 9.92 -63.49 5529 Left supramarginal gyrus 40 -4863 -5141 2314
Left superior parietal lobule 7 -2415 -70.08 43.79 Left thalamus * -22.02 -22.86 19.73
(lateral posterior nucleus)
(b) NP>VHP (cue-switched)
Right anterior cingulate 32 19.83 30.21 18.02
3 *
p<0.0001), and between LP and HP items (t(11)=4.175, f;%?i;jg:; ti:gsy . ig 1'1827'18 f?;
p<0.003), suggesting increasing facilitation in RT with repeti- Left cingulate gyrus 24 _1445 -1081 38.66
tion. A pattern of multistepwise reduction in reaction times Right cerebellum culmen * 15.85 -4218 -10.24
across multiple repetitions is clearly revealed in the current Left cerebellum culmen * -10.6  -28.68 -9.53
experiment and will serve to inform the computational model Right cuneus 18 2321 -7823 164l
(Fig. 8). Right fu.siform gyrus 19 2711 -67.05 -9.98
In the test phase, a repeated-measures ANOVA with Left fusiform gyrus 37 -3713 =3615 -837
. ) Left inferior occipital gyrus 18 -37.32 -82.11 -4.12
condition (fourth presentation (VHP) or shown once (NP)) and R — 13 49.86  -3498 212
cue (same or reversed) entered as within-subject factors ek Sl 13 -429 -3985 2031
revealed a significant effect of the decision cue (F[1,11]= Right lentiform nucleus & 17.88 -0.73 -3091
13.786, p<0.004), effect of condition (F[1,11]=11.931, (lateral globus pallidus)
p<0.006), and a significant interaction between cue and Right lingual gyrus 18 2135 -80.9 -0.07
Left lingual gyrus 19 -31.58 -65.22 -1.18
Left middle occipital gyrus 19 -29.83 -8748 19.1
Left middle temporal gyrus 37 -5238 -59.23 -2.73
Left paracentral lobule 31 -6.89 -11.23 44.11
Table 2 - Regions where reduced cortical activity (cluster- Right paracentral lobule 4 1568  -38.89 56.92
corrected) was found in the test phase with priming. Table Right parahippocampal gyrus 19  29.07 -42.88 -1.16
shows Broadmann area (BA) and Talairach coordinates (x, Left parahippocampal gyrus 30 -1828 -4494 7.46
y, and z). Left postcentral gyrus 5 -33.54 -4225 564
Region BA X y 7 Right posterior cingulate 30 2895 -68.34 9.85
Left precentral gyrus 4 -29.71 -27.35 61.01
(a) NP>VHP (Same same cue) Right precuneus 7 2324  -5331 43.37
- - - - - Left precuneus 31 -222 -70.6  22.06
(b) NP>VHP (cue-switched) Left superior parietal lobule 7 -27.94 -66.72 51.23
Left lingual gyrus 18 -25.95 -76.64  -1.89 Right superior parietal lobule 7 17.54  -44.95 61.97
Left middle occipital gyrus 19 -24.12 -86.95 10.12 Left uncus 28 -2371 2.58 -20.24
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Fig. 6 - Behavioral and neural response reduction correlations in the study phase (experiment I). The regions of interest were
those implicated in previous priming studies namely the prefrontal cortex and ventral-temporal cortex (Dobbins et al., 2004).
Time series data was derived across a specific time window, starting from 6 seconds before the presentation to 16 seconds after
the presentation. Respective ROIs their averaged time series are plotted in the left column for the different conditions. The
x-axis depicts time frame in terms of volumes acquired (number of seconds/TR). With zero representing the time at which
stimulus was presented. Similar to the behavioral data, significant stepwise reductions in regional signal were found between
shown once and repeated conditions (for grayed region). The right column shows correlation analysis between behavioral
response time data and mean ROI-based cortical signal for shown once minus prime condition. High correlation values were
found for both right inferior frontal gyrus and occipital fusiform gyrus.

condition (F[1,11]=11.026, p<0.008; Fig. 8). Follow-up two-
tailed, pairwise t-tests found significant priming in same cue
condition between NP and VHP (t(11)=3.925, p<0.003) but no
priming in switched cue condition between NP and VHP
(t(11)=1.911, ns).

In sum, the commonly seen behavioral signatures of DL, i.e.,
increasing facilitation in RT across multiple repetitions and a
subsequent disruption of priming gains with cue inversion,
were observed with the repetition of common objects in an
experiment that utilized the same design setup as that used
with novel objects. The results from this experiment further
strengthen the claim that the lack of DL in novel objects is due to
the novel stimulus rather than the experimental design setup.

The priming effects seen for novel objects cannot reflect a
binding of previous decisions with earlier stages of processing.
Therefore, an alternative mechanism must be considered to
account for the current results. One possibility is the per-
ceptual memory-based binding system shown as Pathway 3 in
Fig. 3, which represents the linking of a visual representation
with previously extracted task-specific perceptual informa-
tion. This link allows bypassing the computational intensive
feature extraction phase during successive encounters with
the same item. Since much of the previous research and
theories of repetition priming have focused on common, well-
known objects, the gains achieved by bypassing higher
cognitive functions, as in DL, could have potentially
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Fig. 7 - Effect of distance between repetitions over priming
gains (experiment I). To investigate temporal decay of
priming gains, reductions in reaction time associated with
repetition, was examined with respect to distance from the
first presentation (NPR) of an item. The x-axis denotes the
distance between conditions and the y-axis denotes the
difference in RT between conditions. Distance was measured
in terms of number of items between the NPR and the second
presentation (LP). The results in the study phase indicate that
reduction in RT for LP items and the distance between first
and second presentation follows a log relationship.

overshadowed the ones achieved from a low-level perceptual
memory-based systems. However, because the current exper-
iment was based on novel objects, such gains may have been
exposed.

The next question, then, is how to formulate the low-level
perceptual memory-based binding, which is mechanistically

different from the episodic memory-based DL? In addition,
how do these two systems integrate and to what extent do
they depend on the stimulus specificity? Finally, it would be
interesting to test whether such a perceptual memory-based
binding can be used to characterize some of the residual
priming that was previously not attributable to DL, such as
preserved priming after cue inversion in the healthy popula-
tion as well as intact priming in amnesic patients. To answer
these questions, a computational model was developed, as
discussed in the next section.

2.3. Computational modeling experiments

Computational modeling is an effective tool in cognitive
science for mathematically formalizing a theory, evaluating,
and comparing existing theories and for making novel
experimental predictions. In contrast to the loose formula-
tion of traditional verbal theories, computational models
include explicit implementation details and can produce
highly detailed simulations of human performance (Zorzi et
al.,, 2005). To understand the role of perceptual memory-
based linkage in repetition priming, a computational model
was developed based on the behavioral and neural results
from the experiments above. The sequence of cognitive
processes, as in Fig. 3, was modeled along with the Pathway 3
(Fig. 9-R). Further, the model was extended to common object
priming by including an episodic memory-based DL compo-
nent (Fig. 9-L).

2.3.1. Computational experiment I: Repetition priming with
novel objects

Results from the fMRI experiment characterized the low-
level perceptual memory-based binding system and thus
form the basis for modeling. Key characteristics include
(1) one-shot learning, i.e., significantly reduced response
time after a single repetition, (2) no further decrease in
response time with multiple repetitions, and (3) lack of
transfer of learning from study phase to test phase, reflecting
a rapid decay. These characteristics were captured in the
computational model by implementing a caching mecha-

. ; — o
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< 1300 1 % % 1300 1 1300 1
2 I 1
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';:: 1100 4 1100 4 1100 A
g 1000 - 1000 1 1000 4
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L7}
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Study Phase Test Phase (Same Cue) Test Phase (Switched Cue)
* p < 0.0001
** p <0.003

Fig. 8 - Behavioral results (experiment II). Reaction times in study and test phase (with and without cue inversion) in the
common object priming experiment. The commonly seen behavioral signatures of DL, i.e., increasing decrease in RT with
repetition and disruption of priming gains with cue inversion, were observed.
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Fig. 9 - Model architecture. Processing objects encountered for the first time is similar for both common (L) and novel objects (R),
shown using straight solid arrows. These sequential pathways are computationally intensive and are engaged whenever an
item is seen for the first time. There are two alternative processing pathways that can be brought online with repetition. First is
the episodic memory-based decision-learning pathway that reflects the previously formulated decision learning process; it
exists only for common objects, and shown as solid curved arrow. A second alternative pathway is that of the proposed low-
level perceptual memory-based binding, shown as dashed curved arrows. Upon successive encounters with the same visual
stimulus, this pathway helps bypass perceptual information extraction (in case of novel objects) or object identification step (in
case of common objects). Further, it does not involve associative learning, thus the response time reduction happens in a single
stepwise manner and does not benefit from multiple repetitions. For more details, see the Section 4.

nism. By definition, caching is a method of temporarily
storing frequently accessed information, to speed up proces-
sing. Thus, during the first encounter with a novel item, task-
related perceptual information, which is extracted from the
visual representation, is cached. During successive encoun-
ters with the same item, the cached information can be used
directly in decision making (Fig. 9-R). Hence, the computa-
tionally intensive perceptual-information-extraction step
can be bypassed, leading to faster response after a single
repetition. However, caching does not result in associative
learning, i.e., multiple repetitions do not increase the
synaptic strength of link, and thus, there are no further
decreases in response time with multiple repetitions. In
addition, because cache is a low-level temporary storage, it
needs to regularly flush previously stored information to
make room for new information, and hence, it provides only
short-term gains. Altogether, the formalized perceptual
memory-based caching system (PCS) successfully models
the characteristics of priming gains observed in the current
RP experiment using novel objects (Fig. 10a).

The computational model is then tested in an experiment
that integrates DL with PCS to see if PCS can help resolve the
issues related to residual priming in healthy participants.

2.3.2.  Computational experiment II: Repetition priming with
common objects

DL was modeled based on the results from second behavioral
experiment (see Section 2.2) as well as previously observed
neural and behavioral signatures seen in experiments of
repetition priming (Dobbins et al., 2004; Schnyer et al., 2006).
After a single repetition, an object is associated with the
previous decision, and this association gets stronger with
multiple repetitions, until it finally saturates (Buckner et al,,
1998). Further, DL depends on well-established representa-
tions. To model these characteristics, the convergence zone
episodic memory architecture (Moll and Miikkulainen, 1997)
was used. That is, a randomly sparse-encoded binding layer,
acting as a convergence zone, was introduced between an
object representation and a decision layer. Thus, when the
objectis encountered for the first time, the active decision unit
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(a) Experiment I: RP using novel objects.
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(b) Experiment II: RP using common objects.
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(c) Experiment I1I: RP using common objects in amnesic population.
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Fig. 10 - Simulation results. The horizontal axis identifies the condition or phase, while the vertical axis displays the reaction
time, measured in processing cycles. The model was simulated under three different scenarios, for 1000 iterations in each
scenario. The inputs to the model were black and white images of different shapes of size 20 x 20 pixels. The output of the model
was a binary value, depicting decision “yes” or “no”. (a) In a novel-object priming simulation in healthy participants, significant
priming was observed only in the study phase (p<0.05, using two-tailed, pairwise t-tests). Priming gains did not transfer from
the study to the test phase. (b) In common object priming in healthy participants, significant priming took place both in the
study and the test phase (p<0.05, using two-tailed, pairwise t-tests). Further, cue inversion disrupted the DL, i.e., episodic
memory-based associations, but the PCS provided some level of intact priming. (c) The simulation of repetition priming in
amnesic patients using common objects yielded threshold-type priming gains in both study and test phase. Further, these
gains were not affected by cue inversion. Thus, the simulation results successfully replicate the behavioral priming results
obtained in current and previous studies with common and novel objects. The model also predicts that for amnesic patients
single stepwise reduction in response time would be found in repetition priming experiments using novel objects, similar to
what is found in healthy population.
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becomes associated with the active object representation unit,
utilizing this binding layer. Further, the episodic memory-
based architecture was modified to include associative
learning with repetitions. With each repetition, the synaptic
strength between the binding layer, object unit, and decision
unit grows stronger. Thus, successive encounters with an item
produce higher activation in the binding layer units and the
associating decision unit. This increase in activation in turn
leads to faster response selection and hence reductions in
response time with repetitions (Fig. 10b). The ability to
strengthen associations with multiple repetitions allows for
added facilitation. This result mirrors the behavioral results of
several multiple-repetition priming studies (Dobbins et al,,
2004; Buckner et al., 1998).

Further, the PCS and DL systems were integrated to see if
the repetition priming results could now be fully explained.
During the first encounter with an item, in addition to
developing an episodic memory-based association between
the previous decision unit and the object representation unit,
PCS was implemented to cache the object representation
units. Thus on second encounter with an item, PCS helps
bypass the object identification/retrieval step and episodic
memory-based DL helps bypass the higher-order semantic
information extraction and comparison steps. The episodic
memory-based DL provides increasing facilitation in response
times associated with multiple repetitions. However, upon
inverting the decision cue, the object-decision associations of
episodic memory are rendered useless and a significant
portion of priming gains are lost. Nonetheless, the preserved
PCS between visual and object representation layers gives rise
to some remaining residual priming advantage, as has been
observed in human subjects (Fig. 10b).

Integrating PCS and DL thus appears to fully explain the
repetition priming results as observed in healthy population
with common objects. However, amnesic patients with
damaged MTL structures lack episodic memory. The next
experiment shows how PCS alone can explain the repetition
priming results in amnesic patients.

2.3.3.  Computational experiment III: Repetition priming in
amnesic patients using common objects
The results from the repetition priming experiment using
common objects, showed intact priming gains in amnesic
patients (Schnyer et al., 2006). Due to damaged MTL structures,
the episodic memory-based DL cannot contribute to this
priming, and the results confirmed this prediction. The current
model proposes to formalize the underlying mechanism using
PCS alone. Thus on second encounter with the same item, PCS
would facilitate the object identification process and thereby
help produce a faster response. However, because there is no
associative learning in the PCS and there is a limited capacity, a
single stepwise reduction in response time with repetitions
results, similar to the results of the current fMRI experiment with
novel objects. Further, since no association is formed between
previous decision and any other layer of processing, cue
inversion should not affect the priming gains. The simulation
results, as shown in Fig. 10c, are similar to the behavioral results
observed in case of amnesic patients (Schnyer et al., 2006).

The modeling results in computational experiment I suggest
that the learning associated with the PCS do not transfer from

study to test phase, in case of novel objects. However, in case of
common objects (in computational experiments II and III), the
model suggests that it does. Since common objects have more
robust visual and object representations than novel objects, the
PCS appears to be less affected by interference between items. It
isinteresting to note that the observed priming gains in amnesic
patients were significant only for the first test phase and were
not significant for later test phases (Schnyer et al., 2006). In
addition, the model predicts that, for amnesic patients, the
response time would be reduced in a single stepwise fashion in
repetition priming experiments using novel objects, similar to
what is found in healthy population.

3. Discussion

To test how DL depends on well-established object representa-
tions and to determine whether it is possible to associate visual
representations and previous decisions directly, to attain even
higher degrees of automaticity, a new repetition priming
experiment using 2-D novel objects was conducted. Both
behavioral and neuroimaging results indicate that novel objects
result in relatively short-term priming, and response time
decreases in a single stepwise fashion with repetition. This
pattern does not fit previous formulations of DL, thereby
suggesting that well-established representations are required
for DL. This finding can be explained by the fact that the episodic
memory-based system is not well designed to deal with
similarity-based interference (Thorndyke and Hayes-Roth, 1979),
caused from less robust representations of similar-looking novel
object stimuli. The presented model for episodic memory-based
DL also supports this argument. The model implements a binding
layer (or a convergence zone) between the visual representation
and the previous decision made for an item. By architecture, this
association works best only if robust localized activity is formed in
the visual representation layer. However, the visual representa-
tion for novel objects is not sufficiently robust, which leads to
catastrophic interference in the binding layer and eventually in
the decision layer and hence renders the association useless.

Interestingly, neuroimaging results indicated reduced
cortical activity during the study phase in right inferior
prefrontal cortex (RIPC) for novel items that were presented
three times as compared to those that were shown only once.
This reduction suggests that weak DL was starting to be
established after two repetitions but was not strong enough to
transfer to the test phase. This finding is different from what
has been previously observed in RP experiments using
common objects, where the cortical activity is found to be
reduced primarily in the left inferior prefrontal cortex (LIPC)
with repetition and the reductions appear temporally robust.
The difference in location is consistent with the idea that the
right hemisphere processes more specific information, as
required in identifying novel items, and the left hemisphere
processes more abstract, easily namable representations like
those that exist for common objects (Marsolek, 1999).

Other evidence for weak DL for novel shapes was found in
the error rate analysis conducted on the test phase. With a
liberal statistical threshold, there was some indication of a
significant increase of number of errors associated with the
switched-cue condition relative to the same-cue condition for



88 BRAIN RESEARCH 1315 (2010) 75-91

repeated items. No such increase between cues was found for
nonrepeated items in the test phase. This finding of greater
errors for very high primed (VHP) items after switching the cue
suggests that some degree of decision learning was estab-
lished for such items. However, this effect is evident only with
liberal statistical thresholds and hence unreliable and weak.
If the priming gains observed in the current experiment are
inconsistent with DL, could they be due to a neural tuning
mechanism? The early formulation of tuning theory (Wiggs and
Martin, 1998) postulates that the efficient object processing,
with repetition, results from pruning of neural activations that
are not essential for the task. Thus, in the current experiment,
the tuning perspective would predict increasing decrease in
response time with multiple repetitions, instead of a one-time
stepwise reduction in response time (Buckner et al., 1998).
Although there were robust neuroimaging effects of repeti-
tion in the study phase, the test phase exhibited effects only
with a more liberal statistical threshold. Nevertheless, results
from the test phase were suggestive of possible frontal/posterior
dissociation during same- and switched-cue conditions. For
instance, regions of PFC, namely left and right middle frontal
gyrus demonstrated repetition suppression in the same cue
condition, consistent with a DL component. In contrast,
repetition suppression was evident in posterior regions during
both same- and switched-cue conditions in the test phase.
Furthermore, significant correlations between repetition-in-
duced cortical activity reductions in occipitotemporal gyrus
and behavioral response time reductions during the study
phase strongly suggest that some form of perceptual memory is
also involved in RP using novel objects. Based on these results,
the posterior componentis formulated as a perceptual memory-
based caching system (PCS) in this paper. By definition, caching
is a method for storing frequently accessed information
temporarily to speed up the processing. This one-time storage
provides instant priming gains but without associative learning,
i.e., multiple repetitions will not further strengthen it.
Although multiple components contributed to it (such as PCS
and weak DL), priming gains were not transferred from the study
phase to the test phase. This observation can be explained either
by limited capacity of PCS (due to interference between similar
looking novel objects) or temporal decay of activation in storage
areas. The current fMRI study utilized 60 unique novel items per
study-test run and such a high number would quickly over-
whelm the lower-level PCS. However, this reason suggests that
an experiment that uses fewer novel items, repeated multiple
times, might be able to utilize this system to implement longer-
term priming gains. The possibility of a rapid temporal decay
effect was tested by examining reduction in RT with repetition
and distance from the first presentation. Significant log relation
was found in the study phase (between LP and NPR), indicating a
rapid decay of priming gains as the distance between presenta-
tions was increased. This finding suggests that since the test
phaseitems are at the maximal experimental distance from their
first presentations in the study phase, the lack of priming was
due to this relatively rapid decay of activation. An experiment
aimed at finding the capacity and decay curve for the perceptual
memory is left as an open question for future research.
This paper proposes that one potential component in
understanding repetition priming is the PCS. A system of this
type has not been previously formulated in contrast to a DL or

response learning system because the gains achieved from
bypassing higher-level cognitive processes overshadowed the
gains achieved from bypassing lower-level processes. However,
the experiment using novel objects revealed this phenomenon.
In addition, modeling PCS alone, and with the DL component,
explained previously found intact priming in amnesic patients,
and residual priming in healthy population, respectively.

In summary, behavioral, neuroimaging, and computational
modeling results suggest that repetition priming involves
multiple components, and a tight interaction between experi-
ments and computational theory is necessary to disentangle
their contributions.

4. Experimental procedures
4.1. Subjects

4.1.1. ExperimentI

Twenty-two young native speakers of English, with normal or
corrected to normal vision, took part in the fMRI experiment.
The subjects (14 males and 8 females, mean age of 23.68 years
with range from 20 to 28 years) were recruited through flyers
and advertisements at local colleges and universities and
received $50 for their participation. The subjects were
screened for current psychiatric and neurological disorder,
history of brain injury, or excessive drug or alcohol use. They
were also screened to make sure they were free from any risks
of magnetic resonance imaging. Written informed consent
was obtained from each subject prior to experimental session.
The Institutional Review Board (IRB) of the University of Texas
at Austin approved all procedures.

4.1.2. Experiment II

Twelve young native speakers of English, with normal or
corrected to normal vision, took part in the behavioral
experiment. The subjects (6 males and 6 females, mean age
of 18.5 years with range from 18 to 20 years) were recruited
from the PSY301 pool of research subjects and received an hour
of credit for their participation. The subjects were screened for
current psychiatric and neurological disorder, history of brain
injury, or excessive drug or alcohol use. Written informed
consent was obtained from each subject prior to the experi-
mental session. The Institutional Review Board (IRB) of the
University of Texas at Austin approved all procedures.

4.2, Materials

4.2.1. ExperimentI

Two hundred fifty novel object images (from Slotnick and
Schacter, 2004) were used in the experiment. The stimuli were
presented using a PC notebook computer running DMDX
(software developed at Monash University and at the University
of Arizona by K.I. Forster and J.C. Forster) and an LCD projection
system. The responses were collected using the participants’
right-hand and an MR-compatible two-button response box.

4.2.2. Experiment II
Two hundred fifty common object images (from Schnyer et al,,
2006) were used in the experiment. The stimuli were presented
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using a PC computer running DMDX (software developed at
Monash University and at the University of Arizona by K.I.
Forster and J.C. Forster) on a monitor. The responses were
collected using the participants’ right-hand and a two-button
mouse.

4.3. Procedure

4.3.1. Experiment I

Before going into the scanner, subjects took part in a brief
practice session, where five examples of each category (fat or
slim) were shown to them. They were told that the task requires
them to visually measure area occupied by each stimuli and
answer <yes/no> to the shown decision cue. Further, they were
told there was no wrong answer in this task and they should try
to remain consistent in their criteria. Once settled in the
scanner, a brief task instruction screen was shown followed by
four alternating “study-test” cycles. During the study phase of
each cycle, 20 pictures were presented once (NPNR) and 20
different pictures were presented three times (NPR, LP, and HP),
for a total of 80 presentations. In addition, null trials were added
to the sequence to increase the efficiency of the design (20 in
study phase and 10 in test phase). The sequence of these
presentations was generated in a pseudo-random order using
optseq2 program (Dale et al., 1999; Dale, 1999). Participants were
asked to make relative size judgments by deciding whether the
stimulus was “fat” or “slim.” They indicated their decision by
pushing a “yes” or a “no” key with the index and middle fingers,
respectively, of their right hand. Following the study phase and
a short pause, participants took part in the test phase consisting
of one of two test blocks. Each test block consisted of 20 pictures
presented three times during the study (i.e., presented for the
fourth time; VHP), along with 20 pictures never shown before
(NP). None of these pictures were repeated within or between
test blocks. The test blocks differed only on the basis of decision
cue. In one testblock, participants responded to the decision cue
“is the stimulus fat?”; in the other test block, they were asked to
respond to “is the stimulus slim?”. Thus, in the first and third
study-test cycles, the participants were asked “is the stimulus
fat?” in both study and test phase. However, in the second and
fourth test phases, the participants were asked “is the stimulus
slim?”. Pictures were randomly assigned to one of the four
study-test cycles. Within each cycle, pictures in the test phase
were rotated between the two possible conditions (shown-once
(NP) and shown-fourth time (VHP)). In addition, the order of
switching was counterbalanced across subjects. Thus, in total,
there were four versions of the experiment. Pictures were
presented at the rate of one every 3 seconds and were
accompanied at the bottom of the screen by the decision cue
to be used on that trial. In addition, the duration for null trials
was randomly distributed across the sequence using the
optseq2 tool. Each study phase lasted for about 300 seconds,
and each test phase lasted for about 150 seconds.

4.3.2. Experiment II

The procedure in this experiment was kept exactly similar to
the experiment I, except for the stimulus material and
decision cue. Instead of using novel objects, the common
object images were used (from Schnyer et al., 2006). The
subjects were told that the task requires them to compare the

“real-world” size of the shown stimulus from a “shoebox” and
answer <yes/no> to the shown decision cue.

4.4.  fMRI data acquisition

Scanning was performed on a 3-T GE scanner using standard 8-
channel head coil. A multiecho GRAPPA parallel imaging EPI
sequence developed at Stanford was used that optimizes BOLD
signal in regions that are typically vulnerable to susceptibility
artifact. Functional EPI images were collected utilizing whole-
head coverage with slice orientation to reduced artifacts
(approximately 20° off the AC-PC plane, TR=2 seconds,
three-shot, TE=30 ms, 35 axial slices oriented for best whole
head coverage, acquisition voxel size=3.125x3.125x3 mm
with a 0.3-mm interslice gap). The first four EPI volumes were
discarded to allow scans to reach equilibrium. In all cases,
stimuli were viewed utilizing a back-projection screen and a
mirror mounted on the top of the head coil. Responses were
collected with MR-compatible buttons that were held in the
right hand. In addition to EPI images during the task, two high-
resolution T1 SPGR scans that had been empirically optimized
for high contrast between GM and WM and between GM and
cerebrospinal fluid (CSF) were acquired. These images were
acquired in the sagittal plane using a 1.3-mm slice thickness
with 1.0-mm? in-plane resolution.

4.5. Statistical analysis of neuroimaging data

Data were processed using FSL (Smith et al., 2004, and http://
www.fmrib.ox.ac.uk/fsl/). For fMRI analysis, images were
motion-corrected, smoothed with an 8-mm Gaussian filter,
high-pass-filtered and prewhitened before event-related
responses were estimated using event-related convolution
with anideal hemodynamic response represented by a gamma
function and its temporal derivative. Explanatory variables
were modeled for each of the three conditions (NPR, LP, and HP)
in the study phase and two conditions (NP and VHP) in the test
phase. A second-level analysis was conducted on each
individual subject by registering each subject to the standard
MNI152 template and combining the critical contrasts from the
four runs. Group-level maps of these contrasts were calculated
with a higher-order statistical parametric map utilizing the
FLAME (FMRIB’s Local Analysis of Mixed Effects) technique
implemented through FSL and threshold at p<0.05, cluster-
corrected. Two subjects were excluded from group-level
analysis due to high motion artifacts. The following contrasts
were calculated in the study phase: (1) NPR>all prime,
(2) NPR>HP, and (3) NPR>LP; and in the test phase: (1) NP>VHP.

4.6. Computational model architecture

Three different pathways of processing were included in the
model: (1) the sequential series of cognitive processes, (2) the
episodic memory-based decision learning, and (3) the perceptual
memory-based cachingin a <yes/no> type classification task such
as used in the fMRI experiment. Each of these is described below.

4.6.1. The sequential series of cognitive processing
It was modeled using recurrent artificial neural networks.
Total number of processing cycles taken by the model from
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input to decision making was summed over each stage. Below
is a brief description of how activation in the model operates;
for more details, see Cohen et al. (1990). The units update their
activations by calculating a weighted sum of the inputs they
receive from the previous level in the network. The net input
S; at time t for unit U; (at layer L,) is given by:

Sj(t) = Zai(t)*wij(t) o))

where q;(t) is the activation of U; at L,_ 4, and wj; is the strength
of the connection weight between units i and j. The activation
of a unit is the weighted average of its current net input and its
previous net input:

aj(t) = o* (r*Sj(t) -(1-1)*Sj(t - 1)), (2)

where 7 is the cascade rate. For all simulations in this paper,
0.8 was used as the value of 7. Here, the sigmoid function, o,
was used to keep the activation a; between 0 and 1.

Back-propagation was used to implement learning (Rumel-
hart et al., 1986). Learning occurs by adjusting the connection
strengths to reduce the difference between the output pattern
produced by the network and the one desired in response to
the current input. Each processing stage (object recognition,
visual processing, decision making) was trained separately
and the output from each previous stage was fed to the next
one as input. Each stage in the network was trained to about
96% accuracy to avoid overfitting.

To match experimental RT behavior, variability was
incorporated into the model by selecting responses based on
a random walk and a diffusion process (Link, 1975; Ratcliff,
1978). Each potential response is paired with an evidence
accumulator that takes input from the output units of the
network. At the beginning of each trial, all the evidence
accumulators are set to 0, and at each time-step of processing
(a cycle), evidence accumulates as a function of the activation
in the relevant output unit. The amount of evidence, e;,
accumulated for response i is given by the following equation:

e; = N(a[o; — max(aj »i)],0), (3)

where N(,) is a random value sampled from a normal
distribution with mean x and standard deviation o. A response
was generated when one of the accumulators crosses the
threshold. (For all the simulations in this paper, following
values were used, u=0.1, 6=0.1, and threshold=1).

4.6.2. Episodic memory-based decision learning

Convergence zone episodic memory architecture (Moll and
Miikkulainen, 1997) was used to implement the episodic memo-
ry-based decision learning between object representations and
previous classification decisions. Convergence zone memory
model consists of two layers of real-valued units; the feature
layer and the bindinglayer. In the current model, the feature layer
consists of two vectors, one representing the object and the other
the decision. Each unit in these vectors specifies a different object
or a decision. The feature units are connected to the binding layer
with bidirectional-weighted connections. Activation in the feature
layer causes a number of units to become active in the binding
layer, and vice versa. In effect, the binding layer activation is a
compressed, distributed encoding of the feature representation.

Initially, all connections are inactive at 0. An association
between the object representation and decision in the episodic
memory is build up in three steps. First, those units that
represent the appropriate feature values are activated at 1.
Second, a subset of m binding units are randomly selected in
the binding layer as the compressed encoding for the pattern,
and activated at 1. Third, the weights of all connections
between active units in the feature maps and the active units
in the binding layer are activated, i.e., set to 1. Thus, only one
presentation is necessary to store an association. An associ-
ation is retrieved in four steps. First, all binding units are set to
0. A partially specified association (i.e., the object representa-
tion feature vector) is propagated to the binding layer. The
activation is thresholded to obtain the most active units,
reducing noise. It is then propagated back to the decision
feature layer, thereby retrieving the decision. It has been
shown that the convergence zone memory has a very large
capacity (Moll and Miikkulainen, 1997).

The repetition-related facilitation effect was modeled by
modifying the convergence zone architecture, by updating the
connection weights gradually (instead of 0/1 as in the original
convergence zone model). Thus after each repetition of an
item the weight between the object representation and
decision vector was increased, which in turn gave rise to
faster responses in the decision layer.

4.6.3. Perceptual memory-based caching system

This process is used to model lower-level memory-based binding,
using caching. In case of novel objects, it caches the task-related
perceptual information, so that during successive encounters
with the same item, the cached information can be used and
hence speed up the processing. In case of known objects, it
caches the appropriate object unit during first encounter, by
doing so it helps facilitate the object identification/retrieval
process during further encounters with the same item. This
processis a direct storage of information and involves no learning
in terms of weight change. The cache has a limited capacity,
resulting in short-term storage only. In the presented model, the
connections were manually configured to store the bindings.
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