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Abstract

Recently, there has been an increase in the usage of centrally managed
markets which are run by some form of pari-mutuel mechanism. A pari-
mutuel mechanism is characterized by the ability to shield the market orga-
nizer from financial risk by paying the winners from the stakes of the losers.
The recent introduction of new, modified pari-mutuel methods has spurred
the growth of prediction markets as well as new financial derivative mar-
kets. Coinciding with this increased usage, there has been much work on the
research front which has produced several mechanisms and a slew of interest-
ing results. We will introduce a new pari-mutuel market-maker mechanism
with many positive qualities including convexity, truthfulness and strong per-
formance. Additionally, we will provide the first quantitative performance
comparison of some of the existing pari-mutuel market-maker mechanisms.

1 Introduction

While pari-mutuel systems have long been one of the most popular means of orga-
nizing markets, recent innovations have created more applications for pari-mutuel
market-making techniques. Lately, there has been a substantial increase in the
number of markets being conducted by means of pari-mutuel techniques. It ap-
pears that this growth has been driven by the introduction of novel, non-standard
pari-mutuel mechanisms that more easily facilitate the launch of a new market.
While the mechanisms employed vary from market to market, they share the com-
mon bond of utilizing the pari-mutuel principle of paying the winners from the
stakes collected from the losers.

The standard pari-mutuel market was developed in 1864 and is operated in
a manner where market traders purchase shares for a specific possible outcome.



When the outcome is determined, the money collected is paid out to the winners in
proportion to the number of winning shares that they hold. This technique protects
the market organizer from sustaining a loss under any circumstance. Some of the
earliest work in the development of modified pari-mutuel techniques was done by
Bossaerts et al. (2) where the authors study a continuous double auction where
a thin market exists and the prices do not reach an equilibrium. They solved a
contingent claim call auction market with a linear programming formulation that
maintains the pari-mutuel property of paying the winners with the stakes of the
losers.

Prediction Markets Prediction markets are defined as speculative markets
whose purpose is to create predictions for the outcome of a particular event. An
important event in the growth of prediction markets was the development of the
Logarithmic Market Scoring Rule (LMSR) by Hanson (7). We will describe the
mechanics of the LMSR in section 3 but one key point is that this mechanism
serves as an automated market-maker. The market-maker will calculate and post
prices for all possible states. This allows the market organizer to immediately post
prices for all states - rather than waiting for traders to post orders as in a continu-
ous double auction. While this mechanism is generally pari-mutuel (except for a
controllable amount of seed money that the organizer must provide), it differs in an
important manner from the standard pari-mutuel market. The value of a winning
order is fixed in Hanson’s mechanism.

In 2006, Pennock et al. (12) built upon some previous work to introduce an-
other mechanism called the share-ratio Dynamic Pari-mutuel Market-Maker (DPM).
Their mechanism also operates as an automated market-maker with controlled risk
to the market organizer. Powered by these research innovations, many new predic-
tion markets have been introduced in recent years. The Yahoo! Tech Buzz Game
uses the DPM mechanism to set prices. Hanson’s LMSR is being employed by
many online prediction markets including the TheWSX and InklingMarkets.

Financial Markets In 2002, Goldman Sachs and Deutsche Bank teamed up to
create a market for their clients allowing them to trade claims over the potential
values of economic indicators which would be announced in the future (Cass (4)).
The technology for these markets is based on a call auction mechanism designed
by a firm named Longitude (described in Baron and Lange (1) and Lange and
Economides (8)). Since the market is conducted as a call auction, the organizer
will collect all orders then close the market and determine which orders to accept
and which to reject. The organizer has the advantage of seeing all the orders before
needing to make commitments to accept any order. Therefore, the mechanism
of Longitude is formulated as an optimization problem which the market organizer
must solve. Constraints are used to ensure that the mechanism remains pari-mutuel.
Fortnow et al. (5) have a linear programming formulation for this contingent claim



call auction but it does not generate unique state prices. The mechanism developed
by Bossaerts et al. (2) also addresses this auction but needs to be solved in multiple
steps and also does not generate unique state prices. However, the call auction
mechanism has one key disadvantage: the traders are not sure about the acceptance
of their order until after the market is closed. Thus, if their order is rejected, there
is no market to resubmit a modified order.

Let’s pause to consider one key distinction between the mechanisms that we
have discussed above. While these mechanisms are designed to be implemented in
one of two different manners, we will show that it is possible to easily change the
manner of implementation of these mechanisms. The mechanisms developed by
Hanson and Pennock are designed to be implemented as posted price automated
market-makers. On the other hand, the mechanism of Longitude must be imple-
mented as a call auction. A fundamental difference in the posted price versus auc-
tion implementation is that the onus is placed on the trader to reveal a price for his
order in the auction setting. Despite this difference, the posted price mechanisms
can be implemented as an auction.

In Section 2, we will introduce a new mechanism which leverages the auction
technology but is applied in a dynamic setting where the market organizer will
make immediate, binding decisions about orders. A truthfulness property of the
optimal bidding strategy in this auction setting will allow us to conduct a direct
comparison with the posted price mechanisms. In Section 3, we will present an
overview of the mechanisms developed by Hanson and Pennock plus some simula-
tion results where we compare these mechanisms to the SCPM. We conclude with
a discussion in Section 4.

2 The Sequential Convex Pari-mutuel Mechanism (SCPM)

The development of the SCPM followed directly from earlier work of the authors
(Peters et al. (13)). In this section, we will examine the predecessor of the SCPM
and describe the modifications used to create the SCPM. Longitude had previously
developed a mechanism named the Pari-mutuel Derivative Call Auction (PDCA).
See Lange and Economides (8) for details of the PDCA. The PDCA has a number
of desirable characteristics but is formulated as a non—convex program. Thus, a
special solver is required to find global solutions. We have developed an alternative
convex call auction mechanism which maintains all the positive characteristics of
the PDCA. First, let’s describe in detail the format of the market before explaining
the details of the market-making mechanisms.

The primary motivation of these market-making mechanisms is to help gen-
erate liquidity in small or new markets without needing to expose the market or-



Table 1: Notations Used in this Paper

Variable | Name Description
ajj State Order Trader j’s order on state ¢
qj Limit Quantity | Trader j’s maximum number of orders requested
j Limit Price Trader j’s maximum price for order
Di Price Organizer’s price level for state 7
xj Order Fill Number of trader j’s orders accepted

ganizer to financial risk. As shown by Bossaerts et al. (2), a call auction which
receives limit orders can avoid some of the thin market problems suffered by a con-
tinuous double auction and help the market achieve substantially better liquidity.
This approach allows the organizer to see the full set of orders before determining
acceptances while the limit provisions allow the traders to express the bounds of
their willingness to pay for claims.

Now, consider a market with one organizer and n traders. There are S states
of the world in the future on which the market traders are submitting orders for
contingent claims. For each order that is accepted by the organizer and contains
the realized future state, the organizer will pay the trader some fixed amount of
money w, which, without loss of generality, equals 1 in this paper. One caveat here
is that one of the models which we will describe later in this paper, the Dynamic
Pari-mutuel Market-Maker, does not pay a fixed amount to winners. The traders
will submit orders to the organizer which specify the states which they want con-
tingent claims over, the price at which they are willing to pay for the order, and the
number of identical orders that they will buy. After all orders are submitted, the
market is closed and the organizer will then decide whether to accept or reject each
order. If the order is accepted, the organizer also decides the number of orders to
accept and the price per order to be collected from the trader. As the reader might
imagine, a wide range of markets from results of sporting events to elections can be
organized in this manner. The challenge is to develop a mechanism for accepting
and rejecting orders that doesn’t expose the organizer to risk.

Throughout the analysis, we will use the notations in Table 1. The traders will
supply the values of a; ;, ¢; and 7; for all ¢, j, which are denoted by the matrix A
and vectors ¢ and 7. Thus, these data are considered given for the models. The
market organizer will need to determine the decision variables p; and x; for all 7, j.

2.1 Convex Pari-mutuel Call Auction Mechanism (CPCAM)

In previous work (13), we have developed an alternative formulation of the PDCA
which has similar constraints but is also a convex program. The primary constraints



are to ensure that the market is self—funding and that the quantities granted to each
trader are consistent based on the relationship of their limit price and the calculated
state price of the order. Furthermore, it is valuable that the model has a unique
optimum. Below is our alternative pari-mutuel formulation, again, with w = 1
where w is the value of the fixed payoff:

maximize 7z — M + Y, 0;log(s;)
subject to Zj a;jrj+s; =M forl<i< S (D
0<z<¢q s=20

In this formulation, 6 represents a starting order needed to guarantee uniqueness
of the state prices in the solution. The starting orders are not decision variables
— in effect, the market organizer is seeding the market with this order. In some
outcomes, the market organizer could actually lose some of this seed money. The
objective function in this formulation has the following interpretation. The term

nla — M is the profit to the market organizer. On the other hand, the term

> 0ilog(s;) =, 0;log (M -2 ai,jxj) can be viewed as a disutility function
(or weighted logarithmic penalty function) for the market organizer that ensures
she will find an allocation of accepted orders that is pari-mutuel. In our model,
prices (p) are derived from the solution to the KKT conditions of the optimization
model. They turn out to be the dual variables corresponding to the self-funding
constraints. The KKT conditions also include the requirement that ) , p; = 1.

2.1.1 Previous Results

It turns out that the CPCAM can be shown to have many valuable characteris-
tics. In particular, our model yields the first fully polynomial—time approximation
scheme (FPTAS) to the contingent claim call auction with unique prices problem.
In prior work, we have established the following properties (see Peters et al. (13)
for proofs):

e The CPCAM is a convex program that can be solved (up to any prescribed
accuracy) in polynomial time using standard techniques.

e The market will be self-funding (other than the required starting orders).

e The optimal solution (z*, p*) from the CPCAM model would also be optimal
if we replaced 7; with (p*)Ta; in the objective function. Furthermore, the
solution will remain optimal if we replace m; with any ¢; where (p*)Ta; <
Cj S .



e The state price vector p* for any optimal solution to the CPCAM model is
unique.

o Asp \, 0, the solutions p(16) converge to the unique limit points p(0) = pj.

e The set of feasible solutions of the PDCA model coincides with the set of
optimal solutions of the CPCAM model (1) and they produce the identical
state price vector. Furthermore, the PDCA model can be solved as a linear
program after obtaining the state price vector p*.

2.2 Sequential Convex Pari-mutuel Mechanism (SCPM)

While the CPCAM possesses many powerful properties, the fact that it must be
implemented in a call auction setting is limiting. Two fundamental drawbacks
exist. First, market traders do not know whether their order is accepted until the
conclusion of the auction. At this point, the market is closed and there is no longer
a central platform with which traders can submit a new order. In many situations,
they would prefer to have an immediate decision. Second, there is no ability for
market traders to lock-in gains by trading accepted orders while the market is still
open. This trading is important as it allows traders to hedge positions if there is a
swing in the state prices.

Thus, we would like to utilize some of the powerful properties of the CPCAM
but change the format of order placement from a call auction setting. We have
developed a simple modification to the mechanism that allows us to run the mech-
anism each time a new order is received by the market organizer. We call this new
mechanism the Sequential Convex Pari-mutuel Mechanism (SCPM). Essentially,
we run a slightly modified version of the CPCAM where, after receiving each or-
der, we add a constraint to the model to lock in optimal order fills from the previous
solution of the model. Thus, when the first order is received, we just run the CP-
CAM as normal. Next, when the second order is received, we run the CPCAM
but we add the constraint that the first order must be filled to the level dictated
when we solved the model for only the first order. This process continues with new
constraints added after each new order is processed.

Thus, the market organizer can immediately tell the trader whether or not his
order was accepted. When the nth order is received, we can formulate the SCPM



as follows:

maximize wlz — M + >, bilog(si)

subject to Zj a;jrj+ s =M forl <;< S
z; =1 for1<j<n-1 2)
0<z,<qn
s>0

This model will determine the amount of the nth order that should be filled. Here,
l; represents the order quantities found from previous solutions of the model. The
SCPM will produce state prices which can be used to charge the nth trader for his
order.

2.2.1 Properties of the SCPM

Fortunately, the SCPM will preserve many of the positive properties of the CP-
CAM. First, the market organizer’s risk will be bounded by the the starting orders.
The maximum possible loss by the market organizer will never exceed (maxe Y ;¢ 0;)
where G represents a set of S — 1 states. It may be necessary to increase the magni-
tudes of each 6; in comparison to the call auction setting since the dynamic setting
will be more reliant on the seed money until a sufficient number of orders have
been accepted.

In the CPCAM, the state prices would satisfy price consistency constraints for
all orders whereby an order will only be accepted if its limit price is greater than
or equal to the sum of p; for all states included in the order. In the SCPM, we will
find state prices but they will only satisfy price consistency for the current order.
Thus, the prices are less useful in terms of providing information about all orders
received previously. However, the current trader can be sure that his order will be
accepted or rejected according to price consistency constraints based on the current
price. The SCPM will also provide traders a certain payoff amount if one of their
states is realized. The market organizer will pay each winning order a fixed amount
w. Furthermore, the SCPM is easy to implement. As each order is received, we
will be solving a slightly larger convex problem.

Truthfulness

In the call auction context, it is difficult to determine the optimal bidding strategy
for the traders when the CPCAM is employed. However, the situation is different
when we move to a sequential setting where the SCPM is implemented.

Theorem 1 When the SCPM is operated in the purely pari-mutuel manner (in



which traders are charged the calculated state price of their accepted orders), the
optimal bidding strategy for traders in the SCPM is to bid their true valuations.

Proof Let’s assume that trader j arrives at the market and seeks to submit an
order. The states covered by this order can be represented by the vector a. We
will assume that trader j seeks one order (so, his limit quantity is one). Finally,
the trader j has a private valuation for his order of v;. If the order is accepted,
the trader will earn some surplus (s = v; — p) where p is the charged price of
the order. We will assume that the trader has a utility function, u(s), which is
monotone non-decreasing in surplus.

If the trader decides not to bid his true valuation, let’s inspect his possible
alternative bidding strategies and check for optimality. There are two cases that we
must evaluate: bidding less than his valuation and bidding more than his valuation.
Remaining consistent with previous notation, we will use m; = v; to represent the
limit price of his truthful bid. Whenever the SCPM is solved for the new order,
the model will calculate new state prices. From these prices p, we can obtain a
calculated state price p’ a. This is the price that the trader will be charged if his
order is accepted. Now, let’s examine the two cases of bidding strategies.

Case 1 (Bidding less than his valuation): Let 7r} be the new limit price for
the trader. We know that 7r§- < vj. When a truthful bid would be rejected since
it is lower than the calculated order price, then the bid of 77} will obviously also
be rejected since 7r;- < mj;. This outcome is equivalent in terms of surplus to
the outcome in the truthful bidding strategy. Next, when the truthful bid would
have been partially accepted when p’'a = vj, the bid of w;- would be rejected since
w; < vj. Finally, in the case where the truthful bid was fully accepted, we have two
outcomes. The bid of 773 could also be fully accepted. In that case, the trader will
be charged p’ @ for his order and will have some positive surplus for the accepted
order since (v; — pTa) is positive. This is an identical outcome to the truthful bid
case. However, there is a chance that 7T3- < pla < v;. In this case, the order will
be rejected and the trader will receive no positive surplus. If he had bid truthfully,
he would have had his order fully accepted and received positive surplus.

Thus, we can see that bidding truthfully weakly dominates bidding less than
Vy.

Case 2 (Bidding more than his valuation): Next assume that the bid is 713/ where
773-’ > v;. When a truthful bid would be rejected since it is lower than the calculated
order price, then we have two possibilities. The bid of 7r§»’ could also be rejected if
773-’ < pTa. However, the bid could be accepted (partially or fully) if 779’ > pla.
This is a bad outcome for the trader because there is a chance that p”'a > v;. In
this case, he actually receives negative surplus since the net value of the accepted



order will be 2(v; — pTa) where z is the order fill amount. This quantity will be
negative. If he had bid truthfully, the order would have been rejected. If v; > pla,
then he will earn positive surplus of (v; — p”a) but he would have received this if
he had bid truthfully. Thus, the trader can only do worse by bidding more than his
valuation in this instance. In the case where the truthful bid is partially accepted,
the bid of 7r§~’ will be fully accepted. However, no positive surplus will be earned
since v; = pTa. This is an equivalent outcome to bidding truthfully. In the case
where the truthful bid is fully accepted, the bid of 77/ will clearly be fully accepted.
However, the utility earned will be equivalent since in both cases, the trader will
be charged p” a.

So, bidding truthfully also weakly dominates bidding more than v;. Therefore,
we have shown that truthful bidding is the dominant strategy when the purely pari-
mutuel version of the SCPM is implemented. |

Thus, the mechanism is truthful in a myopic sense since we are only consid-
ering the optimal bid for the current order of the trader. It should be noted that it
is easy to construct an example where the the optimal bid is not truthful when the
market organizer charges the trader his limit price instead of the calculated pari-
mutuel price.

Update Mechanism
When our mechanism is implemented, the market organizer must solve a convex
program at each time step to determine the new state prices and the fill quantity
for the current order. It turns out that the market organizer does not need to solve
a convex optimization problem each time a new order is submitted. He can follow
an update procedure that involves solving a small system of equations to determine
if the order is accepted and to calculate the new prices.

The update procedure relies on insights from the KKT optimality conditions
(and the previous solution). From the KKT conditions, we have the following
relations:

Zj ajjr; +s; =M

S; = FZ

Now assume that we have already solved the SCPM for (n — 1) orders and the
nth order has arrived. Let p be the optimal price vector for the previous solution.
First, we observe that if 7,, < p’ a,, then z,, = 0 and p = p. This follows from the
price consistency constraints of the model. If 7,, = ;ETan, then we are assured that
zp = 0 since any increase in z,, would increase the prices of the states selected in
the order and thus cause 7,, < p’a,. If 7, > p’ a,, the update procedure would



examine two cases to determine the new z and p:

1. Since we know that m,, > ﬁTan, we also know that 0 < z,, < g, from
the price consistency property of the optimal solution. First, we assume that
ZTyn = @n and see if we can find prices which will satisfy the optimality con-
ditions. So, set x,, = g, and solve the following system of .S + 1 equations
to find values for M and p:

Zjaijxj—i—%:M Vi
Eipizl

Let’s rewrite this system into a form that will be easier to solve. Let b(i) =
Z?;ll ai; ;. This represents the number of claims which have been granted
for state . Now, based on our assumption that z,, = ¢,, we can express
> ijT;j as (b(7) + (in) gn). Next, we can substitute for p; and combine
the equations into the following equation:

> W =1

i) Q(i,n)qn
Now, we have a function of M only. We can solve this system. If based
on the solved value of M and the implied value of p, we have m,, > p’ ay,
then we are done. However, if 7, < p’a, based on the solved values of p
then this means that our assumption that x,, = ¢, was incorrect. Then, we
proceed to the second case.

2. Now, we know that 0 < x, < g¢,. Therefore, it must also be true that
7n = plan,. Let T be the set of states where agipy = 0. We know that
Yoier Mﬁiib(z‘) = 1 — mp. This is true because a(; )z, = 0 for these states
and the sum of the prices of these states must be equal to 1 minus the total
prices of the states where a(; ,,) # 0. Again, we have a function of one vari-

able (M). We can solve this equation and fix M.

Next, for the other states, we have the following equation:

Z¢T be(i)fa(i_’mxn n

Since M is fixed, this is also an equation of one variable (x,,). Thus, we
solve this equation and we have the order fill amount x,. The prices can
then be easily calculated.

10



Unfortunately, these systems of equations are nonlinear. One approach for
solving these systems is to attempt to solve a geometric program with a null ob-
jective function and the constraint being the equation to be solved. This would basi-
cally be a geometric feasibility problem. However, the equation Zi¢T = b(i)gia(m)xn =
1 (when either M or x,, is the independent variable) is not a monomial so we can-
not leverage solution techniques for standard geometric programs (see Boyd et al.
(3)).

Fortunately, there are other efficient means of solving these equations. Simple
bisection methods can be used to solve the systems in all instances - bisecting
on the value of M or x,, as appropriate. While easy to implement, the bisection
method will compute an approximate solution in O(log(%)) time where ¢ is the
required error threshold. It turns out that there is actually a faster method to solving
the update mechanism.

Theorem 2 An s-approximation of the optimal solution to the SCPM can be found
in O(log log(%)) time by using our update mechanism.

Proof In the first case, we are trying to find a root a function of M.
FM) =" ei —1
- M — b(7)

— Q(in)dn

From Ye (14), we can see that this function satisfies the conditions of his The-
orem 2. In fact, this problem is just a variant of his third example. Thus, Ye’s
Newton-step based algorithm will solve this particular problem in O(log log(%))
time. As an initial point, we can set:

M, = max (0; 4 b(i) + a(in)an)

This will ensure that f(M;) > 1. From this starting point, we can apply Ye’s
algorithm and find the root.
The second case is very similar. We are now trying to find a root to a function

of z,,. 4
P =2 37 =) - ~7n

i¢T — Q(in)Tn

Again, this equation is simply a variant of Ye’s third example so we can apply
his algorithm to find the root efficiently. |

Thus, we have a very efficient method for solving the SCPM for each new or-
der. Rather than needing to solve a convex optimization problem at each iteration,
we can simply apply the update mechanism which reduces the problem to simply

11



solving a few equations. We have shown that Ye’s algorithm can solve equations
of our form very efficiently.

Additional Characteristics
We have discovered a couple other characteristics of the SCPM which are worth
describing. We state them in the following theorem.

Theorem 3 The solutions to the SCPM possess the following characteristics:

1. For a given accepted order n, if all values of a(; ) are equal where a; ) >
0, then the prices in the states where a; ,,y > 0 will strictly increase from the
previous solution.

2. For a given accepted order n, the state price p; will be a continuous function
of xy,.

Proof

(Part 1)

Assume for order n that we have a set of states " where a; ,, = a;j, > 0ifi,5 € T.
Otherwise, a;, = 0. Assume that our prices before order n were p and our new
prices will be p. Further, we assume that the optimal order acceptance x, > 0.
Our optimal solution will need to satisfy the following primal and dual feasibility
conditions:

Zj a; ;v +s8; =M Vi
0
pi = g
Zi pi=1
Now we will examine the possible changes to the prices of state k& where ay, , =
0 and its implications to the states in I". There are three possibilities. We will

determine which possible price change will occur and what the impact will be on
the prices of states in 7.

1. Price in state k increases — By the second condition, this requires that s;
decreases. By the first condition, we know that M will also decrease. If M
decreases then this would force all prices to increase in states where a; , = 0
since a; ,x, = 0 for these states. Now, let’s look at the prices for states in 7'
If M decreases, then s; where ¢+ € 1" must also decrease since a; ,x,, > 0.
Thus p; would increase and we would have ) _, p; > 1. Therefore, this is not
possible.

2. Price in state k remains constant — By the second condition, this requires
that s; to remain constant. By the first condition, we know that M will also

12



remain constant. If M remained constant then this would force all prices to
remain constant in states where a; , = 0 since a; ,x, = 0 for these states.
Now, let’s look at the prices for states in 7". If M remains constant, then s;
where ¢ € T must decrease since a; ,x, > 0. Thus p; would increase and
we would have ), p; > 1. Therefore, this is not possible.

3. Price in state k decreases — In this case, s; would increase for all states not
in T'. Also, M would increase. Since the prices in the states not in 7" have
decreased, there must be an increase in prices in 7' to maintain the third con-
dition. Let 5 and M represent the values of these variables for the previous
solution of the SCPM. For each state in T, we have

n—1
5, = M — E Qi jT;
Jj=1

n
S; = M — E am'{L‘j
j=1
Now, we can eXpress
Si—S_Z':M—M—aZ"nJ}n

Now, we see that the change in the value of s for all states in T is the same
since a; »x, Will be the same for all these states. Thus, since we require that
the prices collectively increase in 1" to satisfy ) . p; = 1, we know that all
prices in 7" will increase.

Thus, we know that all states in 1" will experience an increase in price and all state
not in 7" will experience a price decrease.

(Part 2)
First, assume that we have an order (7, a, ¢,). For any =, < ¢,, we can find a
value of 7, such that x,, orders will be accepted. We want to show that the prices
are a continuous function of x,. Let’s use x4 to represent an arbitrary value for
ZTn. So assume we have a limit price w4 such that x4 orders are filled. Holding
a constant, the state prices will be a function of z4. Let the price vector for this
filled order be p(z4). Now, assume that we have another order where x,, orders are
filled. We want to show that p;(x,,) — p;(xq) as x,, — x4 for all 4.

We will use the notation from our update mechanism to show this fact. We can
express p;(xy) as WM. Now, we can simply see that:

0; 0;

lim = —

zn—zq M — b(l) — AjnTn M — b(Z) — Qjndd
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Note that M is also a variable in this equation. As x,, — x4, it is possible that
this value changes. We have reflected that fact by indicating the limit value of M as
M. At this point, the relationship between M and M is not clear. However, if we
enforce the constraint that ) . p;(xz4) = 1, we can see that M must be the optimal
M for the problem when x4 orders are accepted. Thus, lim,, .., m =
pi(za).

Thus, p;(x,) — pi(z4) as x, — x4 for all i. Thus the prices are a continuous
function in the number of orders accepted.

[

It is interesting to note that the prices on all states where a;, > 0 for an
accepted order n will not necessarily increase when the values for a;, are not
equal for all states where a; ,, > 0.

3 Performance Comparison

As we mentioned earlier, the SCPM can actually be designed to operate as a posted
price market-maker. This involves some simple additional solves of the model by
the market organizer to calculate the required prices for orders to be accepted. This
flexibility allows us to apply the mechanism to any market which is operated by
a market-maker who posts prices. In this section, we will compare the perfor-
mance of the SCPM against two of the more interesting pari-mutuel posted price
mechanisms: the Logarithmic Market Scoring Rule (LMSR) of Hanson (7) and
the Dynamic Pari-mutuel Market-Maker (DPM) of Pennock et al. (12). Two key
properties that these mechanisms share are: 1) they allow the risk to the market or-
ganizer to be bounded and 2) they are based on pricing functions which allow the
market to be priced up immediately. Both of these mechanisms are exceptionally
easy to implement and are currently being used to operate various online prediction
markets. We believe that our work is the first performance comparison testing that
has been conducted amongst these mechanisms. Our initial results indicate that the
optimal choice of mechanism depends on the objectives of the market organizer.
Before we discuss results, we will quickly describe how these pari-mutuel mecha-
nisms operate.

Logarithmic Market Scoring Rule (Hanson)

Hanson uses a market built on market scoring rules which avoid both thin and
thick market problems. In particular, Hanson introduces a logarithmic market scor-
ing rule in his work and we will focus on this rule. His market is organized as a
market of contingent claims where claims are of the form “Pays $ 1 if the state is
¢”. Pennock (11) has computed cost and pricing functions for Hanson’s logarith-
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mic market scoring rule mechanism. These cost and pricing functions allow the
mechanism to be implemented as an automated market-maker where orders will
be accepted or rejected based on these functions. Let’s assume that there are S
states over which contingent claims are traded. We will use the vector ¢ € R to
represent the number of claims on each state that have already been accepted by the
market organizer. The total cost of all the orders already accepted is calculated via
the cost function C'(g). Now, let a new trader arrive and submit an order character-
ized by the vector € RS where r; reflects the number of claims over state i that
the trader desires. The market organizer will charge the new trader C'(q+1) —C(q)
for his order. The pricing function is simply the derivative of the cost function with
respect to one of the states. It represents the instantaneous price for an order over
one state.

Here are the cost and pricing functions for the Logarithmic Market Scoring
Rule.

) a;/b
Clq) = blog (T, ¢n/)  and  pilg) = S
In this formulation, b is a parameter that must be chosen by the market orga-
nizer. It represents the risk that the organizer is willing to accept. The greater the
value of b, the more orders the organizer is likely to accept. It turns out that the
maximum possible loss to the market organizer is (blog .S).

Share-Ratio DPM (Pennock)

Pennock et al. (12) have introduced a new market mechanism which combines
some of the advantages of a traditional pari-mutuel market and a continuous double
auction run by a market-maker. In this market, each dollar buys a variable share of
the eventual payoff. The share is defined by a pricing function and the amount paid
would be the integral of the pricing function over the number of shares purchased.
In Pennock (10), the author explores several implementations of this market mech-
anism. Recently Pennock and his coauthors have introduced a modification where
a share-ratio pricing function is used. We will now define P; to be the current pay-
off to each holder of a share of state  if ¢ is the eventual outcome. The following
two relationships are required in this mechanism: % = % and P; = %, where
M is the total money collected so far. The first ratio forces the states with more
accepted shares to be more expensive. The second ratio calculates the pari-mutuel
payoff for each state. From these, they derive a cost function which is the total
cost of purchasing a vector g of shares. Additionally, p; will be the instantaneous
change in the cost function with respect to ¢;. Thus we have:

Clqg) = ’f\/z]' qu and  p; = ﬁ
J1
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Table 2: Standardizing risk

Mechanism || Maximum Loss Formula | Parameter Values | Maximum Loss
SCPM (maXG ZiEG 01) 91 =1 2
LMSR (blog S) b~ 1.82 2
DPM m/zjq]? nzlandq?:% 2

Again, the market organizer must determine x as well as an initial allocation
of shares q°. The market organizer will charge the new trader C(q + 1) — C(q) for

his order. The maximum loss possible for the market organizer is £/ (q?)2

These two pari-mutuel mechanisms share many of the same characteristics with
the SCPM - the key difference from a trader’s standpoint being that the payoffs of
the DPM are uncertain (although they are bounded below by ).

3.1 Sample Data Analysis

In order to compare the three mechanisms, we created some random orders and
compared how the mechanisms handled the orders. In this analysis, we generated
10 datasets with 500 orders in each. These orders are constructed in the standard
format for orders to the SCPM. For the DPM and LMSR which are based on a
posted price mechanism, we will assume that the limit price and states indicated
by the order dictate the rate of payoff required by the trader. Thus, we will use
the pricing functions from the DPM or LMSR to determine the maximum order fill
acceptable to the trader.

There are three possible states for these orders. For each order, the state which
is covered by the order is equally likely to be any one of the three states. If the
order covers the first or second state, the price limit is a random variable distributed
uniformly over the interval [0.2, 0.6]. Otherwise, the price limit will be a random
variable distributed uniformly over the interval [0.1, 0.3]. The quantity limit for all
orders is 1.

In order to have a more fair comparison of these mechanisms, we would like
to standardize the risk that each mechanism places on the market organizer. We
have followed the approach of standardizing the worst case outcome for the market
organizer of each mechanism. In Table 2, we describe the parameter settings used
in our data analysis.

In the SCPM, the risk assumed by the market organizer is controlled by the
values of 6;. These 0; represent starting orders for the market or seed money in-
serted by the market organizer. In the calculation of the maximum possible loss, G
represents a set of S — 1 states. In Pennock’s share-ratio DPM, the choice of k = 1
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will guarantee that all orders will have an eventual payoff of at least 1.

3.2 Results

There are some challenges when implementing the DPM so that its results can be
appropriately compared to those of the SCPM and LMSR. The primary difference
is that the payoff for a winning order in the DPM is not guaranteed to be a fixed
amount. In our implementation, we assume that the eventual payoff of an order
will be equivalent to its current payoff. This is a slightly aggressive assumption as
the lower bound for an order’s payoff will be £ which is 1 in our case. By making
our slightly more aggressive assumption, there is the possibility that the payoff
will be lower than the current payoff. We’ll see later that this doesn’t appear to be
a serious problem for our datasets.

Another issue is that the shares in the DPM are not necessarily equivalent to
shares in the LMSR or SCPM since the current payoff for a DPM share will often
be greater than one. While a share in the LMSR or SCPM will pay 1 if the correct
state is realized, a share in the DPM will pay some amount greater than or equal
to 1. Thus, shares in the DPM are actually worth more. Our traders have limit
quantities of 1 for all orders, so we want to require that they are only allocated
shares whose best case outcome would be a payment of 1. To achieve this goal,
we must do two things. First, we must only fill DPM orders so that zP(z) < 1
where x is the number of DPM shares allocated and P(z) is the current payoff for
those shares. Second, for our comparison purposes, we must convert the number
of shares allocated in the DPM into a number of shares which would have a payoff
of 1 per share. We will use these converted share numbers when we compare the
mechanisms below.

For our comparison, we have examined three situations with different profit
implications for the market organizer.

1. Purely pari-mutuel - All monies collected are redistributed to winners. The
market organizer will earn no profit.

2. Full charge - Each trader is charged his full limit price. The pricing func-
tions from the DPM and LMSR will still determine if an order is to be ac-
cepted. However, after the order fill quantity is determined, the trader will
be charged his limit price times the number of shares accepted.

3. Tax penalty - Each order is taxed at a certain percent which will guarantee
the organizer a profit percentage. In essence we will divide each share that is
bought by a trader into two portions. One portion of the share will be retained
by the trader. The other portion (equivalent in size to the required profit
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Table 3: Performance comparison under different profit settings

Mechanism Revenue | Orders Accepted | Worst Profit | Profit %
Purely Parimutuel

SCPM 73.3 201 NA NA
LMSR 86.8 254 NA NA
DPM 81.6 240 NA NA
Full Charge

SCPM 84.5 201 15.9 18.9%
LMSR 99.3 254 14.0 14.1%
DPM 99.2 240 17.6 17.7%
Tax Penalty

SCPM 84.5 201 15.9 18.9%
LMSR 69.7 168 13.2 18.9%
DPM 92.7 221 17.4 18.9%

percentage) will be retained by the market organizer. This profit percentage
must be specified a priori.

Table 3 displays the performance data from our simulations under these profit
settings. From the table, we see that the SCPM actually performs worse than the
other mechanisms in the purely parimutuel and full charge settings in terms of
revenue collected and orders accepted. However, it does outperform the LMSR in
the tax penalty setting (where the profit percentage is set to the profit percentage
of the SCPM in the full charge setting). Since they both offer certain payoffs to
winners, the LMSR and SCPM are the most comparable mechanisms. Adoption of
the DPM requires the market traders to accept uncertain payoffs. Thus, the market
organizer will need to determine the importance of certain payoffs and organizer
profitability when selecting the most appropriate mechanisms for his market.

It’s not clear why the LMSR outperforms the DPM in the purely pari-mutuel
setting. One hypothesis for the improved LMSR performance in comparison to the
DPM is that the LMSR has a less stable pricing function which may allow it to
accept more orders. Later, we will explore why the prices of the DPM demonstrate
more stability.

In the full charge setting, we can see that the DPM and LMSR both collect
significantly more revenue and orders than the SCPM. The LMSR actually accepts
more orders than the DPM while still collecting similar amounts of revenue. Due to
the fact that the LMSR accepts so many orders, its gross profit and profit percentage
are actually the lowest of the three mechanisms. We believe that the volatility of
the LMSR’s prices is responsible for its acceptance of lower revenue orders.
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Figure 1: State 1 Price Stability in the SCPM, LMSR and DPM

In the tax penalty setting, the DPM continues to display strong performance.
We see that the SCPM outperforms the LMSR in terms of orders accepted and rev-
enue collected. This is not surprising since the SCPM is solving an optimization
problem with an objective function that is partially geared towards maximizing
worst case profitability. The LMSR is simply accepting orders in a manner con-
sistent with its pricing function. Again, we believe that the rapid change of the
LMSR’s prices leads to lower levels of order acceptance when the tax is imposed.

We have also tested these mechanisms with random bids generated from a nor-
mal distribution. The results are very similar when the variance of the normal
distribution is equivalent to the variance of the uniform. However, changing the
variance has a substantial impact on the models’ performance. The DPM tends to
be less effective in the parimutuel and full charge settings when variance is reduced.
In general, profits drop quickly as variance is reduced. Due to space constraints,
we have omitted more details on this issue but we recognize this as an important
consideration for mechanism selection.

Price Stability

One interesting feature of the mechanisms is that they provide updated state
prices after each new order is accepted. In the DPM, the prices tend to stabilize
to values close to the expected values of the limit prices for each state. However,
the LMSR and SCPM both have prices that fluctuate greatly and don’t appear to
stabilize. Figure 1 shows the evolution of the state prices as orders were received
in the first of our sample datasets.

The price of the SCPM is more volatile because it is only required to satisfy the
price consistency constraints for the current order. Thus, its value is not tethered
to the previous orders. To gain a better estimate of overall demand for a state, the
SCPM organizer could choose to solve the CPCAM model for the current orders.
The prices in the CPCAM stabilize towards the mean order price. So, while the
SCPM prices are not stable, there is a way to gain some further insight into the
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actual demand for the states. In contrast to the SCPM, the price of the LMSR is
calculated by a formula that includes previous orders. To better understand the lack
of stability in the LMSR’s prices, we need to observe the derivative of its pricing
function with respect to a new order being received in one state. From the LMSR
pricing function, we have the following:

i %e‘h/b B %eQQi/b
0q; Zj e/t (z] ei/b)2

Now, we can also calculate the derivative of the DPM pricing function. We
have:

Opi K Kq}

9 (Zj@qj/b)% (Zjeqj/b)%

The value of the DPM price derivative will approach zero as the value of g,
holding all g;’s in the same proportion, increases. Thus, as more orders are ac-
cepted, the price stabilizes. However, the derivative of the LMSR is actually in-
dependent of the number of orders received. It will remain constant if ¢ increases
as long as the proportion of the values of the ¢;’s is the same. This explains why
the LMSR prices are so volatile. Given that the LMSR is widely used in prediction
markets, it is surprising to find the lack of stability of its prices.

Actually, this form can be called ‘complete set’ equivalent since the derivative
of the price for ¢ and ¢ will be equivalent if ¢ + 1 = g where § > 0 and 1
is a vector of ones. Thus, we can remove 3 complete sets of orders from ¢ and
the derivative is equivalent. This is an important idea in this setting since these
mechanisms are designed to have accepted a similar number of orders for each
state at any given time. This allows them to maintain a risk-controlled position.

It turns out the SCPM also shares this ‘complete set’ equivalence property.

Theorem 4 Let 3 € R* and 3 < min; k; where k; represents the number of
accepted orders for state i already accepted by the SCPM. If (x,,, p) is the optimal
price and order fill for the SCPM then (x,, p) will also be optimal for the SCPM
where we remove [3 complete sets from the accepted orders.
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Proof First, let’s list the KKT optimality conditions for the SCPM:

Tn — Zz Pilin + 1 <0
Tn (7Tn - Ez Pilin + 'Yn) =0
>ipi=1

b _p<0  for1<i<S$

Si

) , 3)
si(s—z—pi):() forl1<i< 8§

’Yn(xn - Qn) =0
ki—I—ai’n%—si =M

where k‘i = Z?:_ll am'lj.

Now, assume (Zy, P, ¥n, s, M) is a KKT point for this system. By removing (3
complete sets from the accepted orders, we are essentially setting k; = k; — 3.
Now, let M = M — f3.

It is easy to see that (x,, D, Vn, s, M) is a KKT point to the system where k; re-
places k;. |

Thus, this explains that the SCPM prices should be volatile like those of the
LMSR since the ‘complete set’ equivalence property means that the increase in ac-
cepted orders will not impact price volatility behavior.

Improving SCPM Price Stability

While the SCPM prices will be volatile due to the ‘complete set’ equivalence prop-
erty, there are some approaches that can help generate more stable prices. The key
idea for generating more stable prices comes from inspecting one of the KKT op-
timality conditions: p; = % Our hypothesis is that increasing the value of ; (the
starting order) will increase the stability of price . While there are drawbacks to
increasing the magnitude of the starting orders, the value of producing more stable
state prices may justify the decision.

First, let’s validate that increasing the magnitude of the starting prices will
create more stable prices based on a small example. Assume that we have 3 states
and 1 order specifying the third state with a price of 0.5. Now, we will solve the
SCPM for varying sizes of . Assume that ; = 6 for all <. With equal value starting
orders on each of the three states, the initial prices will be % for each state. The

following table shows the order acceptance and final state prices for three values
of 6.

21



0 Value State 1 Price | State 2 Price | State 3 Price Quantity Accepted
0.1 0.25 0.25 0.5 0.2
1 0.29 0.29 0.42 1
10 0.33 0.33 0.34 1

We can see from the table that increasing the magnitude of 6 does seem to
have an impact on creating more stable prices. The larger starting orders allow
the market organizer to accept more orders without needing to adjust the prices to
prevent over-exposure.

Next, we will compare several methods of actually increasing the magnitude
of # while running the SCPM and demonstrate the impact on price stability over a
sample dataset.

We will use a dataset of 2,500 orders where the state chosen and limit price is
randomly determined in the same fashion that we have used for the earlier analysis.
First, we will implement a regime where the market organizer increase the value of
f from 1 to 20 in a linear manner over the orders. Second, we will use the profits
generated by the market organizer to fund the increase in 6. The profit generated
is equal to 77z — max; > ; @ijxj. In our implementation, we will take 50% of the
guaranteed profit and divide it equally among the states as the starting order. In our
third implementation, we will follow a similar approach as the second where we
will collect 50% of the guaranteed profit and use it to fund the starting orders. In
this implementation, however, we will not divide the funds equally to each state.
We will proportionally divide the funds based on the current state prices. So, if
state 1 has a price of 0.5 while the other states have prices of 0.25, we will set
0, = 205 = 203. We are adopting this approach to see if we converge to stable
prices faster by incorporating prior information about the appropriate state prices
into our starting orders.

In figure 2, we have the results from each of these three strategies in addition
to a baseline strategy of leaving § = 1 throughout the entire run. As we had
previously observed, the state 1 price in the baseline strategy is not stable. The
average order price for state 1 is 0.4. However, the prices fluctuates from 0.23 to
0.59 in the baseline example. On the other hand, our first modified strategy (where
we linearly increase theta to 20) creates a greater degree of stability. Here, we
observe the prices converging to a much tighter band centered at 0.4 as 6 increases
in value.

Now, we will examine the strategies which involve using 50% of the profits
generated to fund the starting orders. In the second strategy where the profits are
distributed evenly over the states, we do see a reduction in the variance of the state
1 price. At the conclusion of this market, the value of the starting orders is [6.3,
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Figure 2: State 1 Price Stability for various starting order policies

6.3, 6.3]. Thus, the value of # doesn’t reach 20 in this simulation so we would not
expect the same amount of price stability as our first strategy. Interesting, the third
strategy produces state prices almost identical to the second strategy. The final
value of the starting orders are [8.9, 9.2, 4.5]. The profits are distributed among the
states in a manner which we would expect since the average limit price for orders
on state 1 or 2 is 0.4 and 0.2 for orders on state 3. Thus, we would expect the profits
to be distributed more heavily on states 1 and 2. We would have expected the third
strategy to converge more quickly to a tighter band of state 1 prices around 0.4.

While this is only one dataset, we do feel that this demonstrates a general solu-
tion to the issue of generating more stable state prices. The SCPM has the built-in
mechanism of the starting orders which can be leveraged as a means to create
greater stability in the state prices. We feel that the second and third implemen-
tation are very reasonable methods for a market organizer to both run a profitable
market and also extract valuable state price information. In many markets (such
as prediction markets), the organizer’s objective is not to create profit but rather
to accept as many orders as possible or create meaningful state price information.
For these markets, the concept of “re-investing” the profits into the starting orders
makes a lot of sense.

When implementing the third approach, there may be some risk of converging
to an unrepresentative state price at some point. We use the term unrepresentative
to characteristic a price that is not close to the mean values expressed by traders
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for the particular state. In the third approach, over time the guaranteed profit could
become quite large. When this occurs, the current state price will be used to anchor
the value of the starting orders. If the current state price is not representative (due
to a recent series of unusual orders or some other situation), the method might end
up with a state price close to the current state price for a long duration due to the
large magnitude of the starting orders.

4 Discussion

We believe that the SCPM is a valuable and interesting new pari-mutuel mecha-
nism for contingent claim markets. Our analysis indicates that the best choice of
mechanism depends on the objectives of the market organizer. In prediction mar-
kets, the organizer is typically not interested in generating a profit but instead wants
to maximize the number of orders accepted. Our results show that the LMSR will
accept more orders and collect more revenue than the SCPM or DPM. In finan-
cial markets, the organizer may actually want to guarantee himself a certain profit
level or even maximize his profit. The DPM or SCPM would seem to be the better
choice in these cases. A second question that the market organizer should con-
sider is how important certain payoffs are to the traders. If the traders exhibit risk
averse preferences, then they may significantly discount the value of shares with
uncertain payoffs. If the market organizer believes that having a certain payoff for
a winning order is important for traders, then he will rule out the use of the DPM.
It’s important to remember that the posted price versus bid implementations of the
mechanisms can be interchanged and are broadly equivalent. While a bid format
allows the market organizer to charge the full limit price, the posted price mech-
anism can be adapted to impose a tax on each share to guarantee the organizer a
fixed profit percentage.

One of our earliest concerns about our dynamic mechanism was the amount of
time required to determine acceptance decisions for each order and update the state
prices. In a standard implementation, the SCPM requires the solution of a convex
optimization program as each order is received. While not extremely problematic,
this situation was somewhat less desirable than the implementations of the LMSR
or the DPM since these mechanisms are based on simpler formulas. Solving a con-
vex optimization problem is not necessary — the market organizer is only required
to numerically solve a nonlinear equation. However, as we demonstrated, it turns
out that the SCPM can be solved through an easy update mechanism. Since the up-
date mechanism only requires the solution of a few equations which can be solved
very efficiently with a Newton step-based approach, the SCPM is very comparable
with the other mechanisms from the standpoint of runtime.
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One of the most interesting outputs from these market-makers are the state
prices. In prediction markets, the generation of these prices is the raison d’étre
for the market. However, it is very interesting to discover that the LMSR actually
doesn’t produce very stable prices. The SCPM also suffers from less price stabil-
ity when compared to the DPM. As one means for generating prices that are more
representative of the entire market, one could take all the orders and solve the CP-
CAM. Since the limit prices on the orders should be truthful, the prices calculated
by solving the CPCAM would most likely give a more accurate read of the demand
for various states.

While this approach works, it might create a bit of confusion with the traders
since the market organizer would be generating two sets of prices. Earlier, we have
explored other methods of creating stable prices by increasing the value of the
starting orders over time. We believe our technique of funding the starting orders
with the ‘profits’ is a very reasonable way to create more stable prices. It would be
valuable to better characterize the relationship between starting order magnitude
and price stability in future work.

One assumption that we made when comparing the mechanisms was that traders
would assume that the DPM eventual payoffs will be equal to the current payoffs.
This might be an aggressive assumption since traders would probably want to dis-
count the payoffs since there is some uncertainty in them. As a quick test, we
also implemented the DPM in the conservative setting where the trader assumes
that the actual payoff will be 1. However, this mechanism performed very poorly
against our sample datasets - hardly any orders were accepted in this conservative
setting. It would make sense that most traders would prefer certain payoffs but it
is not clear that the traders would assume the worst case payoff when utilizing this
mechanism. It would be interesting to see how the DPM performs under various
levels of discounting.
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