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Abstract

We describe a new approach for statistical modeling and detection of discourse structure for natural conversational
speech. Our model is based on 42 ‘Dialog Acts’ (DAs), (question, answer, backchannel, agreement, disagreement,
apology, etc). We labeled 1155 conversations from the Switchboard (SWBD) database (Godfrey et al. 1992) of
human-to-human telephone conversations with these 42 types and trained a Dialog Act detector based on three distinct
knowledge sources: sequences of words which characterize a dialog act, prosodic features which characterize a dialog
act, and a statistical Discourse Grammar. Our combined detector, although still in preliminary stages, already achieves
a 65% Dialog Act detection rate based on acoustic waveforms, and 72% accuracy based on word transcripts. Using
this detector to switch among the 42 dialog-act-specific trigram LMs also gave us an encouraging but not statistically
significant reduction in SWBD word error.

1 Introduction

The ability to model and automatically detect discourse structure is essential as we address problems like understand-
ing spontaneous dialog (a meeting summarizer needs to know who said what to whom), building human-computer
dialog systems (a conversational agent needs to know whether it just got asked a question or ordered to do some-
thing), and simply transcription of conversational speech (utterances with different discourse function also have very
different words). This paper describes our preliminary work (as part of the 1997 Summer Workshop on Innovative
Techniques in LVCSR) on automatically detecting discourse structure for speech recognition and understanding tasks.
(See Jurafsky et al. (1997a), Shriberg et al. (1998), and Stolcke et al. (1998) for other publications describing aspects
of this work).

Table 1 shows a sample of the kind of discourse structure we are modeling and detecting. Besides the usefulness of
discourse structure detection for speech understanding, discourse structure can be directly relevant for speech recog-
nition tasks. For example in the state-of-the-art HTK recognizer we used, the word do has an error rate of 72%. But
do is in almost every Yes-No-Question; if we could detect Yes-No-Questions (for example by looking for utterances
with rising intonation) we could increase the prior probability of do and hence decrease the error rate.

There are many excellent previous attempts to build predictive, stochastic models of dialog structure (Kita et al.
1996; Mast et al. 1996; Nagata and Morimoto 1994; Reithinger et al. 1996; Suhm and Waibel 1994; Taylor et al. 1998;
Woszczyna and Waibel 1994; Yamaoka and Iida 1991), and our effort is in many ways inspired by this work, and indeed
our group overlaps in personnel with some of these projects. Our project extends these earlier efforts particularly in
its scale; our models were trained on 1155 dialog-annotated conversations comprising 205,000 utterances and 1.4
million words; an order of magnitude larger than any previous system. The direction of our project is also slightly
different than most previous discourse structure recognition projects, which are based on short task-oriented dialogs,
particularly from the Verbmobil domain. Our focus is on the longer, more spontaneous, less task-oriented dialogs that
we found in the Switchboard database and which we expect to find in the CallHome dataset.
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Table 1: A fragment of a labeled switchboard conversation.

Spkr Dialog Act Utterance

A Wh-Question What kind do you have now?
B Statement Uh, we have a, a Mazda nine twenty nine and a Ford

Crown Victoria and a little two seater CRX.
A Acknowledge-Answer Oh, okay.
B Opinion Uh, it’s rather difficult to, to project what kind of, uh, -
A Statement we’d, look, always look into, uh, consumer reports to see what kind

of, uh, report, or, uh, repair records that the various cars have –
B Turn-Exit So, uh, -
A Yes-No-Quest And did you find that you like the foreign cars better than the domestic?
B Answer-Yes Uh, yeah,
B Statement We’ve been extremely pleased with our Mazdas.
A Backchannel-Quest Oh, really?
B Answer-Yes Yeah.

2 Summer Workshop Logistics, Datasets, Plan of Work, and Publications

There are a number of ways we could describe our work; describing the work in the order in which we performed it
would mean dividing the work into training, test, and analysis. But for the reader, it is probably more coherent to read
about the work in the order that best explains the significance and applicability of our final results. We have chosen
the second method for the organization of the paper. Figure 1 outlines the major stages of our work and of this paper.
We begin by discussing how we manually annotated 1155 conversations with hand-labeled discourse-tags. We then
describe the 3 knowledge sources for dialog act detection (word-sequences, discourse grammar, and prosody), show
how these knowledge sources can be combined to build a Dialog Act detector, and finally how to apply the detector to
help improve word recognition of SWBD.

But to give an idea of the logistic organization of the project, we also include here some charts deriving from our
summer Plan of Work in Figures 2, 3, and 4.

Finally, we introduce the data we used for all our experiments. As is usual in ASR experiments, we divided our
data into 3 portions: Training (WS97-TRN), Development-Test (WS97-DEV), and Evaluation-Test (WS97-EVAL).
As is usual in the LVCSR Summer Workshops, we never used our Evaluation-Test (WS97-EVAL) data, or the extra
Eval Set (WS97-EVAL2). All the experimental results we report are on the DevTest data. The Venn diagram in
Figure 5 shows the relationship among these.

For most experiments we trained on DI97-TRN + DI-97-HLD (which together comprise the complete WS97
training set) and tested by rescoring lattices which were generated on the dev-test set WS97-DEV. For perplexity
experiments, where lattices were unnecessary, we trained on DI97-TRN and tested on DI97-HLD.

3 The Tag Set and the Manual Tagging Effort

In order to use discourse knowledge to enrich our LMs, we must choose a level at which to model discourse knowledge.
For example, at the level of plans and intentions, we could describe a conversation in terms of the high-level goals and
plans of the participants (Perrault and Allen 1980; Litman and Allen 1987). At the level of focus, we could describe
a conversation in terms of local attentional centers or foci (Grosz et al. 1995; Walker and Prince 1993). We might
call these intentional or attentional models DEEP DISCOURSE STRUCTURE. At the level of speech acts, we can model
the speech act type of each utterance (Searle (1969) and computational versions of speech-act-like units (Nagata and
Morimoto 1994; Reithinger et al. 1996; Carletta et al. 1997)). Or we can model sociolinguistic facts about conversation
structure such as how participants might expect one type of conversational units to be responded to by another (the
adjacency pairs of Schegloff (1968) or Sacks et al. (1974)). We refer to these latter two types of discourse structure
as SHALLOW DISCOURSE STRUCTURE.

We chose to follow a recent standard for shallow discourse structure markup, the Discourse Annotation and Markup
System of Labeling (DAMSL) tag-set, which was recently designed by the natural-language processing community
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Figure 1: Outline of paper and project.

(Allen and Core 1997). We began with this markup system and modified in a number of ways to make it more useful
for our purposes in annotating Switchboard.

Our initial tag-set consists of approximately 60 basic tags, many of which can be combined. We used this set
to label 1155 conversations, comprising 205,000 utterances and 1.4 million words, from the Switchboard corpus of
telephone conversations. The resulting set of 220 tags (combinations of basic tags used by the taggers) was then
clustered by hand into 42 clusters. Table 2 shows the resulting 42 classes with their final counts in the WS97 training
set (out of 197,489 training-set utterances, 1.4M words, 1115 conversations).

Note that our label-set incorporates both traditional sociolinguistic and discourse-theoretic rhetorical relations (or
adjacency-pairs) as well as some more-form-based labels. Furthermore, the labelset is structured so as to allow labelers
to annotate a Switchboard conversation in about 30 minutes, by editing it with any platform-independent editor (hence
the short label-names, and the use of some rich cross-dimension labels). We expect these labeled conversations also
to be useful for NLP and Conversational Analysis (CA) research. The labels were designed to be applied based on the
Switchboard written transcriptions; this caused the label set to be somewhat more shallow than it could have been with
the ability to listen to each utterance. We hope that this shallowness was balanced by the coverage; labeling quickly
allowed us to cover much more data.

The labeling project started March 1, 1997, and finished July 5, 1997. The 8 labelers were CU Boulder linguistics
grad students: Debra Biasca (supervisor), Marion Bond, Traci Curl, Anu Erringer, Michelle Gregory, Lori Heintzel-
man, Taimi Metzler, and Amma Oduro. Most of the utterances were presegmented by the Linguistic Data Consortium
(Meteer et al. 1995), although a few had not been segmented, and had to be segmented by the labelers prior to label-
ing. By the end of the labeling the labelers took just under 30 minutes to label a conversation (conversations averaged
144-turns, 271 utterances). We used the Kappa statistic (Carletta 1996 and Carletta et al (in press)) to assess labeling
accuracy; average pairwise Kappa (as of the end of the project) was 0.80. (0.8 or higher is considered high reliability
(Carletta 1996; Flammia and Zue 1995).)

There is a deterministic mapping between about 80% of the “SWBD-DAMSL” labels we used and the standard
DAMSL labels that we started from (Allen and Core 1997). In a few cases a mapping is not possible, usually for one
of two reasons: either we and the coders were unable to accurately mark a distinction which the DAMSL standard
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Table 2: 42 Dialog Acts with counts from the 197K-utterance training set. This is after we clustered various labels;
the abbreviation sometimes but not always indicates which labels were clustered together.

Tag Abbrev Example Count %

Statement-non-opinion sd Me, I’m in the legal department. 72,824 36%
Acknowledge (Backchannel) b Uh-huh. 37,096 19%
Statement-opinion sv I think it’s great 25,197 13%
Agree/Accept aa That’s exactly it. 10,820 5%
Abandoned or Turn-Exit % . . . -/ So, -/ 10,569 5%
Appreciation ba I can imagine. 4,633 2%
Yes-No-Question qy Do you have to have any special training? 4,624 2%
Non-verbal x

�
Laughter � ,

�
Throat clearing � 3,548 2%

Yes answers ny Yes. 2,934 1%
Conventional-closing fc Well, it’s been nice talking to you. 2,486 1%
Uninterpretable % But, uh, yeah 2,158 1%
Wh-Question qw Well, how old are you? 1,911 1%
No answers nn No. 1,340 1%
Response Acknowledgement bk Oh, okay. 1,277 1%
Hedge h I don’t know if I’m making any sense or not. 1,182 1%
Declarative Yes-No-Question qyˆd So you can afford to get a house? 1,174 1%
Other o,fo Well give me a break, you know. 1,074 1%
Backchannel in question form bh Is that right? 1,019 1%
Quotation ˆq You can’t be pregnant and have cats 934 .5%
Summarize/reformulate bf Oh, you mean you switched schools for the kids. 919 .5%
Affirmative non-yes answers na It is. 836 .4%
Action-directive ad Why don’t you go first 719 .4%
Collaborative Completion ˆ2 Who aren’t contributing. 699 .4%
Repeat-phrase bˆm Oh, fajitas 660 .3%
Open-Question qo How about you? 632 .3%
Rhetorical-Questions qh Who would steal a newspaper? 557 .2%
Hold before answer/agreement ˆh I’m drawing a blank. 540 .3%
Reject ar Well, no 338 .2%
Negative non-no answers ng Uh, not a whole lot. 292 .1%
Signal-non-understanding br Excuse me? 288 .1%
Other answers no I don’t know 279 .1%
Conventional-opening fp How are you? 220 .1%
Or-Clause qrr or is it more of a company? 207 .1%
Dispreferred answers arp,nd Well, not so much that. 205 .1%
3rd-party-talk t3 My goodness, Diane, get down from there. 115 .1%
Offers, Options & Commits oo,cc,co I’ll have to check that out 109 .1%
Self-talk t1 What’s the word I’m looking for 102 .1%
Downplayer bd That’s all right. 100 .1%
Maybe/Accept-part aap/am Something like that 98

�
.1%

Tag-Question ˆ g Right? 93
�

.1%
Declarative Wh-Question qwˆd You are what kind of buff? 80

�
.1%

Apology fa I’m sorry. 76
�

.1%
Thanking ft Hey thanks a lot 67

�
.1%
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requires (for example the distinction between Assert and Reassert), or we felt the need to mark extra distinctions which
DAMSL doesn’t require. However in a few other cases we have proposed minor augmentations to DAMSL. One such
example is modifying Self-Talk to include not one but 2 kinds of non-second-person- directed talk; self-talk and third-
party talk). We have not attempted in this report to map these DAMSL-style tags into other theories of speech acts,
intention-tracking in discourse, discourse commitment, centering, etc. See our Coders’ Manual (Jurafsky et al. 1997b)
for more theoretical justifications for the particular tagging philosophy.

3.1 Examples of the Dialog Acts

See Jurafsky et al. (1997b) for a complete description of the discourse acts. Here we will just summarize the types
which are likely to play a significant role in our utterance-detection efforts.

3.1.1 Statements

The most common types of utterances (49% of the utterance tokens, covering 83% of the word tokens) were State-
ments which were divided into Statement (sd) and Opinion (fx.sv). This split distinguishes “descriptive, narrative, or
personal” statements (sd) from “other-directed opinion statements” (sv). The distinction was designed to capture the
different kinds of responses we saw to opinions (which are often countered or disagreed with via further opinions) and
to statements (which more often get continuers/backchannels). We have not yet decided whether this sd/sv distinction
has been fruitful. In one experiment (see

�
6.1), we trained separate trigram language models on the two sets, and they

looked somewhat distinct. But the distinction was very hard to make by labelers, and accounted for a large proportion
of our interlabeler error.

sv’s often include such hedges as I think, I believe, It seems, I mean, and others.
We did combine the Statement and Opinion classes for some experiments on dimensions in which they did not

differ.

3.1.2 Questions

We focused for the summer on questions that tend to have rising intonation. These included Yes-No-Questions, Tag
Questions, Declarative-Questions, Or-Questions and other question types that we have clustered together with these.
But we labeled many other kinds of questions as well.

The Yes-No-Question label only includes utterances which both have the pragmatic force of a yes-no-question
and have the syntactic and prosodic markings of a yes-no question (i.e. subject-inversion, question intonation).
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Table 3: Sample statements.

Dialog Act Utterance

Statement Well, we have a cat, um,
Statement He’s probably, oh, a good two years old,

big, old, fat and sassy tabby.
Statement He’s about five months old
Opinion Well, rabbits are darling.
Opinion I think it would be kind of stressful.

Table 4: Sample questions.

Dialog Act Utterance

Yes-No-Question Do you have to have any special training?
Yes-No-Question But that doesn’t eliminate it, does it?
Yes-No-Question Uh, I guess a year ago you’re probably

watching C N N a lot, right?
Declarative-Question So you’re taking a government course?
Wh-Question Well, how old are you?

Tag Questions (originally qyˆg) have been clustered with qy. (Tag Questions have declarative syntax until the last
word or two, which is either an auxiliary and usually a pronoun (does it, isn’t it, aren’t they), or a
tag like right? or huh?. Here’s two examples:

But that doesn’t eliminate it, does it? /

Uh, I guess a year ago you’re probably watching C N N a lot, right? /

Declarative-Questions (qyˆd) are utterances which function pragmatically as questions but which do not have
“question form”. By this we mean that declarative questions normally have no wh-word as the argument of the verb
(except in “echo-question” format), and have “declarative” word order in which the subject precedes the verb. See
Weber (1993) for a survey of declarative question and their various realizations. Since declarative questions seemed to
often have rising (question) intonation, we ended up clustering these together with the other rising questions (i.e. with
Yes-No-Questions). Here’s an example:

So you’re taking a government course? /

3.1.3 Backchannels

A backchannel is a short utterance which plays discourse-structuring roles like indicating that the speaker should go
on talking. These are usually referred to in the CA literature as a ”continuer”, and there is an extensive literature on
them (Jefferson 1984; Schegloff 1982; Yngve 1970). Recognizing them is important first because of their discourse-
structuring role (knowing that the hearer expects the speaker to go on talking tells us something about the course of
the narrative) and second because they seem to occur at certain kinds of syntactic boundaries; detecting a backchannel
may thus help in segmentation and in word grammar.

For an intuition about what backchannels look like, Table 5 shows the most common realizations of the approxi-
mately 300 types (35,827 tokens) of backchannels in our SWBD corpus. Table 6 shows examples of backchannels in
the context of a Switchboard conversation.
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Table 5: Realizations of backchannels.

% Backchannel

38% uh-huh
34% yeah
9% right
3% oh
2% yes
2% okay
2% oh yeah
1% huh
1% sure
1% um
1% huh-uh
1% uh

Table 6: Examples: Backchannels.

Spkr Dialog Act Utterance

B Statement but, uh, we’re to the point now where our financial income
is enough that we can consider putting some away –

A Backchannel Uh-huh. /
B Statement – for college, /
B Statement so we are going to be starting a regular payroll deduction –
A Backchannel Um. /
B Statement — in the fall /
B Statement and then the money that I will be making this summer

we’ll be putting away for the college fund.
A Appreciation Um. Sounds good.

3.1.4 Turn Exit and Abandoned

Abandoned utterances are those that the speaker breaks off without finishing, and are followed by a restart. Turn exits
resemble abandoned utterances in that they are often syntactically broken off, but they are used mainly as a way of
passing speakership to the other speaker. Turn exits tend to be single words, often so or or.

3.1.5 Answers and Agreements

The Answer category includes any sort of answers to questions. We were mainly interested in modeling two simple
kinds of answers: Answer-Yes and Answer-No. Answer-Yes includes “yes”, “yeah”, “yep”, “uh-huh”, and such other
variations on “yes”, when they are acting as an answer to a Yes-No-Question. Detecting Answers can help tell us that
the previous utterance was a Yes-No-Question. Answers are also semantically quite significant as they are very likely
to contain important new information.

The Agreements (Accept, Reject, Partial Accept etc) all mark the degree to which speaker accepts some previous
proposal, plan, opinion, or statement. We are mostly interested in Agree/Accepts, which for convenience we will refer
to as Agrees. These are very often yes or yeah and so they look a lot like Answers. But where answers follow
questions, agreements often follow opinions or proposals, so distinguishing these can be important for the discourse.
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Table 7: Examples: Abandoned and Turn Exits.

Spkr Dialog Act Utterance

A Statement we’re from, uh, I’m from Ohio /
A Statement and my wife’s from Florida /
A Turn-Exit so, -/
B Backchannel Uh-huh. /
A Hedge so, I don’t know, /
A Abandoned it’s � lipsmack � , - /
A Statement I’m glad it’s not the kind of problem I have to come

up with an answer to because it’s not –

3.1.6 Clustering 220 tags into 42 clusters

This section gives a quick discussion on how we came up with 42 clusters. The taggers made use of 220 tags in the
coding; 130 of these occurred less than 10 times each, so for our initial experiments we clustered the 220 tags into 42
larger classes. The approximately 60 ‘basic tags’ combined into 220 final tags because some tags marked independent
dimensions which could be combined. For example the speakers often had a meta-discussion on the task of having
and recording a conversation, including utterances like the following:

I almost forgot what the topic <laughter> was. /

These were marked with a special tag, About-Task (ˆt) in addition to their normal tag of Non-Opinion-Statement.
There were a number of such dimensions, each indicated by a carat (ˆ2,ˆg,ˆm,ˆr,ˆe,ˆq,ˆd). For the purposes of clustering
tags, we removed all of these carats with 5 exceptions. The exceptions: we left qyˆd (Declarative yes-no Questions) ,
qwˆd (Declarative wh-questions) and bˆm (Signal-Understanding-via-Mimic), and we folded the few examples of nnˆe
into ng, and nyˆe into na. Then, we grouped together some tags that had very little training data; those tags that appear
in the following list were grouped with other tags on the same line. We did this grouping by looking at the words in
the utterance, and the discourse function of the utterance.

qr qy
fe ba
oo co cc
fx sv
fo o fw " by bc
aap am
arp nd

We also removed any line with a “@” (since @ marked slash-units with bad segmentation).

4 Dialog Act Detection

The goal of our dialog act detection algorithms is to automatically assign the correct tag from our 42 DA set to each
of the presegmented utterance wavefiles. As we suggested in the Introduction, we achieved a 65% detection accuracy,
based on automatic word recognition and prosodic analysis. This compares with a baseline of 35% if we simply
chose the most frequent dialog act each time. Human labelers were able to do significantly better (average pairwise
agreement of human labelers was 84%). However, note that the human labeling was based purely on word transcripts.
Using actual, rather than recognized words, our DA detection algorithm achieved 72% accuracy, so we can expect
substantially improved automatic detection simple as a result of continually improving recognition accuracy.

Our algorithm is based on combining three sources of knowledge: prosodic knowledge, information about word-
sequences, and discourse grammar, i.e., knowledge about sequences of dialog acts. We first summarize and motivate
these knowledge sources, and then describe each of them in detail, as well as how they are combined.
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Word-based DA detection is based on separate trigram language models for each of the 42 dialog acts, and choosing
the dialog act that assigns the highest likelihood to the word string. This technique is common in subtopic identification
(Hearst 1997) and in the cue-word literature (Garner et al 1996, Hirschberg and Litman 1993, etc).

This technique relies on the fact that utterances have very distinct word strings, and indeed they seem to. For
example, 92.4% of the “uh huh”’s occur in Backchannels 88.4%, while of the trigrams “ � start � do you” occur in
Yes-No-Questions.

Prosodic detection uses CART-style decision trees which take assorted raw and derived acoustic features (such as
pitch and speaking rate) to predict the dialog act of an utterance. Our work extends earlier work by others on the use
of prosodic knowledge for dialog act prediction (Mast et al. 1996; Taylor et al. 1996; Taylor et al. 1997; Terry et al.
1994; Waibel 1988)

Prosodic information is essential for utterance recognition because the words alone aren’t sufficiently distinguish-
ing. This is true in reference strings, but is even more true in errorful hypothesized word strings, particular given the
high deletion rate of utterance-initial words. For example our word-based detector only has 32% accuracy in detecting
questions. But Yes-No-Questions can usually be detected by looking for their final F0 rise.

Our final knowledge source is the discourse grammar which constrains the sequence of possible dialog acts. We
trained a bigram discourse grammar and used this to assign prior probabilities to an utterance realizing a certain
dialog act in a given context. The use of N-gram discourse grammars was motivated by previous work by (Kita
et al. 1996; Mast et al. 1996; Nagata and Morimoto 1994; Suhm and Waibel 1994; Taylor et al. 1996; Taylor et al.
1997; Woszczyna and Waibel 1994; Yamaoka and Iida 1991) Indeed, the discourse grammar bigrams are quite distinct
from a uniform prior (which would be 1/42 or 0.024 for each DA). For example, out of the 42 possible dialog acts a
Command will be Agreed to with probability 0.23, a Yes-No-Question will receive a Yes answer with probability
0.30.

4.1 Dialog Act Segmentation

The utterance detection algorithm we describe is based on hand-segmented utterance boundaries. That is, both our
training and test sets were segmented by hand into turns and utterances. This was a purely pragmatic decision;
we found the detection problem difficult and interesting enough without the added complication of segmentation.
Furthermore, we did not want to confound the issue of DA classification with DA segmentation, or to treat DAs at turn
boundaries (easy to segment) better than those not at turn boundaries (harder to segment).

For our discourse grammars to be embedded in a complete speech recognizer, we will eventually need to automat-
ically detect utterance boundaries; that is, we will need to segment the input stream into utterances that can then be
labeled with dialog acts. This segmentation problem has begun to be addressed by the community; prosodic knowl-
edge plays an important role. For example Stolcke and Shriberg (1996) reported preliminary results on utterance
segmentation in Switchboard (assuming knowledge of the correct word sequence), and many others have looked at
segmentation algorithms on various domains and for various purposes. Mast et al. (1996) achieved 92.5% accuracy in
an automatic utterance segmentation algorithm for spontaneous VERBMOBIL dialogs. For recent work on segmenta-
tion see also (Grosz and Hirschberg 1992; Hearst 1997; Hirschberg and Nakatani 1996; Lavie et al. 1996a; Lavie et al.
1996b; Ostendorf and Veilleux 1994; Passonneau and Litman 1993).

Segmentations were hand-labeled between words in the text transcription. But we also needed to extend these
segmentations to the acoustic waveform. To estimate the locations of the boundaries in the speech waveforms, a
forced alignment of the acoustic training data was merged with linguistically annotated training transcriptions from
the LDC. This yielded word and pause times of the training data with respect to the acoustic segmentations. Using
these word times along with the linguistic segmentation marks, the start and stop times for linguistic segments were
found.

This technique was not perfect, however, for several reasons. One is that many of the words included in the
more careful linguistic transcription had been excised from the acoustic training data. This happened in two different
ways. Some speech segments were considered not useful for acoustic training so were excluded deliberately. Also,
the alignment program was allowed to skip words at the beginning and ending of an acoustic segment if not enough
evidence of the word existed. While this could be due to a long pause between words, it may also be due to a
compressed pronunciation of some words such as ”Did you” be pronounced as ”Dja”. If times were available for some
words in an utterance, even though the end words were missing times, we noted the available times as well as how
many words were missing from the times and if they were at the beginning or end (or both) of the utterance.

Errors in the boundary times for DAs crucially effect the prosodic analyses, since prosodic features are extracted
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assuming the boundaries are reasonably correct. Incorrect estimates affect the accuracy of global features (e.g., DA
duration), and may render local features (e.g. F0 measured at the supposed end of the utterance) meaningless. Since
features for DAs with known problematic end estimates would be misleading in the prosodic analyses, they were
omitted from our training (TRN) and held-out test (HLD) data.

Overall, we were missing 30% of the training utterances because of problems with time boundaries. While the
majority of the words in the training data were included (i.e., enough data for acoustic modeling purposes), we were
missing up to 45% of some types of utterances, backchannels in particular. While these utterances may not contribute
to a significant drop in error rate, they are important for modeling the flow of the conversation.

The time boundaries of the DEV development set, however, were carefully handmarked for other purposes (many
thanks to Joe Picone and Jon Hamaker for the handmarking), so we were able to use exact values for this test set. It
should be noted that this difference in segmentation method makes the DEV set somewhat mismatched with respect
to the training data.

4.2 Hidden Markov modeling of discourse

Our goal is to perform DA detection using a probabilistic framework, giving us a principled approach for combin-
ing multiple knowledge sources (using the laws of probability), as well as the ability to derive model parameters
automatically from a corpus, using statistical inference techniques.

Given all available evidence � about a conversation, our goal is to find the DA sequence � that has the highest
posterior probability ������� ��� given that evidence. Applying Bayes’ Rule we get

�
	�� ���������� ������� ���

� ����������
��������������� ���
�������

� ���������� �����
������� � ��� (1)

Here ������� represents the prior probability of a DA sequence, and ������� ��� is the likelihood of � given the evidence.
The likelihood is usually much more straightforward to model than the posterior itself, which has to do with the fact
that our models are generative or causal in nature, i.e., they describe how the evidence is produces by the underlying
DA sequence � .

Estimating ������� amounts to building a probabilistic discourse grammar, a statistical model of DA sequences. We
will do so using familiar techniques from language modeling for speech recognition, although the sequenced objects
in this case are, of course, not words but DA labels.

4.2.1 DA Likelihoods

The computation of likelihoods ����� � ��� , on the other hand, depends on the types of evidence used. In our experiments
we used the following sources of evidence, either alone or in combinations:

Transcribed words: The likelihoods used in Eq. 1 are ����!"� �
� , where ! refers to the true (hand-transcribed) words
spoken in a conversation.

Recognizer acoustics: The evidence consists of recognizer acoustics # , and we seek to compute ����#$� ��� . As de-
scribed later, this involves considering multiple alternative recognized word sequences.

Prosodic features: Evidence is given by the acoustic features % capturing various aspect of pitch, duration, energy,
etc., of the speech signal; the associated likelihoods are ����%�� ��� .

To make both the modeling and the search for the best DA sequence feasible, we further require that our likelihood
models are decomposable by utterance. This means that the likelihood given a complete conversation can be factored
into likelihoods given the individual utterances. We use �'& for the ( th DA label in the sequence � , i.e.,

�)�*���,+�-/./.0.1-2� & -0././.0-2�435�
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where � is the number of utterances in a conversation. Also, we use � & for that portion of the evidence that corresponds
to the ( th utterance, e.g., the words or the prosody of the ( th utterance. Decomposability of the likelihood means that

������� �
�,� ����� +�� �,+/����.0./.�� ����� 3 � � 3 �
Applied to the three types of evidence introduced before, it is clear that this property is not strictly true. For

example, speakers might tend to reuse words found earlier in the conversation, violating the independence of the
����! & � � & � . Similarly, speakers might adjust their pitch or volume globally, e.g., to the conversation partner, violating
the independence of the ����% & � � & � . As in other areas of statistical modeling, we count on the fact that these violations
are are small compared to the properties actually modeled, namely the dependence of � & on � & .

4.2.2 Markov modeling

Returning to the prior of DA sequences ������� , it is extremely convenient to make certain independence assumptions
here, too. In particular, we will assume that the prior distribution � is Markovian, i.e., that each � & depends only on a
fixed number

�
of preceding DA labels:

����� & � �,+ -/.0././- � &�� +/�4� ����� & � � &���� -/./.0./- � &�� +1�
(
�

is the order of the Markov process describing � ). The N-gram based discourse grammars we used have this
property. As described later,

� �
	 is a very good choice, i.e., conditioning on the DA types more than one removed
from the current one does not improve the quality of the model by much.

The importance of the Markov assumption for the discourse grammar is that we can now view the whole system
of discourse grammar and local utterance-based likelihoods as a

�
th-order hidden Markov model (HMM) (Rabiner

and Juang 1986). The HMM states correspond to DAs, observations corresponds to utterances, transition probabilities
are given by the discourse grammar, and observation probabilities are given by the local likelihoods ������& � � &�� . This
allows us to use efficient dynamic programming algorithms to compute the relevant aspects of the model, such as:

� the most probable DA sequence (the Viterbi algorithm)

� the posterior probability of various DAs for a given utterance, after considering all the evidence (the forward-
backward algorithm)

We could even try to learn discourse grammars and likelihood models in an unsupervised way, using a Baum-Welch
type estimator (but this is beyond the scope of the present work).

4.2.3 Viterbi versus Forward-backward decoding

The Viterbi algorithm for HMMs finds the globally most probable state sequence. When applied to a discourse
model with locally decomposable likelihoods and Markovian discourse grammar it will therefore find precisely the
DA sequence with the highest posterior probability:

� 	 � �� ���� �� ������� ���

This maximizes the probability of getting the entire DA sequence correct, but it does not necessarily find the DA
sequence that has the most DA labels correct (Stolcke et al. 1997). To minimize the overall utterance labeling error,
we need to maximize the probability of getting each DA label correct individually, i.e., we need to maximize ����� & � � �
for each ( ��	�-/.0./.1-� . We can compute the per-utterance posterior DA probabilities by summation:

����� � ���4�
�
������� ������� ���

where the summation is over all sequences � whose ( th element matches the label in question. The summation is
efficiently carried out by the forward-backward algorithm for HMMs.

For 0th-order (unigram) discourse grammars Viterbi and forward/backward decoding yields the same results. For
bigram and trigram discourse grammars we found that forward-backward decoding consistently gives slightly (up to
1% absolute) better accuracies, as expected. All results reported here, unless noted otherwise, were obtained using the
forward-backward decoding method.
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4.2.4 Probability scaling

Both the discourse grammar and the likelihood models used in this framework usually represent approximation to
the true distributions they attempt to model. When combining different models we may therefore have to adjust the
dynamic ranges of the probability estimates for optimal results in the joint maximization of Eq. 1. This is done by
scaling the probabilities in the log domain, i.e., by actually maximizing

�����
���1������� �
� �

The discourse grammar weight
�

and the likelihood weight � are determined through optimization on a held-out set.
For Viterbi decoding only one weight is required, since the maximization depends only on the ratio

���
� , but for

forward-backward decoding both parameters matter.

4.3 Discourse Grammars

4.3.1 N-gram models

As motivated earlier, it is computationally attractive to model DA sequences as Markov chains. We implemented this
approach by estimating backoff N-gram models (Katz 1987) from the hand-labeled DA sequences of the training data
available to us. Backoff N-gram models consist of conditional probabilities

� ��� & � � &��	��
 + -0./.0./-2� &�� +1�
based on the frequencies of � -tuples of tokens in the training data, i.e., they predict token sequences left-to-right,
conditioning the predictions on the previous �� 	 tokens at each position. The Witten-Bell smoothing scheme was
used to discount the relative frequencies (Witten and Bell 1991).

4.3.2 Modeling turns

So far we have ignore the fact that DAs are associated with multiple speakers. Surely it is important to model not only
the DA sequence, but also which speaker said what. For example, in the sample conversation of Table 1, the grammar
should compute the probability of the second utterance in Channel A being a Ack-Answer, given that the previous
utterance was a Statement on Channel B and before that was a Wh-Question on Channel A.

We can think of the events in the sequence as consisting of pairs ��� & -�� & � , where � & is a DA label and � & is a speaker
label. Switchboard conversations involve exactly two speakers each, conventionally labeled A and B corresponding
to the channels they were recorded on. The vocabulary of our discourse grammar therefore consisted of �������������
token types, plus special tokens for the beginning and end of conversations.

We need to ensure that the discourse grammar is symmetrical with respect to the speaker labels A and B, since
the assignment of channels during training is purely incidental. Our approach was to duplicate the training data with
channels switched and pool it with the original data for purposes of discourse grammar training.

It should be noted that our modeling of turn exchanges is simplistic and inaccurate in many respects. It assumes that
both speakers’ utterances occur in strict sequence. In actuality spontaneous speech is characterized by considerable
overlap of turns. Backchannels often occur in the middle of the other speaker’s utterance, which therefore both
precedes and follows the backchannel utterance in time. We made no attempt to encode such overlap; rather, utterances
were serialized in the order given by their start times.

4.3.3 A random discourse sample

To give an intuitive feel for the discourse grammar, we used our bigram grammar to generate a ‘random conversation’
by randomly generating a sequence of dialog acts according to their discourse grammar probability, and then selecting
a random instance of each dialog act from our corpus. This is seen in Table 8.

4.3.4 DA perplexities

As a general item of interest, as well as to compare different discourse grammars, we computed the perplexities of the
DA label sequences. DA perplexity measures how many choices, on average, the discourse grammar allows for the
next DA label. It is defined as

Perplexity �����4� ������� ����
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Table 8: A randomly generated conversation.

Spkr Dialog Act Utterance

A Backchannel Uh-huh.
A Statement And, it was so good.
B Backchannel-Q Really.
B Statement But when we found it, it was, we knew it.
A Statement and, as luck had it, uh, she had puppies the same week my daughter was born,
A Backchannel Uh-huh.
A Statement I hear that from, my brother-in-law lives in Plano,
B Backchannel-Q Right.
B Statement And I like Demi Moore.
B Statement I just still have need for the four bedrooms just having

having company from time to time.
A Appreciation you’re not kidding.
A Agree Absolutely.
A Agree Absolutely.

where ������� is probability of a test corpus, and � is the length of the test corpus.
First, we consider the perplexity of just the DA labels, i.e, without taking turn information into account. We trained

a DA-trigram model on the WS97-TRAIN set (197,564 utterances) and tested its perplexity on the WS97-DEV set
(4,190 utterances). Table 9 shows the perplexity of unigram, bigram, and trigram versions of this model. The first row
gives the perplexity in the absence of a discourse model, i.e., if all DAs had equal probability.

Table 9: Perplexity when guessing just DA with no turn information.

Discourse Grammar Perplexity

None 42
Unigram 11.0
Bigram 7.9
Trigram 7.5

In the next step we added turn information to the discourse model. As discussed above, we did so by augmenting
the DA labels with speaker labels (A and B). Results are shown in Table 10.

Table 10: Perplexity when guessing both the DA and turn information.

Discourse Grammar Perplexity

None 84
Unigram 18.5
Bigram 10.4
Trigram 9.8

Note that the number of possible events is twice that of the original, DA-only model, explaining the higher per-
plexities. However, the perplexities are less than double that of the original model, indicating that speaker changes are
partly predictable from the DA sequences. This raises another question of general interest: What is the perplexity of
the speaker label sequence alone, when conditioning on the previous speakers and DA labels? The answer, using a
trigram model, is 1.97, showing that turn changes are still quite unpredictable, even given preceding DAs.
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The perplexity of the speaker label stream without knowledge of the discourse acts was slightly higher (including
end-of-conversation tags:

Table 11: Perplexity of speaker/turn stream only.

Discourse Grammar Perplexity

None 3
Unigram 2.1
Bigram 2.0
Trigram 2.0

Finally, we are interested in the perplexity of DAs given that the speaker of each utterance is known. This is relevant
for Switchboard and other corpora where, due to multi-channel recording or speaker identification methods, the turn
changes can be inferred from the timing of the speech signal. In other words, we wish to compute the perplexity of
the conditional distribution ������� � � . Using

������� � � � ����� -�� ���� � �
we can estimate the perplexity of the conditional model by dividing the perplexity of the joint DA-speaker label model
above by the perplexity of just the turn labels. The results are shown in Table 12.

Table 12: DA Perplexity conditioned on turn information.

Discourse Grammar Perplexity

None 42
Unigram 9.0
Bigram 5.1
Trigam 4.8

4.3.5 Using turn information during decoding

It is straightforward to use known turn information (speaker identities) in the HMM framework described in Sec-
tion 4.2. Instead of one HMM state per DA label we have one state for each DA-speaker pair. During decoding we set
the likelihoods to zero for those states that are inconsistent with the known speaker identity. The state transitions are
given by a joint DA-speaker N-gram model as described above.

4.3.6 Modeling alternatives for Discourse Grammars

The use of a relatively simple backoff model for LVCSR word N-gram grammars (like the Witten-Bell smoothing we
used for our word N-grams) is often dictated for three reasons: other models are too hard to estimate, the implicit
ordering of the constraints (trigram, bigram, unigram) is fairly well motivated, and the time and space requirements
for other models could be prohibitive. However this does not seem to hold for the discourse grammars discussed here:
Compared to the number of words, our utterance-based training corpus is fairly small (197,489 training utterances vs.
1.4 million training words), the number of types is small (42 dialog act types vs. 30,000 words in a typical SWBD
LVCSR system) and the structuring of the context is not necessarily hierarchical (the conversation is carried out on
two channels and the dialogue acts are overlapping).

We therefore decided to investigate more sophisticated models for discourse grammar than simple backoff N-
grams. In particular, we wanted to try models that we thought could incorporate the following two kinds of knowledge:

Non-hierarchical constraints: Standard N-gram backoff models have a simple notion of constraint hierarchy (tri-
gram, bigram, unigram). But for dialog acts it is not as clear a priori how we should model the history. We
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Table 13: Perplexities of maximum entropy discourse grammars.

Features
Unigram Speaker- Anychannel Samechannel Otherchannel Trigger Perplexity

change Bigram Trigram Skip1-Bigram Bigram Bigram
� � 5.55� � � 5.25� � � � 5.30� � � � 5.24� � � � � 5.30� � � � � � 5.30� � 6.65� � 7.06

explored the use of maximum entropy (ME) models; these allow a more flexible notion of context than backoff
models.

Long distance knowledge: Dialog models could be more sensitive to long distance dependencies. For example, we
might expect that particular dialog patterns between two speakers could stay constant over the conversation. We
attempted to model this with standard cache and maximum entropy trigger models.

Maximum Entropy Models We implemented an improved Generalized Iterative Scaling (GIS) algorithm and trained
a maximum entropy model for dialog acts with it (Della Pietra et al. 1997; Rosenfeld 1996). The maximum entropy
model predicts the following dialog act using the following features:

� the last discourse act (on the same channel or on the other channel

� the last discourse act on any channel + the information whether the last discourse act was on the same or other
channel

� like the previous feature but for the last two discourse acts

� like the previous feature but only conditioned on the discourse act + channel information before the last discourse
act

� was discourse act X seen in the last n discourse acts?

� was the last discourse act on the same or other channel?

To compare the performance of our maximum entropy (ME) model with a backoff model, we trained both types
of model on a corpus of DA labels without speaker labels, using uni- and bigrams. The DA perplexities obtained were
6.87 for the ME model and 6.98 for the bigram model. Next, we tried adding various types of constraints, including
triggers, to the ME model, as shown in Table 13. Perplexity results indicate that it is not beneficial to add constraints
other than those already represented in the N-gram backoff model. Our preliminary conclusion is therefore that ME
and backoff models produce roughly equivalent results when used as discourse grammars.

Cache models We used a standard unigram and bigram cache model (Kuhn and de Mori 1990) and interpolated it
with a backoff model that was generated as described above. This technique typical achieves a significant perplexity
win on standard SWBD language models for words and we had hoped to see a similar improvement if not more for
the Discourse Grammar. But we found no improvement in the perplexity of the interpolated model over the standard
model alone.
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Conclusions for Discourse Grammar We conclude that using current technology it is hard to do better than a simple
backoff model for Discourse Grammars, as long as one encodes the turn information. Long distance modeling does not
seem to have any significant impact and the standard hierarchical encoding of the history for the backoff model seems
to be appropriate. These are strong indications that most dialog act selection decisions in SWBD are made very locally
and global effects on it are minimal. Patterns that might render themselves as being global might be mostly corollaries
of the local patterning rules. We should however place a strong caveat on this result: The speakers in SWBD (ideally)
don’t know each other, they take similar social roles in all conversations and they have no common history they can
built on. We would assume this result to change significantly on a corpus like CallHome or CallFriend, where the
speakers are acquainted with each other and the variability of discourse behavior is greater.

4.4 Dialog act detection using words

The first, and most straightforward source of evidence we examined are the true (hand-transcribed) word sequences
found in different discourse acts. To compute word-based likelihoods ����!"� ��� we built trigram language models
for each of the 42 dialog acts.1 All DAs of a particular type found in the WS97 training corpus were pooled and a
DA-specific trigram model was built using standard techniques (Katz-backoff with Witten-Bell discounting).

The 42 models were applied to each of the utterances in the WS97 devtest set and the likelihoods obtained were
combined with the N-gram discourse grammar described in Section 4.3. Results for discourse grammars of various
orders are summarized in Table 14.

Table 14: Results for DA detection from words.

Discourse Grammar Accuracy (%)
Full conv. 5 mins.

None 53.9 54.3
Unigram 69.0 68.1
Bigram 71.5 70.6
Trigram 72.0 71.9

Since the devtest conversations had been truncated to five minutes for recognition purposes, and a few utterances
had been lost as a result of the segmentation process, we ran this experiment both on the full conversation transcript,
and on the 5-minute subset of utterances used in later recognition experiments. As shown in Table 14, the accuracies
on the full conversations were slightly better, probably because the discourse grammar was somewhat mismatched to
the truncated conversations. The fact that the differences were minor is important, however, since we will later use the
same discourse grammars in combination with recognizer outputs.

An interesting detail concerning the DA-specific language models is that they were not optimized for perplexity. As
described later, it is desirable for use in word recognition to smooth the DA-specific models by interpolating them with
a general all-corpus trigram model. However, this would decrease the discrimination between DAs. With smoothed
DA-specific LMs and no discourse grammar, the detection accuracy drops to 37.6% (from 53.9% without smoothing),
and results with discourse grammar deteriorate by about 1%.

The above results were obtained without optimizing the discourse grammar and likelihood weights (both were set
to unity). Post hoc experiments showed that the optimal

�
and � were in fact very close to unity. This is not surprising

since both discourse grammar and likelihoods stem from similar types of (i.e., N-gram) models.

4.5 Dialog act detection using recognized words

For fully automatic DA detection, the previous approach is only a partial solution, since we are not yet able to recognize
words in spontaneous speech with high enough accuracy. A suboptimal approach is to trust the recognized words
nevertheless and use them as input to the word-based detector described above. Using the standard WS97 recognizer
and a bigram discourse grammar, this gives an accuracy of 61.3%, as compared to 70.6% when the true words are

1Note we are now talking about word-based N-gram models, not discourse grammars, whose tokens correspond to utterances.
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available. This could probably be improved by retraining the DA-specific language models with recognizer output;
however, this would a very time-consuming endeavor.

A more practical approach is obtained by deriving the DA likelihoods based on recognizer acoustics # . We
compute ����#$� �
� by decomposition into an acoustic likelihood ����#$� !*� and a word-based likelihood ����!"� ��� , and
summing over all word sequences:

����# � ��� �
�

�

����# � ! -2�
������!"� ���

�
�

�

����# � !*������!"� ���

The second line is justified under the assumption that the recognizer acoustics (typically, cepstral coefficients) are
invariant to DA type once the words are fixed. This is questionable; for example, a word pronunciation may change as
a result of different emphasis placed on a word.

The acoustic likelihoods ����# � !*� are the acoustic scores from the recognizer, and have to be scaled (in the log
domain) by the inverse of the recognizer language model weight to be compatible with ����!"� ��� . The word-based like-
lihoods are obtained from DA-specific language models as before. The summation over all ! has to be approximated;
we did so by summing over the 2500 best hypotheses output by the recognizer.2

Table 15 summarizes results using the N-best approach combined with discourse grammars of various orders. We
observe about a 7% reduction absolute reduction in accuracy compared to using the true words.

Table 15: Results for DA detection from N-best lists.

Discourse Grammar Accuracy (%)

None 42.8
Unigram 61.9
Bigram 64.6
Trigram 64.9

We also compared the 2500-best summation to an even grosser 1-best approximation. Here, only the single best
hypothesis (according the DA-specific language model) is used in computing ����#$� �
� . The result is a drop in accuracy
from 64.6% to 63.4%.

4.6 Dialog act detection using prosody

Our experiments on the use of prosodic knowledge for DA detection had a slightly different focus than our other ex-
periments. Results from preliminary experiments revealed that the DA detection was driven largely by priors (encoded
as unigram frequencies in the dialog grammar) because of an extreme skew in the distribution of DAs in the corpus. In
order to understand whether prosodic properties of the utterances themselves can be used to predict DAs, we eliminate
additional knowledge sources that could confound our results. Analyses are conducted in the “no-priors” domain (all
DAs are made equally likely). We also exclude contextual information from the dialog grammar (such as the DA of
the previous utterance). In this way, we hope to gain a better understanding of the prosodic properties of the different
DAs, which can in turn be applied in building better integrated models for natural speech corpora in general.

Our approach builds on recent methodology that has achieved good success on conversational speech for a different
task (Shriberg et al. 1997). The method involves construction of a large database of automatically extracted acoustic-
prosodic features. In training, decision tree classifiers are inferred from the features; the trees are then applied to an
unseen set of data to evaluate performance.

We apply the trees to four DA-classification tasks. We begin with a task involving all-way classification of the
DAs in our corpus. We then examine three subtasks found to be problematic for word-based classification: question
classification, agreement classification, and the classification of incomplete utterances. For each task, we build subtrees
with various feature sets to gain an understanding of the relative importance of different prosodic features. In addition,

2The N-best list were generated using a standard, DA-unspecific trigram language model.
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Table 16: Duration features.

Feature Name Description

Duration
ling dur duration of utterance (linguistically-segmented)

Duration-pause
ling dur minus min10pause ling dur minus sum of duration of all pauses of at least 100 msec
cont speech frames number of frames in continuous speech regions ( � 	 sec, ignoring pauses

� 	 ��� msec)
Duration-correlated F0-based counts

f0 num utt number of frames with F0 values in utterance (prob voicing=1)
f0 num good utt number of F0 values above f0 min (f0 min = .75*f0 mode)
regr dur duration of F0 regression line (from start to end point, includes voiceless

frames)
regr num frames number of points used in fitting F0 regression line (excludes voiceless

frames)
numacc utt number of accents in utterance from event recognizer
numbound utt number of boundaries in utterance from event recognizer

we integrated tree models with DA-specific language models to explore the role of prosody when word information is
also available.

4.7 Prosodic Features

In order to train our decision trees, we built a database of prosodic features for each utterance in our training and test
sets. The prosodic database included a variety of features that could be computed automatically, without reference
to word information. In particular we attempted to have good coverage for features and feature extraction regions
that expected to play a role in the three focussed analyses mentioned in the Introduction: classification of questions,
agreements, and incomplete utterances. Based on the literature on question intonation, we expected questions to show
rising F0 at the end of the utterance, particularly for declarative and yes-no questions. Thus, F0 should be a helpful cue
for distinguishing questions from other long DAs such as statements. Many incomplete utterances give the impression
of being cut off prematurely, so the prosodic behavior at the end of such an utterance may be similar to that of the
middle of a normal utterance. Specifically, energy can be expected to be higher at the end of an abandoned utterance
compared to a completed one. In addition, unlike most completed utterances, the F0 contour at the end of the utterance
is neither rising nor falling. For these reasons RMS energy and F0 were calculated additionally within regions near the
end of the utterance. We expected backchannels to differ from agreements by the amount of effort used in speaking.
Backchannels function to acknowledge another speaker’s contributions without taking the floor, whereas agreements
assert an opinion. We therefore expected agreements to have higher energy, greater F0 movement, and a higher
likelihood of accents and boundary tones.

4.7.1 Duration and pause features

Duration was expected to be a good cue for discriminating statements and questions from DAs functioning to manage
the dialog (e.g. backchannels), although this difference is also encoded to some extent in the language model. In
addition to the duration of the utterance in seconds, we included features correlated with utterance duration but based
on frame counts conditioned on the value of other feature types, as shown in Table 16.

The duration-pause set of features computes duration ignoring pause regions. Such features may be useful if
pauses are unrelated to DA-classification. (If pauses are relevant however, this should be captured by the pause
features described in the next section). The F0-based count features reflect either the number of frames or recognized
intonational events (accents or boundaries) based on F0 information (see F0 features, below). The first four of these
features capture time in speaking using knowledge about the presence and location of voiced frames, which may be
more robust for our data than relying on pause locations from the alignments. The last two features are intended to
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Table 17: Pause features.

Feature Name Description

min10pause count n ldur number of pauses of at least 10 frames in utterance, normalized by dura-
tion of utterance

total min10pause dur n ldur sum of duration of all pauses of at least 100msec in utterance, normalized
by duration of utterance

mean min10pause dur utt mean pause duration for pauses of at least 10 frames in utterance
mean min10pause dur ncv mean pause duration for pauses of at least 10 frames in utterance, nor-

malized by same in convside
cont speech frames n number of frames in continuous speech regions ( � 	 sec, ignoring pauses

� 	 � frames) normalized by duration of utterance

capture the amount of information in the utterance, by counting accents and phrase boundaries. Duration-normalized
versions of many of these features are included under their respective feature type in the following sections.

4.7.2 Pause features

To address the possibility that hesitation could provide a cue to the type of DA, we included features intended to
reflect the degree of pausing, as shown in Table 17. To obtain pause locations we used information available from
forced-alignments; however this was only for convenience (the alignment information was in our database for other
purposes). In principle pause locations can be detected by current recognizers with high accuracy without knowledge
of the words. Pauses with durations below 100 milliseconds (10 frames) were excluded since they are more likely
to reflect segmental information than hesitation. Features were normalized to remove the inherent correlation with
utterance duration. The last feature was included to provide a more global constraint; it counts only those speech
frames occurring in regions of at least one second of continuous speaking.

4.7.3 F0 features

F0 features, shown in Table 18, included both raw and regression values based on frame-level F0 values from
ESPS/Waves+. To capture overall pitch range, mean F0 values were calculated over all voiced frames in an utter-
ance. To normalize differences in F0 range over speakers, particularly across genders, utterance-level values were
normalized with respect to the mean and standard deviation for F0 values measured over the whole conversation side.
F0 difference values were normalized on a log scale. The standard deviation in F0 over an utterance was computed as
a possible measure of expressiveness over the utterance. Minimum and maximum F0 values, calculated after median
smoothing to eliminate spurious values, were also included for this purpose.

We also included parallel measures that used only “good” F0 values, or values above a threshold (“f0 min”)
estimated as the bottom of a speaker’s natural F0 range. The f0 min can be calculated in two ways. For both methods,
a smoothed histogram of all the calculated F0 values for a conversation side is used to find the F0 mode. The true
f0 min comes from the minimum F0 value to the left of this mode. Because the histogram can be flat or not sufficiently
smoothed, our algorithm may be fooled into choosing a value greater than the true minimum. A simpler way to estimate
f0 min takes advantage of the fact that values below the minimum typically result from pitch halving. Thus, a good
estimate of f0 min is to take the point at 0.75 times the F0 value at the mode of the histogram. This measure closely
approximates the true f0 min, and is more robust for use with the Switchboard data.3. The percentage of “good” F0
values was also included to measure (inversely) the degree of creaky-voice or vocal fry.

The rising/falling behavior of contours is a good cue to their utterance type. We investigated a number of ways
to measure this behaviour. To measure overall slope, we calculated the gradient of a least-squares fit regression line
for the F0 contour. While this gives an adequate measure for the overall gradient of the utterance, it is not always a
good indicator of the type of rising/falling behavior we are most interested in. Rises at the end can be swamped by
the declination of the part of the contour preceding this, and hence the overall gradient for a contour can be falling.
We therefore marked two special regions at the end of the contour, corresponding to the last 200ms (“end” region) and
the previous 200ms to that (“penultimate” region). For each of these regions we measured the mean F0 and gradient,

3We thank David Talkin for suggesting this method.
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Table 18: F0 features.

Feature Name Description

f0 mean good utt mean of F0 values included in f0 num good utt
f0 mean n difference between mean F0 of utterance and mean F0 of convside for

F0 values � f0 min
f0 mean ratio ratio of F0 mean in utterance to F0 mean in convside
f0 mean zcv mean of good F0 values in utterance normalized by mean and st dev of

good F0 values in convside
f0 sd good utt st dev of F0 values included in f0 num good utt
f0 sd n log ratio of st dev of F0 values in utterance and in convside
f0 max n log ratio of max F0 values in utterance and in convside
f0 max utt maximum F0 value in utterance (no smoothing)
max f0 smooth maximum F0 in utterance after median smoothing of F0 contour
f0 min utt minimum F0 value in utterance (no smoothing); can be below f0 min
f0 percent good utt ratio of number of good F0 values to number of F0 values in utterance
utt grad least-squares all-points regression over utterance
pen grad least-squares all-points regression over penultimate region
end grad least-squares all-points regression over end region
end f0 mean mean F0 in end region
pen f0 mean mean F0 in penultimate region
abs f0 diff difference between mean F0 of end and penultimate regions
rel f0 diff ratio of F0 of end and penultimate regions
norm end f0 mean mean F0 in end region normalized by mean and st dev of F0 from conv-

side
norm pen f0 mean mean F0 in penultimate region normalized by mean and st dev from con-

vside
norm f0 diff difference between mean F0 of end and penultimate regions, normalized

by mean and st dev of F0 from convside
regr start f0 first F0 value of contour, determined by regression line analysis
finalb amp amplitude of final boundary (if present), from event recognizer
finalb label label of final boundary (if present), from event recognizer
finalb tilt tilt of final boundary (if present), from event recognizer
numacc n ldur number of accents in utterance from event recognizer, normalized by

duration of utterance
numacc n rdur number of accents in utterance from event recognizer, normalized by

duration of F0 regression line
numbound n ldur number of boundaries in utterance from event recognizer, normalized by

duration of utterance
numbound n rdur number of boundaries in utterance from event recognizer, normalized by

duration of F0 regression line
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and used the differences between these as features. The starting value in the regression line was also included as a
potential cue to F0 register (the actual first value is prone to F0 measurement error).

4.7.4 HMM-based Event Detection

In addition to these F0 features, we also included intonational-event features, or features intended to capture local
pitch accents and phrase boundaries. The event features obtained using the event recognizer described in (Taylor et al.
1997). This detector relies on the intuition that different utterance types are characterized by different intonational
‘tunes’ (Kowtko 1996), and has been applied successfully to the detection of move types in the Maptask corpus (Bard
et al. 1995). The system detects sequences of distinctive pitch patterns which characterize particular utterance types,
by training one continuous density HMM for each DA to be detected (Taylor et al. 1997).

Taylor et al.’s (1997) algorithm actually proceeds in 3 steps.

Step 1: Find Intonational Event Loci

Step 2: Compute Pitch Patterns for each Locus

Step 3: Detect Characteristic Pitch Pattern Sequences

For our database of prosodic features, we actually only used Step 1 of the algorithm. In preliminary experiments we
had also tried using the complete Taylor et al. (1997) algorithm, but we decided to concentrate on a single algorithm,
and settled on the decision-tree methodology. Step 1 uses a simple set of 5 HMMs (completely separate “event-
HMMs” not to be confused with the DA-detector HMMs) to detect areas where intonational events are likely to occur.
This locus-finding stage consists of 5 simple event-detector HMMs. Each of them takes as input (observations) F0,
energy, delta-f0 and delta-energy. Each is trained to detect one of the following 5 event types:

[a:] pitch accent
[b:] boundary
[c:] connection
[sil:] silence
[ab:] accent+boundary

The a and b labels are called intonational events and represent the linguistically significant portion of the intonation
contour. c is used simply to fill in parts of the contour which are not an event or silence. The compound label ab is
used for when an accent and boundary are so close they overlap and form a single intonational event. Figure 6 shows
a sample ‘event-detector HMM’.

F0
energy

F0

energy

F0
energy

F0

energy

F0
energy

F0

energy

Figure 6: Sample event-detector HMM for label a.

Following is a sample pitch locus labeling:

i just i i i don’t see it
a a a a fb
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Table 19: Energy features.

Feature Name Description

utt nrg mean mean RMS energy in utterance
abs nrg diff difference between mean RMS energy of end and penultimate regions
end nrg mean mean RMS energy in end region
norm nrg diff normalized difference between mean RMS energy of end and penulti-

mate regions
rel nrg diff ratio of mean RMS energy of end and penultimate regions
snr mean utt mean signal-to-noise ratio (CDF value) in utterance
snr sd utt st dev of signal-to-noise ratio values (CDF values) in utterance
snr diff utt difference between maximum SNR and minimum SNR in utterance
snr min utt st dev of signal-to-noise ratio values (CDF values) in utterance
snr max utt maximum signal-to-noise ratio values (CDF values) in utterance

victoria holt is that right
a a rb

4.7.5 Energy features

We included two types of energy features, as shown in Table 19. The first set of features was computed based on
standard root mean square (rms) energy. Because our data were recorded from telephone handsets with various noise
sources (background noise as well as channel noise) we also included a signal-to-noise ratio (SNR) feature to esti-
mate the energy from the speaker. SNR values were calculated using the SRI recognizer with a Switchboard-adapted
front-end (Neumeyer and Weintraub 1994; Neumeyer and Weintraub 1995). Values were calculated over the entire
conversation side, and those extracted from regions of speech were used to find a cumulative distribution function
(CDF) for the conversation. The frame-level SNR values were then represented by their CDF value in order to nor-
malize the SNR values across speakers and conversations.

4.7.6 Speaking rate (“enrate”) features

We were also interested in overall speaking rate. However we needed a measure that could be run directly on the signal.
For this purpose, we experimented with a signal processing measure, “enrate”, which is currently under development
at ICSI by Nelson Morgan, Nikki Mirghafori and Eric Fosler. This measure runs directly on the speech signal, and
has been shown to correlate moderately with lexical measures of speaking rate (Morgan et al. 1997). The measure
can be run over the entire signal, but because it uses a large window, values are less meaningful if significant pause
time is included in the window. Since our speakers were recorded continuously, we had long pause regions in our
data (mainly times during which the other speaker was talking). Based on advice from the ICSI team, we applied the
measure to certain stretches of speech of minimum duration without excessive pauses.

We calculated frame-level values over a two second speech interval. The enrate value was calculated for a 25ms
frame window with a window step hop of 0.1 second. Output values were calculated for 10ms frames to correspond
to other measurements. We included pauses of less than 1 second and ignored speech regions of less than one second,
where pause locations were determined as described earlier.

If the end of a speech segment was approaching, meaning that the 2 second window could not be filled, no values
were written out. The enrate values corresponding to particular utterances were then extracted from the conversation
side values. This way, if utterances were adjacent, information from surrounding speech regions could be used to get
enrate values for the beginnings and ends of utterances which normally would not fill the 2 second speech window.
Features computed for use in tree-building are listed in Table 20.

4.7.7 Gender features

We also included gender features. This was not a main focus of our study, however it was a good idea to include it
as a check on our F0 normalizations, we included the gender of the speaker. It is also possible, however, that features
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Table 20: Speaking rate features.

Feature Name Description

mean enr utt mean of enrate values in utterance
mean enr utt norm mean enr utt normalized by mean enrate in conversation-side
stdev enr utt st dev of enrate values in utterance
min enr utt minimum enrate value in utterance
max enr utt maximum enrate value in utterance

could be used differently by men and women, even after appropriate normalization for pitch range differences. We
also included the gender of the listener to check for a possible sociolinguistic interaction between the ways in which
speakers employ different prosodic features and the conversational dyad

4.7.8 Decision Tree Classifiers

For our prosodic classifiers, we used CART-style decision trees (Breiman et al. 1983). Decision trees allow combina-
tion of discrete and continuous features, and can be inspected to gain an understanding of the role of different features
and feature combinations.

We downsampled our data to obtain an equal number of datapoints in each class. Although a drawback to down-
sampling is a loss of power in the analyses due to fewer datapoints, downsampling was warranted for two important
reasons. First, as noted earlier, the distribution of frequencies for our DA classes was severely skewed. Because de-
cision trees split according to an entropy criterion, large differences in class sizes wash out any effect of the features
themselves, causing the tree not to split. By downsampling to equal class priors we assure maximum sensitivity to the
features. A second motivation for downsampling was that by training our classifiers on a uniform distribution of DAs,
we facilitated integration with other knowledge sources (see section on Integration).

After finishing expanding the tree with questions, the tree-growing algorithm used a ten-fold cross-validation
procedure to avoid overfitting the training data. Leaf nodes were successively pruned if they failed to reduce the
entropy in the cross-validation procedure.

We report tree performance using two metrics, accuracy and efficiency. Accuracy is the number of correct classi-
fications divided by the total number of samples. Accuracy is based on hard decisions; the classification is that class
with the highest probability. Because we downsample to equal class priors, the chance performance for any tree with
N classes is 100/N%. For any particular accuracy level, there is a trade-off between recall and false alarms. In the real
world there may well be different costs to a false positive versus a false negative in detecting a particular utterance
type. In the absence of any model of how such costs would be assigned for our data, we report results assuming equal
costs to these errors for our downsampled trees.

Efficiency measures the relative reduction in entropy from the root node to the final tree, taking into account
the probability distributions produced by the tree. Two trees may have the same classification accuracy, but the tree
which more closely approximates the probability distributions of the data (even if there is no effect on decisions) has
higher efficiency (lower entropy). Although accuracy and efficiency are typically correlated, the relationship between
the measures is not strictly monotonic since efficiency looks at probability distributions and accuracy looks only at
decisions.

4.7.9 Prosodic DA Detection: Results and Discussion

We first examine results of the prosodic model for a seven-way classification involving all DAs. We then look to
results from a words-only analysis, to discover potential subtasks for which prosody could be particularly helpful. The
analysis reveals that even if correct words are available, certain DAs tend to be misclassified. We examine the potential
role of prosody for three such subtasks: (1) the classification of questions; (2) the classification of agreements; and (3)
the classification of incomplete utterances. In all analyses we seek to understand the relative importance of different
features and feature types, as well as to determine whether integrating prosodic information with a language model
can improve classification performance overall.
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Table 21: Feature type usage in seven-way classification.

Feature Usage
Type (%)

Dur 0.554
F0 0.126
Pau 0.121
Nrg 0.104
Enr 0.094

4.7.10 Seven-Way Classification

We applied the prosodic model first to a seven-way classification task for the full set of DAs: Statements, Questions,
Incomplete utterances, Backchannels, Agreements, Appreciations, and Other. Note that “Other” is a catch-all class
representing a large number of heterogeneous DAs that occurred infrequently in our data. Therefore we do not expect
this class to have consistent features, but rather to be distinguished to some extent based on feature consistencies
within the other six classes. As described in the Method section, data were downsampled to equal class sizes to
avoid confounding results information from prior frequencies of each class. section). Because there are seven classes,
chance accuracy for this task is 100/7% or 14.3%. For simplicity, we assumed equal cost to all decision errors, i.e. to
all possible confusions among the seven classes.

A tree built using the full database of features described earlier allows a classification accuracy of 41.15%. This
gain in accuracy is highly significant by a binomial test; � �". ��� � 	 . If we are interested in probability distributions
rather than decisions, we can look at the efficiency of the tree, or the relative reduction in entropy from the root node
of the tree. By using the all-features prosodic tree for this seven-way classification, we reduce the number of bits
necessary to describe the class of each datapoint by 16.8%.

The all-features tree is large (52 leaves), making it difficult to interpret the tree directly. It is helpful however to
summarize the tree. We do this by reporting a measure of “feature usage”. The usage measure reflects the number of
times a feature was queried in classifying the datapoints. The measure thus accounts for the position of the feature in
the tree; features further up in the tree have higher counts than those lower in the since there are more datapoints at the
higher nodes. The measure is normalized to sum to 1.0 for each tree. Table 21 lists usage by feature type.

Table 21 indicates that when all features are available, a duration-related feature is used in more than half of
the queries. Gender features are not used at all; this supports the earlier hypothesis that, as long as features are
appropriately normalized, it is reasonable to create gender-independent prosodic models for these data. Individual
feature usage, as shown in Table 22 reveals that the raw duration feature (ling dur), which is a “free” measure in
our work since we assumed locations of utterance boundaries—accounted for only 14% of the queries in the tree;
the remaining portion of the 55% accounted for by duration features were those associated with the computation of
F0- and pause-related information. Thus the power of duration for the seven-way classification comes largely from
measures involving computation of other prosodic features. The most-queried feature, regr num frames (the number
of frames used in computing the F0 regression line) may be better than other duration measures at capturing actual
speech portions (as opposed to silence or nonspeech sounds), and may be better than other F0-constrained duration
measures (e.g. f0 num good utt) due to a more robust smoothing algorithm. We can also note that the high overall
rate of F0 feature given in Table 22 represents a summation over many different individual features.

Since we were also interested in feature importance, a number of individual trees were built using the leave-one-
out method, in which the feature list is systematically modified and a new tree is built for each subset of allowable
features. It was not feasible to leave out individual features because of the large set of features used; we therefore
left out groups of features corresponding to the feature types as defined in Table 22. We also included a matched set
of “leave-one-in” trees for each of the feature types (i.e. trees for which all other feature types were removed), and
a single leave-two-in tree, built post hoc which made available on the two most feature types with highest accuracy
from the leave-one-in analyses. Note that the defined feature lists specify the features available for use in building a
particular prosodic model; whether or not features are actually used requires inspection of the resulting tree. Figure 7
shows results for the set of leave-one-out and leave-one-in trees, with the all-features tree provided for comparison
purposes. The upper graph indicates accuracy values; the lower graph shows efficiency values. Each bar indicates a
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Table 22: Feature usage for seven-way (all DAs) classification.

Feature Feature Usage
Type (%)

Dur regr num frames 0.180
Dur ling dur 0.141
Pau total count enr utt n 0.121
Enr stdev enr utt 0.081
Enr ling dur minus min10pause 0.077
Enr total count enr utt 0.073
Nrg snr max utt 0.049
Nrg snr mean utt 0.043
Dur regr dur 0.041
F0 f0 mean zcv 0.036
F0 f0 mean n 0.027
Dur f0 num good utt 0.021
Dur f0 num utt 0.019
F0 norm end f0 mean 0.017
F0 numacc n rdur 0.016
F0 f0 sd good utt 0.015
Enr mean enr utt 0.009
F0 f0 max n 0.006
Nrg snr sd utt 0.006
Nrg rel nrg diff 0.005
Enr mean enr utt norm 0.004
F0 regr start f0 0.003
F0 finalb amp 0.003
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Figure 7: Performance of prosodic trees using different feature sets for the classification of all seven DAs (Statements,
Questions, Incomplete Utterances, Backchannels, Agreements, Appreciations, Other). N for each class=391. Chance
accuracy = 14.3%. Gray bars=exclude feature type; white bars=include only feature type. Dur=Duration, Pau=Pause,
F0=Fundamental frequency, Nrg=Energy, Enr=Enrate (speaking rate), Gen=Gender features.

separate tree.
We first tested whether there was any significant loss in leaving out a feature type, by doing pairwise comparisons

between the all-features tree and each of the leave-one-out trees.4 Although trees with more features to choose from
typically perform better than those with fewer features, additional features can hurt performance. The greedy algorithm
used cannot look ahead to determine the optimal overall model, but rather seeks to maximize entropy reduction locally
at each split. This limitation of decision trees is another motivation for conducting the leave-one-out analyses. Since
cannot predict the direction of change for different feature sets, comparison on tree results are conducted using two-
tailed tests.

Results showed that the only two feature types whose removal caused a significant reduction in accuracy were
duration (������� ������	 ) and enrate (�
����� �� ). The enrate-only tree however yields accuracies on par with other feature
types whose removal did not affect overall performance; this suggests that the contribution of enrate in the overall tree
may be through interactions with other features. All of the leave-one-in trees were significantly less accurate than the
all-features tree; although the tree using only duration achieved an accuracy of, it was still significantly less accurate
than the all-features tree by a Sign test (������� ��	 ). Adding F0 features (the next best feature set in the leave-one-in
trees) did not significantly improve accuracy over the duration-only tree alone, suggesting that for this task the two
feature types are highly correlated. Nevertheless, each of the leave-one-in trees, all feature types except gender yielded
accuracies significantly above chance by a binomial test (����� ������	 for the first five trees). The gender-only tree was
slightly better than chance by either a one- or a two-tailed test,5 however this was most likely due to a difference in
gender representation across classes.

Taken together, these results suggest that there is considerable redundancy in the features for DA classification,
since removing one feature type at a time (other than duration) makes little difference to accuracy. Results also suggest
however that features are not perfectly correlated; there must be considerable interaction among features in classifying
DAs, because trees using only individual feature types are significantly less accurate than the all-features tree.

4To test whether one tree (A) was significantly better than another (B), we counted the number of test instances on which A and B differed, and
on how many A was correct but B was not; we then applied a Sign test to these counts.

5It is not clear here whether a one- or two-tailed test is more appropriate. Trees typically should not do worse than chance; however because
they minimize entropy, and not accuracy, the accuracy can fall slightly below chance.
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Table 23: Accuracy for individual and combined models for seven-way classification.

Knowledge HLD Set DEV Set DEV Set
Source true words true words N-best output

samples 2737 287 287
chance (%) 14.29 14.29 14.29
tree (%) 41.15 38.03 38.03
words (%) 67.61 70.3 58.77
words+tree (%) 69.98 71.14 60.12

Finally, duration is clearly of primary importance to this classification. This is not surprising, as the task involves
a seven-way classification including longer utterances (such as statements) and very brief ones (such as backchannels
like “uh-huh”). Two questions of further interest regarding duration, however, are: (1) will a prosody model that uses
mostly duration add anything to a language model (in which duration is implicitly encoded); and (2) is duration useful
for other tasks involving classification of DAs similar in length. Both questions are address in the following sections.

As just discussed, the all-features tree (as well as others including only subsets of feature types) provide significant
information for the seven-way classification task. Thus if one were only to use prosodic information (no words or
context), this is the level of performance resulting for the case of equal class frequencies. To explore whether the
prosodic information could be of use when lexical information is also available, we integrated the tree probabilities
with likelihoods from our DA-specific trigram language models built from the same data. For simplicity, integration
results are reported only for the all-features tree in this and all further analyses, although as noted earlier this is not
guaranteed to be the optimal tree.

Since our trees were trained with uniform class priors, we combined tree probabilities ������� %
� with the word-
based likelihoods ����!"� ��� linearly, as described in sections 4.8 and 4.9, using a weighting factor found by optimizing
on held out data. The integration was performed separately for each of our two test sets (HLD and DEV), and within
the DEV set for both transcribed and recognized words. Results are shown in Table 23. Classification performance is
shown for each of the individual classifiers, as well as for the optimized combined classifier.

As shown, for all three analyses, adding information from the tree to the words model improved classification
accuracy. Although the gain appears modest in absolute terms, for the HLD test set was highly significant by a Sign
test,6 � � . � � 	 . For the smaller DEV test set, the improvements did not reach significance; however the pattern of
results suggests that this is likely to be due to a lack of power due to the small sample size. It is also the case that
the tree model does not perform as well for the DEV as the HLD set; this is not attributable to small sample size,
but rather to a mismatch between the DEV set and the training data involving how data were segmented, as noted in
the Method section. The mismatch in particular affects duration features, which were important in this analyses as
discussed earlier. Nevertheless, word-model results are lower for N-best than for true words in the DEV data while by
definition the tree results stay the same. We see that accordingly, integration provides a larger win for the recognized
than the true words. Thus we would expect results for recognized words for the HLD set (if they could be obtained)
should show an even larger win than the win observed for the true words in that set.

These results provide an answer to one of the questions posed in the previous section: does prosody provide an
advantage over words if the prosody model uses mainly duration? The results indicate that the answer is yes. Although
the number of words in an utterance is highly correlated with duration, and word counts are represented implicitly by
the probability of the end-of-utterance marker in a language model, a duration-based tree model still provides added
benefit over words alone. One reason may be that duration (reflected by the various features we included) is simply a
better predictor of DA than is word count. Another independent possibility is that the advantage from the tree model
comes from its ability to directly and iteratively threshold the data.

4.7.11 DA Confusions Based on Word Information

Next we explored additional tasks for which prosody could aid DA classification. Since our trees allow N-ary clas-
sification, the logical search space of possible tasks was too large to explore systematically. We therefore looked to

6One-tailed, because model integration assures no loss in accuracy.
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the language model to guide us in identifying particular tasks of interest. Specifically, we were interested in DAs that
tended to be misclassified even given knowledge of the true words. We therefore examined the pattern of confusions
made when our seven DAs were classified using the language model alone. Results are shown in Figure 8. Each
subplot represents the data for one actual DA.7 Bars reflect the normalized rate at which the actual DA was classified
as each of the seven possible DAs, in each of the the three test conditions (HLD, DEV-true, and DEV-Nbest).

As shown, classification is excellent for the statement class, with few misclassifications even when only the recog-
nized words are used.8 For the remaining DAs however, misclassifications occur at considerable rates. Classification
of questions is a case in point: even using true words, questions are often misclassified as statements (but not vice
versa), and this pattern is exaggerated when testing on recognized as opposed to true words. The asymmetry is par-
tially attributable to the presence of declarative questions. The effect associated with recognized words appears to
reflect a high rate of missed initial “do” in our recognition output, as discovered in independent error analyses (see

�
7). For both statements and questions however, there is little misclassification involving the remaining classes. This

probably reflects the length distinction as well as the fact that most of the propositional content in our corpus occurred
in statements and questions, whereas other DAs generally served to manage the communication—a distinction likely
to be reflected in the words. Thus, our first subtask will be to examine the role of prosody in the classification of
statements and questions.

A second problem visible in Figure 8 is the classification of incomplete utterances. Even using true words, clas-
sification of these DAs is at only 75.0% accuracy. Knowing whether or not a DA is complete would be particularly
useful for both language modeling and understanding. Since the misclassifications are distributed over the set of DAs,
and since logically any DA can have an incomplete counterpart, our second subtask will be to classify a DA as either
incomplete or not-incomplete (all other DAs).

A third notable pattern of confusions involves backchannels and explicit agreements. This is not surprising, since
the two classes share words such as “yeah” and “right”. In this case, the confusions are considerable in both directions,
but more marked for the case of agreements. As mentioned in the method section, some of these cases may involve
utterances that were mislabeled because labelers used only the transcripts. However, for any mislabeled cases we
would expect no improvement by adding prosody, since we would also need to match the (incorrect) transcriber
labels. Thus any gain from prosody would be likely to reflect a contribution for correctly labeled cases; we will
therefore examine backchannels and agreements as our third classification subtask.

4.7.12 Subtasks

In the three subtasks, we applied a similar analysis, looking at feature usage by selectively removing features and
assessing the loss in performance. Results are described in detail in Shriberg et al. (1998); we briefly the general
findings below.

Feature analyses revealed that the relative importance of different features depended critically on the task. For the
classification of statements and questions we found that duration, pause, and F0 features were heavily used. Further-
more, when we broke our question class down into yes-no questions, wh-questions and declarative questions, and ran
a four-way classification along with statements, results showed primary importance of F0 information. Results, as
shown in Figure 9, were in good accord with the literature on question intonation, which predicts strongest final rises
for yes-no and declarative questions and an absence of a final rise for wh-questions, as well as a higher overall F0 for
questions than statements. Final rises are captured in our tree by the features end grad, norm f0 diff, and utt grad;
overall or average F0 is captured by f0 mean zcv.

For incomplete utterances on the other hand, energy features, which were not useful for the seven-way or the
question classification, were of particular importance. Typically, utterances fall to a low energy value when close
to completion. However when speakers stop mid-stream, this fall has not yet occurred, and thus the energy stays
unusually high. Our prosodic trees pick up on this feature, as well as others such as duration, to classify utterances as
either finished or incomplete. Finally, for the classification of backchannels and agreements, we found that duration,
pause, and energy features played a strong role. Thus, although DAs are redundantly signaled by prosodic features,
the degree to which different features are important depends on which DAs one is classifying. For this reason, for
optimal coverage it is best to include a variety of features in the prosodic model.

7Due to the heterogeneous makeup of the “other” DA class per se, we were not particularly interested in its pattern of confusions and hence the
graph for that data is not shown.

8The high classification rate for statements by word information was a prime motivation for downsampling our data in order to examine the
inherent contribution of prosody, since as noted in the Method section, statements make up most of the data in this corpus.
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Figure 8: Classification of DAs based on word trigrams only, using three different test sets.
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S QY QW QD 
  0.25 0.25 0.25 0.25

QW 
 0.2561 0.1642 0.2732 0.3065

cont_speech_frames < 196.5

S 
 0.2357 0.4508 0.1957 0.1178

cont_speech_frames >= 196.5

QW 
 0.2327 0.2018 0.1919 0.3735

end_grad < 32.345

QY 
 0.2978 0.09721 0.4181 0.1869

end_grad >= 32.345

S 
 0.276 0.2811 0.1747 0.2683

f0_mean_zcv < 0.76806

QW 
 0.1859 0.116 0.2106 0.4875

f0_mean_zcv >= 0.76806

QW 
 0.2935 0.1768 0.2017 0.328

cont_speech_frames_n < 98.388

S 
 0.2438 0.4729 0.125 0.1583

cont_speech_frames_n >= 98.388

QW 
 0.2044 0.1135 0.1362 0.5459

utt_grad < -36.113

QD 
 0.3316 0.2038 0.2297 0.2349

utt_grad >= -36.113

QW 
 0.3069 0.08995 0.1799 0.4233

stdev_enr_utt < 0.02903

S 
 0.2283 0.5668 0.1115 0.09339

stdev_enr_utt >= 0.02903

S 
 0.2581 0.2984 0.2796 0.164

cont_speech_frames_n < 98.334

S 
 0.2191 0.5637 0.1335 0.08367

cont_speech_frames_n >= 98.334

S 
 0.3089 0.3387 0.1419 0.2105

norm_f0_diff < 0.064562

QY 
 0.1857 0.241 0.4756 0.09772

norm_f0_diff >= 0.064562

S 
 0.3253 0.4315 0.1062 0.137

f0_mean_zcv < 0.76197

QW 
 0.2759 0.1517 0.2138 0.3586

f0_mean_zcv >= 0.76197

Figure 9: Decision tree for the classification of statements (S), yes-no questions (QY), wh-questions (QW), and declar-
ative questions (QD).

Second, for each subtask we integrated the prosodic model with our DA-specific language model. The results are
shown in Table 24.

As shown, the prosody alone did quite well, significantly better than chance in all cases (� � . � ��� 	 by a binomial
test for all trees). For the question detection task, the tree actually does better than the recognized words; for the
agreement task it does better than the true words in the HLD set. Integration yielded consistent improvement over the
words alone, i.e. for all three tasks and all three test sets, accuracy improved by adding prosody. For the incomplete
utterance task, the gain was not significant using true words, but nearly reached significance for recognized words in
the much smaller DEV set. Additional analysis revealed that better performance can be achieved if the incomplete
class is split into two classes based on turn information (which is available from our dialog grammar). The incomplete
class combines both self-cutoffs and other-interruptions, which a separate tree showed are distinguishable prosodically
at high accuracy (81%, where chance is 50%). For the question and agreement tasks, Sign tests run for the larger HLD
set showed a highly significant gain in accuracy by adding prosody, � � . ��� 	 and � � . ��� ��� 	 , respectively.

4.8 Combining decision trees with discourse grammars

We now turn to detection results based on prosodic features that incorporate discourse grammars, analogous to those
reported for word-based detection. The HMM framework requires that we compute prosodic likelihoods of the form
����% &2� �4&�� for each utterance �,& and associated prosodic features values % & . We have the apparent difficulty that
decision trees give estimates for the posterior probabilities, ����� &2� % &�� .

The problem can be overcome by applying Bayes’ Rule locally:

����% & � � &��4� ����% &�� ����� & � % & ������ &��
� ����� & � % & �

����� &��
A quantity proportional to the required likelihood can therefore be obtained by either dividing the posterior tree
probability by the prior ����� & � , or by training the tree on a uniform prior distribution of DA types. We chose the
second approach.
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Table 24: Accuracy for individual and combined models for three subtasks.

Knowledge HLD Set DEV Set DEV Set
Source true words true words N-best output

Questions and Statements
samples 1852 266 266

chance (%) 50.00 50.00 50.00
tree (%) 74.21 75.97 75.97

words (%) 83.65 85.85 75.43
words+tree (%) 85.64 87.58 79.76

Incomplete and Completed
samples 2646 366 366

chance (%) 50.00 50.00 50.00
tree (%) 72.16 72.01 72.01

words (%) 88.44 89.91 82.38
words+tree (%) 88.74 90.49 84.56

Agreements and Backchannels
samples 2520 214 214

chance (%) 50.00 50.00 50.00
tree (%) 68.77 72.88 72.88

words (%) 68.63 80.99 78.22
words+tree (%) 76.90 84.74 81.70

Table 25: DA detection using prosody.

Discourse Grammar Accuracy (%)

None 38.9
Unigram 48.3
Bigram 50.2

Our experiments in this area were limited, and results should be considered preliminary. A single tree was trained
to discriminate among the five most frequent dialog acts (Statements, Questions, Backchannels, Agreements, Aban-
doned), with all others lumped together in an “Other” category. The probability in the “Other” category was split
uniformly among all the types in that category. Results are shown in Table 25

4.9 Dialog act detection using multiple knowledge sources

Finally, we wanted to combine evidence from recognized words and prosody for DA detection, since, as noted earlier,
we can expect them to give partially complementary information, and prosody might help alleviate the effects of
unreliable word recognition.

Combining recognized words and prosody amounts to estimating a combined likelihood ����# & -�% & � � & � for each ut-
terance. The simplest approach is to assume the two types of acoustic observations (recognizer acoustics and prosodic
features) are approximately conditionally independent once � & is given:

����# &�-�% & � � &�� � ����# &2� �4&�������% &2� # &�-2�4&��
� ����# &2� �4&�������% &2� � &��

Since the recognizer acoustics are modeled through their dependence on words, it is particularly important to avoid
using prosodic features that are directly correlated with word-identities, or features that are also modeled by the
discourse grammars, such as utterance position relative to turn changes.
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For the one experiment we conducted using this approach, we combined the acoustic n-best likelihoods from
Section 4.5 with the Top-5 tree classifier from Section 4.8. Since these represent very different types of models we
had to optimize both the relative weighting between the likelihood models, as well as the weighting of the likelihoods
overall against the discourse grammar. Results are summarized in Table 26.

Table 26: Combined utterance detection accuracies.

Discourse Accuracy (%)
Grammar Prosody only Recog. Words only Combined

None 38.9 42.8 56.5
Unigram 48.3 61.9 62.6
Bigram 50.2 64.6 65.0

As shown, the combined classifier presents an improvement over the recognizer-based classifier. The experiment
without discourse grammar indicates that the combined evidence is considerably stronger than either knowledge source
alone, yet this improvement seems to be made largely redundant by the use of the discourse grammar. As noted earlier,
these results are preliminary in that no significant tuning of the decision tree component has been done.

5 SWBD RECOGNITION

We applied our utterance detection algorithm to the Switchboard word-recognition task by using a mixture of the
42 dialog-act-specific language models to rescore each test-set utterance, and using the combined detector to set the
mixture weights. As a result, we had a promising but not statistically significant movement in word error from 41.2%
to 40.9%.

Before describing our experiments we first describe the cheating experiment that we ran at the beginning of the
project.

5.1 Cheating Experiment 1: Perplexity

How much can we expect discourse information to reduce word error rate on Switchboard? In order to give an upper
bound for our discourse LM experiments, we performed two cheating experiments. In these we asked the question:
“Suppose we had an oracle give us perfect knowledge of an utterance’s correct dialog act tag, could we use this to
reduce WER?”.

In our first experiment, we built 42 separate trigram language models, one for each DA. Each was based on a
standard backoff trigram with Witten-Bell discounting (Witten and Bell 1991). We built two versions of each language
model; one was trained solely on the examples of each DA (the ‘DLM’); the other was trained on each DA and also
interpolated with an LM trained on the entire 166,000-utterance training set (the ‘baseline’ LM or BLM), using deleted
interpolation.

The baseline language model was a standard trigram trained on 1.8 million words from Switchboard. Since earlier
WS95 work had shown that N-gram LMs based on complete utterance units give lower perplexity than those trained
on acoustic segments (Rosenfeld et al. 1996), this language model included a token marking utterance boundaries.
However only 1.4 million of the 1.8 million SWBD words (i.e. the WS97-TRAIN ‘linguistically segmented’ corpus)
had hand-coded utterance boundaries. Stolcke (1997) trained an automatic linguistic segmenter (Stolcke and Shriberg
1996) on the hand-segmented 1.4 million words, and used it to segment the remaining training data. The hand-
segmented and the automatically-segmented training data were pooled, and our baseline language model (BLM) was
trained on these 1.8 million words.

The deleted interpolation algorithm trains a separate interpolation coefficient
���

for each of the 42 ��# � ’s. Com-
puting the prior probability of the word sequence ! for an utterance � with dialog act � � for the interpolated model:

����!"� � � �,���
&
� � � � ���	��
 �� & � � &�����-�� &�� + ��� � 	  � � ����� ��� �� &2� � &�����-�� &�� + ���
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The first column of Table 31 shows the
�

values for the 42 dialog acts. Recall that the
�

value is the weight
for the DA itself; (1-

�
) is the weight for the other utterances. Thus a very high

�
indicated that the LM for the

DA was significantly different from the rest of the utterances. A very low lambda probably indicates that the DA
looks a lot like the average utterance but just has insufficient data to train on. Thus dialog acts like nn (Answer-
No), b (Backchannel), ny (Answer-Yes), bk (Response-Acknowledgement), bh (Question-Backchannel), and ft
(Thanks) have high lambdas indicating LMs which are quite distinct from the other dialog acts.

We compared these 2 LMs with the BLM by computing the perplexity on the 31,000-utterance held-out set.

Table 27: Using Oracle to select 42 language models: Perplexity on WS97 DevTest.

LM Perplexity

Baseline (all data) 76.8
DA-specific, (interpolated) 66.8

The three perplexity columns of Table 28 shows that training 42 separate trigrams, one on each DA, produced a
slight perplexity reduction over homogeneous training on the entire training set Interpolating each of these DA-specific
word-LMs with the entire training set resulted in a significant decrease in perplexity (to 67). The actual perplexity
decrease was different for different dialog acts; see the perplexity columns of Table 31 shows the individual DA
differences.

5.2 Cheating Experiment 2: Word Error Rate

In our second experiment, we extended these perplexity results to actual word error. We used the same 42 separate
backoff-trigram LMs trained on the 197,000 utterance WS97-TRAIN train + held-out set, each interpolated with the
BLM, and tested on the 4,000 utterance dev set. We then rescored the lattices, which had a baseline word error
of 41.2%. Table 28 shows that the overall reduction in word error was small, 0.9% absolute. The reduction was
statistically highly significant under a matched-pairs Sign test (� � . � ��� 	 ). The word error reduction due to specific
DAs is shown in the “Word Accuracy” columns of Table 31.

Table 28: Using Oracle to select 42 language models: WER on WS97 DevTest.

LM WER (%)

Baseline (all data) 41.2
DA-specific, with interpolation 40.3

Why was the word error reduction so small? Figure 10 shows that while about 50% of the utterances are State-
ments, a full 83% of the words in the DevTest were in Statements.

Our error reduction was mostly in various kinds of questions and backchannels, which among them don’t contain
a very large proportion of the SWBD words. The final column of Table 31 shows the actual number of word errors
that were reduced by using the interpolated utterance-specific LMs.

5.3 Conclusions from Cheating Experiments

The results of the cheating experiments are mixed. On the positive side, switching among the 42 DA-specific LMs
produced a significant perplexity decrease, from 76 to 67. But this perplexity decrease is not matched by an equivalent
decrease in word error; the word error only decrease from 41.2% to 40.3%.

The cheating experiment shows that even perfect knowledge of the dialog acts can only be expected to give about
a 1 percent reduction in word error. This is mainly due to the fact mentioned above that Statement (non-opinion and
opinion combined) account for 83% of the words in our corpus (since e.g. backchannels and answers tend to be short).
Table 29, summarized from our Cheating Experiments described above, however, shows that using utterance-specific

35



53%

30%

OTHER

STATEMENT

OPINION

Yes−No−Question 3%

Backchannel  3%

Abandoned/Turn Exit   3%

Figure 10: Number of words in various DevTest DAs.

Table 29: Cheating error rates on specific dialog acts.

Dialog Act WER Oracle WER Improvement with Oracle(%)

Answer No 29.4 11.8 -17.6
Backchannel 25.9 18.6 -7.3
Backchannel Questions 15.2 9.1 -6.1
Abandoned & Turn-Exit 48.9 45.2 -3.7
Wh-Questions 38.4 34.9 -3.5
Yes-No-Questions 55.5 52.3 -3.2
Statement 42.0 41.5 -0.5

language models can significantly improve WER for some dialog acts, and hence this approach could prove useful for
tasks with a different distribution of dialog acts.

Using the utterance-specific models does have a strong effect on the dialog acts which differ the most from state-
ments (i.e. those whose

�
values are close to 1.0; see the first column of Table 31). Thus word error was significantly

reduced on many kinds of backchannels, yes/no answers, and questions.
These results suggested two directions that we followed in our research. First, that we focus our attention on

detection and LM-improvement of these dialog acts (in particular yes-no questions and backchannels). We predicted
at this point that this would not not result in a significant decrease in SWBD word error (since SWBD has very few
questions, and while it has many backchannels, they tend to be one or two words). And indeed it did not. But focusing
on questions and backchannels should have a number of other benefits. Questions will occur in other corpora and tasks
(like the Map Task, or various SLU database retrieval tasks) in much higher percentage than in SWBD. Being able
to distinguish a question from a non-question (‘Question Detection’) is an important and relevant task independent of
its impact on word-error. And better detection of backchannels may help improve our automatic turn segmentation
algorithms.

Second, since we now know that our model has very little effect on the Statement (sd and sv) dialog acts which
comprise 83% of the words in the devtest set, we clearly need to find ways to divide the statements into subclasses.

�
6.2 summarizes our experiments which check if Statements pattern differently if they are embedded in a series of

statements by the same speaker, versus being surrounded by turn changes. While our results suggest that the statements
in single-statement-turns are much shorter (have fewer words) than the statements in multi-statement turns, we found
no significant improvement in utterance detection accuracy by splitting the statements in this way.
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5.4 Baseline Error Analysis (DA-specific error with Baseline LM)

We trained a standard language model on the entire 197,000 utterance training set, ran recognition with this LM on
the 4,000 utterance WS97-dev-test set, and computed the error rate for each discourse tag. The following chart shows
the word accuracy for each discourse tag that occurs with frequency 7 or more in the dev-test.

Table 30: Word accuracy on background (non-DA-specific) recognizer reported by dialog act.

Tag Count Word Accuracy (%)

br 8 32.0
qh 7 40.6
bf 8 42.6
qy 61 42.6
ba 40 44.1
ˆ2 9 46.4
bˆm 13 46.7
qyˆd 24 47.1
o 12 48.4
ad 19 52.4
sd 871 57.0
fc 9 57.1
sv 425 59.1
qw 36 59.4
qo 14 62.5
nn 12 64.7
bk 17 66.7
na 7 66.7
bh 16 68.6
ny 57 70.4
b 420 73.4
h 15 75.4
aa 106 76.6

The average error for the discourse tags in Table 30 is 55%. Many kinds of questions were significantly worse.
For example yes-no questions, declarative yes-no-questions, and rhetorical questions were all between 42% and 47%
word error. This suggested that questions would be worth focusing on.

5.5 Non-Cheating SWBD Recognition Experiments

Although the word error reduction in the cheating experiment was very small, we wanted to verify how much of that
reduction could be realized in a fair recognition experiment, i.e., using automatic DA detection.

The experiment consisted of two phases. In the first phase, posterior DA probabilities ����� & � # � were computed,
using the N-best based DA detector (Section 4.5). These probabilities were then used in a sentence-level mixture (Iyer
et al. 1994) of the 42 DA-specific (smoothed) language models, such that the mixture weight for each LM corresponded
to the posterior probability of the corresponding DA. The 2500-best lists were thus rescored with a combined language
model of the following form:9

����! &��4�
�
��� �����4& � # ����������! & � � &��

Note that while the N-best-based DA detector had an accuracy of 64.6%, the mixture model should be relatively
robust to detection errors as long as the correct DA is among those with highest posterior probability.

9Rescoring was done on N-best lists, not lattices, since the computation of the mixture LMs requires keeping full word histories.
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Table 31: Summary table: Error analysis by dialog act.

Tag Lambda Perplexity Word Accuracy #errors
baseline cheating cheating baseline cheating cheating corrected

win win in cheating

b 0.981 4.9 2.8 -42.9 25.9 18.6 -7.3 34
bk 0.978 9.7 5.1 -47.5 33.3 25.0 -8.3 2
nn 0.970 11.8 1.5 -87.1 29.4 11.8 -17.6 3
ny 0.946 4.5 2.1 -54.7 26.5 25.0 -1.5 1
bh 0.934 11.5 2.7 -76.5 15.2 9.1 -6.1 2
fe.ba 0.869 31.3 11.5 -63.2 45.5 43.8 -1.7 1
aa 0.826 13.7 8.6 -36.9 21.6 23.0 1.4 -4
% 0.816 27.3 17.4 -36.4 48.9 45.2 -3.7 17
ft 0.751 15.2 1.7 -88.5 0.0 0.0 0 0
h 0.747 11.6 7.4 -36.5 16.1 12.9 -3.2 2
fp 0.729 91.4 28.0 -69.3 90.0 70.0 -20.0 1
qo 0.665 23.2 11.1 -52.0 35.9 32.8 -3.1 3
fc 0.662 107.2 64.1 -40.2 38.1 38.1 0 0
qw 0.651 65.5 43.3 -33.8 38.4 34.9 -3.5 9
sd 0.635 103.1 98.8 -4.2 42.0 41.5 -0.5 48
ˆh 0.598 28.5 25.9 -9.1 53.2 48.9 -4.3 3
fx.sv 0.557 95.7 88.6 -7.5 40.8 40.4 -0.4 11
br 0.524 44.4 21.0 -52.5 60.0 48.0 -12.0 3
fa 0.510 95.3 11.0 -88.4 80.0 80.0 0 0
qr.qy 0.470 80.3 60.0 -25.3 55.5 52.3 -3.2 17
ad 0.444 138.5 117.4 -15.2 48.7 50.8 2.1 -2
ar 0.443 103.0 69.0 -33.0 20.0 20.0 0 0
bˆm 0.413 125.5 94.7 -24.5 56.7 50.0 -6.7 3
nnˆe.ng 0.376 83.0 62.6 -24.5 29.2 29.2 0 -1
nyˆe.na 0.316 56.8 52.9 -6.8 30.0 30.0 0 0
ˆ2 0.301 305.6 292.3 -4.3 67.9 53.6 -14.3 4
qh 0.296 59.2 46.8 -20.9 54.7 56.3 1.6 0
qyˆd 0.285 118.6 104.9 -11.5 45.3 43.1 -2.2 5
no 0.256 55.6 50.4 -9.4 20.0 20.0 0 0
ˆq 0.245 88.4 82.8 -6.3 41.5 36.6 -4.9 2
bf 0.226 145.1 127.7 -12.0 57.4 63.8 6.4 -3
aap.am 0.226 71.0 44.2 -37.8 36.4 36.4 0 1
arp.nd 0.178 373.2 261.7 -29.9 63.6 81.8 18.2 -2
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Table 32 shows both word error and perplexities obtained for the DA-conditioned mixture LM. Also shown are
the results for the baseline LM, the cheating LM conditioned on the true DA labels, and rescoring with just the LM
corresponding to the most likely DA (1-best LM).

Table 32: Non-significant reduction in SWBD word error.

Model WER (%) Perplexity

Baseline 41.2 76.8
1-best LM 41.0 69.3
Mixture LM 40.9 66.9
Cheating LM 40.3 66.8

In this fair comparison, WER is reduced by only 0.3% over the baseline, a non-significant change (
� . � � � �

� . � ).
What is encouraging is that the perplexity of the DA-conditioned mixture model is virtually the same as that of the
cheating LM. The results for the 1-best approximation to the mixture LM are slightly worse.

Overall, while the WER improvement is not statistically significant, we find these results promising in that they
indicate that we can approach the ideal (cheating) performance of a DA-conditioned LM using automatic DA detection
techniques. Naturally, improving these techniques is expected to improve recognition results as well.

6 Other Experiments: What to do with Statements?

The cardinality and constitution of our 42 tag clusters were determined by our own intuition. In order to see if we
could produce a better set of clusters with automatic or semi-automatic means, we ran a number of different clustering
experiments. Since statements constituted the bulk of our data, we were particularly concerned with ways to revise the
statements. The first experiment tested whether the sd/sv (Statement/Opinion) distinction was a helpful one. We then
studied whether we should split the Statement category depending on its dialog act context (i.e. between backchannels,
between other statements, etc). Finally, we tried splitting individual statement utterances into two ‘utterance pieces’
at the verb (creating a “utterance before the verb” and “utterance after the verb” piece), training separate language
models on each piece.

6.1 Experiment: Are sv and sd different?

One important question we asked early on was how difficult would it be to discriminate between the statement (sd)
and opinion-statement (sv) classes, since together they comprised 49% of the DA tokens, and were hard for humans to
discriminate. A good measure of the difference between the two types is their cross-entropies. Two language models
were trained, one only on utterances that were Statements (sd) and the other on utterances that were only Statement-
Opinion (fx.sv). Each model was presented with a data-set of only Statements, and a set of only Opinions. In Table 34
we see that there is a significant increase in entropy when a model is tested on data it wasn’t trained on, suggesting
that there is indeed a difference in these utterances.

We did find that despite the differences in the Statement and Opinion data, there were enough similarities that it
helped reduce perplexity to combine the training data of the two types. We assume this is because the extra data helped
alleviate the data sparseness problem. Table 33 shows how perplexity was reduced by several attempts to find the ideal
combination of training data to minimize test-set perplexity on Statements. The ideal result is an interpolation between
the Statement data (0.6) and all other data (0.4), giving weight to the saying, “There’s no data like more data.”

6.2 Extensions: Above and Below the Statement

In the work described so far, the unit over which the algorithms operated is the sentence, or ”linguistic segment” as
defined by the annotation of the SWBD corpus done by the LDC in 1996 (Meteer, et al 1995), and ”utterances” in the
terminology of this document. However, especially in the case of statements which are frequent of often quite long, it
is worth looking at the structure of the larger units, such as turns and conversations, and at smaller units, such as the
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Table 33: How well do sv and sd LM’s model sv test data.

Language Model Training Test Set Perplexity

sv’s sv’s 101
sv’s sd’s 163
sd’s sd’s 102
sd’s sv’s 114

Table 34: What’s the ideal set of training data for an sd model?

Language Model Training Test Set Perplexity

sv’s sv’s 101
all training-set sv’s 97
sv’s and sd’s sv’s 94
.6 * training-set sv’s + .4 * ALL sv’s 89

beginning and end of the sentence. In the following sections we describe the work done at these two different levels
of granularity.

6.2.1 Conversational Analysis

The labeling of such of large corpus of spontaneous conversational speech provides an opportunity to look at the
structure of whole conversations and their subparts, for example, to begin work on characterizing what differentiates
a narrative from an argument. The first step towards understanding these genres is to look at individual statements in
their context. We began this effort by attempting to understand the relationship between the function of a statement,
its place in the conversation and/or turn, and other features such as the length of the statement. Table xx shows the
average length of statements based on what precedes or follows that statements.

The shortest statements are those that are between the other speaker’s statements. These are essentially functioning
as backchannels, where a speaker adds a short comment. The next group are answers to questions, which are on average
8 word statements. Note that since ”yes” and ”no” are labeled explicitly, these are only full statements that function
as answers to questions. The next group, which are around 10 words on average, are in the middle of a turn and
are followed by another statement or a backchannel by the other speaker. The longest statements are those between
backchannels by the other speaker or before or after self statements of viewpoint.

Table 35: Length of statements when surrounded by different types of utterances.

Before After Length

Other statement (s) Other statement 4.33
Other question (s) Anything 8.06
Other backchannel (s) Self statement 10.42
Other statement (s) Other backchannel 10.50
Other backchannel (s) Self unfinished 10.57
Other backchannel (s) Other backchannel 12.94
Self unfinished (s) Other backchannel 13.07
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6.2.2 Internal structure of statements

Statements, questions, and other utterance types that are full sentences (the is, have a subject and verb) are not uniform
from beginning to end in the kinds of words and syntactic structures used. In discourse analysis, a common way to
divide sentences is into two parts, ”given” and ”new” or ”theme” and ”rheme. Meteer and Iyer (1995) showed that
dividing the sentence into two parts, before and after the main verb, and analyzing these two corpora separately showed
a significant difference in the vocabulary used and the types and frequencies of disfluencies, and even the perplexity
in a language model for speech recognition. The ”pivot point” dividing the sentence is the first strong verb (excluding
verbs such as ”do”, ”be”, ”have” and ”seem”) or the last weak verb if there is not strong verb, as shown in the examples
below:

- i’ve [PVT] voted in every major election
since i turned twenty-one

- oh that’s [PVT] great

Using this division, one could consider a more complex ”conversational” language model that is a finite state
grammar reflecting larger discourse structure in the conversation and this internal structure of sentences, as shown in
Figure Figure 11.

Turn
Beginning

After
Pivot

Turn 
End

backchannel

yes/no

Before
Pivot

no pivot

Figure 11: Given-new structure of utterances.

By using a part of speech marked corpus and a list of stop words for ”weak” verbs, we were able to mark most of
the switchboard training corpus with pivot points. Note that all backchannels and other utterance types without verbs
and sentences that were aborted before the verb cannot be marked and are considered separately.

There are many implications for this model on processing language, for example that the information extracted
from early parts of the sentence are more likely to carry redundant information already communicated in the conver-
sation, whereas later parts of the statement may constrain more new information.

The focus of our work with this data at the Summer Workshop was looking at how creating separate language
models for before and after the pivot of a sentence effected the word error rate for speech recognition. We began by
marking the pivot in the training corpus by applying an algorithm that used the part of speech marked data to find the
verbs and a list of weak verbs to determine which is the first strong verb. This is the same algorithm that is reported
in Meteer and Iyer (1995). The next step was to run a cheating experiment which used a test corpus where the pivot
point was known. As shown in Table 36, word error rate improved slightly over the baseline. (Note that the baseline
is slightly worse in performance here than previously reported since not all of the data had both part of speech and
discourse labels marked, so the training set was smaller.)

In the next three results shown in the table, the pivot point is determined automatically in the test set. In the first,
we used the training marked by the algorithm directly. In the second, we used that training to create a pivot model
which could determine the pivot automatically and then remarked the training with that model, and in the third, we
used the automatically marked data and interpolated that with the full SWBD language model. This last was the best
performing, showing a full point improvement over the baseline.

One interesting result of these experiments is that the models do not improve evenly across discourse types. As
we might expect, these models improve on statements and hurt performance on backchannels. However, somewhat
more surprising is that they also hurt performance on opinions. Further analysis is needed to determine how these two
discourse types differ in their given and new structure such that they perform differently on the pivot language model.

41



Table 36: Pivot models improve WER on some DA’s.

Improvement in WACC from Baseline
Train WER PPL Statement Opinion BackChannel Abandonment

Baseline 41.2 74.81
Cheating 40.8 70.78 +0.71 +0.44 +7.72 +8.34
Pivot Algorithm 42.0 85 -0.22 -2.60 -1.11 -10.08
Pivot Automatic 41.7 80 +0.17 -1.16 -0.83 -7.89
Pivot Auto Interp 41.0 76 +1.00 -0.39 0.00 -5.25

7 Looking at the Data – Looking for LVCSR Error Sources

In speech recognition research there are two traditions for identifying error sources. One approach we call the engi-
neering or statistical approach focuses the attention on a single metric, optimally on a single number such as word
accuracy or perplexity, that can be calculated automatically. On the other end of the spectrum the comparison of ma-
chine with human transcripts is used to determine properties of errors the LVCSR system is producing. We call this
the “language experts approach”.

Both approaches have disadvantages. The engineering or statistical approach is hard to interpret and laborious to
implement. Additionally it can often only verify a hypothesis and rarely generates new hypotheses. The language
experts approach takes a long time to carry out and reading the transcripts and assigning error sources can be tedious
and confusing.

small amount of data

"engineers"

automatic

"language experts"

large amount of data
 (e.g. transcript reading)  (e.g. word accuracy number)

manual

(e.g. selected data reading.
moderate amount of data

        vizualization )

"linguistic engineering"

semi-automatic

Figure 12: Viewing error analysis as a continuum: In addition to matrices like word accuracy and to unsupported
transcript reading an intermediate view on the data is important.

We needed tools that would allow us to view speech transcription system output from a third perspective, one that
could be situated in the middle of the continuum. We call this the “linguistically engineered” viewpoint. Since we
were interested in determining the effectiveness of discourse models of dialog in improving automatic transcription
accuracy, we needed discourse (linguistic) views of the human and system transcripts. The main characteristic of this
approach is that it uses automatic means to provide an effective visualization of the data for the human. We found all
three views of the human and system transcription necessary in order to analyze system error and to build language
models that would improve system accuracy.

We found the linguistically engineered tools useful for many reasons. We particularly liked the fact that we could
easily discover trends in the data that we had not previously been aware of. It was the partitioning of the Yes-No
Question dialog acts into their own subcorpus that revealed that the word “do” is consistently placed at the beginning
of the Question and is also frequently mis-recognized (Figure 13). We would never have observed this clear trend in
the data if we had looked at all the possible dialog acts at once.

Below we present a number of example analyses. Our error analysis tool combines automatic with manual meth-
ods: It uses alignments, dialog act information and the utterance order in the dialog to display the data selectively,
group it and infer additional metrics. The analysis of content dependent statements also shows how an analysis can be
made both with manual and automatic means. The salience analysis and error matrix exemplifies how a good repre-
sentation of the most important facts can help to understand the data. The mimic and repetition analyses also shows
that a good representation is important to understand the importance of a new concept.
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REF: DO YOU HAVE SMOG LIKE THEY DO in california
HYP: ** *** YOU’RE NOT SMOKE I COULD in california
REF: do you have SMOG LIKE THEY DO in california
HYP: do you have **** **** SMOKE ACTIVE in california

REF: -DO YOU REALLY think CARS CONTRIBUTE A LOT NOW THAT
HYR: *** AND THEY think **** ARE GOOD TO KNOW ABOUT
REF: -do you REALLY think CARS CONTRIBUTE A LOT NOW THAT
HYP: do you ****** think **** OUR KIDS YOU KNOW ABOUT

REF: DO YOU
HYP: ** OKAY
REF: do you
HYP: do you

Figure 13: Looking at selected data: When we decided to look for the improvements the dialog act specific language
model could achieve and selected Questions. The question initial word do was very prominent. The figure shows
four utterances; the top reference/hypothesis pair uses the baseline language model, while the bottom pair uses a
Question-specific language model.

7.1 Error Analysis Tool

One of the traditional tools for error analysis is the alignment of the LVCSR system output with the reference produced
by human transcribers (Figure 13). The dialog act categories allowed us to segment the data into smaller pieces and
make subanalyses of these individual portions. Additionally, we wanted to compare different outputs of the LVCSR
system using the different language models.

The error analysis tool allowed us to specify complex groupings of utterances (e.g., specific dialog act types) and
to calculate additional measurements from the alignments. To display the results, the tool offered the option to display
only a summary for each defined grouping or alternatively, also a user-defined output for each utterance within that
group. As mentioned earlier, the tool is able to handle multiple alignments. Therefore it takes just one command to
produce a comparative output of all questions aligned with the standard language model and the cheating language
model. With the same tool and in one command, we produced a rundown of the word accuracies of statements of
different lengths.

The tool also calculated a lot of information available from the alignment output. For example, the utterance initial
analysis that became interesting after we have found the frequent errors on initial do’s in Questions (Table 37) needed
a separate word error calculation for the initial portion of the utterance.

Table 37: Turn initial improvements from dialog act knowledge: We compare the error rate over the whole turn (all)
with the error rate in the first three words (initial) in the baseline system and contrast that with the relative improvement
we gain from using dialog act specific language models (cheating). The overall trend is, that the dialog act specific
model corrects errors at the beginning of the utterance.

Word Accuracy Improvement
Dialog Baseline Cheating

Act all initial all initial

Statement 58.1 58.9 0.71 1.20
Backchannel 78.2 78.2 7.72 7.53
Opinion 59.6 57.0 0.47 1.07
Abandoned 52.3 50.8 7.79 11.64
Agree/Accept 81.1 83.6 -1.22 0.69
SWBD 58.6 57.4 -1.49 3.52
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7.2 Context Dependent Statements

After the initial error analysis we found that we achieved a reduced word error rate in the cheating experiments on
a number of dialog acts. However, about 83% of the words occur in statements (sd and sv) and this class showed
little to no improvement using dialog act-specific language models. This resulted in a fairly small overall word error
reduction. We therefore concluded that statements needed further subcategorization so that we could make predictions
about their content from context and prosody. We explicitly did not distinguish between Statements and Answers,
since Answers are Statements following Questions. We tried to look for subcategorizations of Statements that had a
reasonably different surface form.

One way of partitioning Statements (sd and sv) is to make them context-dependent on the last and following dialog
act. The dialog acts were grouped into 6 categories: sd, sv, backchannel, question, unfinished and other. We also noted
whether the dialog act occurred on the same or on the other channel. This split resulted in ��� ����� � � 	 ��� different
classes of statements. Manual inspection of these classes seemed to show that they are fairly different, especially in
their average length. We were able to distinguish the following groups and gave them intuitive names according to
their properties as seen in Table 38.
Using this and other groupings we tried to build language models for these Statement subtypes and compare them to

Table 38: Utterance length by group.

Answers Short
Following another person’s Question Following Another person’s Statement

Marked sdˆe (extended answers) Following own backchannel

Long Medium
Preceding another person’s Backchannel Following own sd

Preceding or following own sv Other

the standard Statement model. Even though we used linear interpolation to counteract data fragmentation, we achieved
no significant reduction in perplexity. We concluded that this initial attempt was too simplistic and more sophisticated
models and clustering techniques are necessary. Nevertheless, we gained insight into the relation between Statement
context and Statement length. We hope to use the outcome of this investigation in future experiments.

7.3 Salience Analysis and Error Matrix

Our integrated model had two goals:1) to detect speech acts and 2) to constrain the language model to the dialog
act-specific model. We asked the following questions:

� does the LVCSR system detect the words that discriminate between dialog acts?

� which dialog acts are discriminated?

� which words frequently discriminate and do they correlate with the dialog act type?

� are there dialog act-specific frequent words that are often wrongly recognized?

If we were working with higher order N-gram models, a manual analysis of the dialog act detection model would be
infeasible. We therefore used mainly unigrams enriched with approximately 190 multiwords like YOU KNOW that
have been used in LVCSR systems in the recent past. We used the frequency of words per dialog act, their salience 10

per dialog act and their word error rate as measures and blended this into one visualization (see Table 39).

10The definition of salience according to Gorin (1995) is

salience �������
�
	


 ��� 	� ��������������� 	 ���
�
	


 ��� 	�� �����������! ���"���
	 �

 �����#�  ���
	 �

where � 	 is the category (e.g. the speech act type) and � is the word. To calculate the salience for a single speech act S we calculated the salience
for the two categories S and OTHER.
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We found this useful especially since we saw that most of the highly salient words were fairly well represented
in the domain. We could therefore hope to see enough examples of words triggering decisions for one dialog act vs.
another and that the effects of constraining a dialog act could be strong. Additionally, we observed that some of the
highly salient and frequent words are short and have a high word error rate associated with them. These recognition
errors could either throw off the dialog act detector or they could be improved by the dialog act-dependent language
models.

Table 39: Error Matrix: The error matrix shows that the salient words are often frequent and vice versa. Some of the
salient words are really short and are often misrecognized. The representation combines many different analyses into
one scheme – it is a compact representation of our experiments.

Word ranked by frequency Words ranked
Word Frequency Salience Rank in Word Error by salience

Salience
Statement-Non-opinion

and 18116 0.31816 2 64% THE
the 17570 0.34334 1 27% AND
I 14600 0.22314 8 50% UH

uh 14250 0.30139 3 0% YEAH
that 13538 0.29036 5 65% THAT

Acknowledge (Backchannel)
uh huh 14446 2.17960 1 66% UH HUH
yeah 13776 2.12916 2 33% YEAH
right 3583 0.73160 3 85% RIGHT
oh 2543 0.60609 4 12% OH

okay 770 0.34320 8 65% UH
Statement-Opinion; Explicit Performative

the 8088 0.37340 1 65% THE
that 7232 0.32480 3 56% AND
and 5870 0.32701 2 35% THAT
to 5399 0.26613 5 93% UH
uh 5234 0.30052 4 53% TO

Abandoned/Turn-Exit; Uninterpretable
uh 2202 0.78549 1 32% UH
so 2120 0.71340 2 52% SO
but 1635 0.62159 4 50% AND
and 1490 0.67716 3 27% BUT

I 1120 0.57710 5 0% I
Agree/Accept

yeah 3757 1.60606 1 55% YEAH
right 1878 1.01612 2 67% RIGHT
that’s 1333 0.87490 3 23% THAT’S
yes 752 0.68088 4 0% YES
true 641 0.64361 8 0% OH

Word ranked by frequency Words ranked
Word Frequency Salience Rank in Word Error by salience

Salience
Appreciation; Exclamation

oh 1557 1.27145 1 9% OH
that’s 1510 1.25348 2 88% THAT’S
good 620 0.88074 3 0% GOOD
well 487 0.85942 5 0% THAT
wow 386 0.77154 7 0% WELL

Yes-No-Question and Alternative ’or’ Question
you 1005 0.50757 4 41% THE

do you 948 0.45656 9 0% UH
the 788 0.56225 1 50% THAT
that 701 0.52502 3 33% YOU
uh 695 0.52868 2 56% IT

Non Speech
uh huh 15 5.50831 1 0% UH HUH
yeah 13 5.46058 2 33% YEAH
right 4 5.14351 4 — UH
uh 3 5.14905 3 — RIGHT

well 3 5.11823 5 — WELL
Yes Answers

yeah 1865 3.71046 1 56% YEAH
yes 624 2.13051 2 0% YES

uh huh 409 1.93224 3 67% UH HUH
oh 179 1.62500 4 9% OH
uh 106 1.59558 5 0% UH

Conventional-Closing
bye 932 1.33504 1 — BYE
you 359 1.06271 3 0% WELL
well 358 1.06483 2 — YOU

talking 325 1.00178 4 0% TALKING
to you 305 0.98986 5 — TO YOU

7.4 Mimic and Repetition Analysis

Besides constraining an utterance to a dialog act-specific language model, we looked into one more option that would
facilitate the integration of discourse knowledge into an LVCSR system. The knowledge sources we use should be
easily and reliably obtained from recognizer output. Our intuition was that within short dialog segments, lexical
choices are repeated. We assume that a name introduced by one person is often repeated by the other person and that
there are specific Question/Answer patterns where words are repeated. The purpose of repeating in spontaneous dialog
could be to ensure that the dialog partners are referring to the same entity.

Both mimics and repetitions were labeled by the dialog act labelers. They distinguished between repeating words
from the other speaker (mimic) and the same speaker (self-repeat). These occurrences could easily be extracted using
our error analysis tool.
This analysis showed two things: Mimics are relatively rare and they are probably not worth focusing on. In self-
repeats, however, that either both are correct or both are incorrect by far outweighs the cases where one is correct and
the other is incorrect. This indicates that we cannot make good use of this constraint in the language model to improve
word accuracy. We can only correct an error, if we have one correct case and can use that to correct an incorrect one.
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Table 40: Recognition performance for Self Repeats and Mimics.

Second Mention
First Mimics Self-Repeat

Mention correct incorrect correct incorrect

correct 3 1 43 8
incorrect 3 9 5 14

7.5 Implications of Discourse Model for Pronunciation Modeling: Locations of Errors

Is a given word � pronounced differently depending on where it occurs in an utterance? We suspected that the answer
was yes, that words which were utterance-initial tend to have reduced pronunciations, based on our observations of a
high number of initial-word deletions in the recognizer outputs (i.e. of initial words which were completely missed by
the recognizer).

Upon investigation of the error alignments from the WS97-baseline recognizer run on the WS97-DevTest (Percents
are percents of the REF words) we found that:

1. The first word in a WS97devtest utterance (linguistic segment) has almost twice the deletion rate of the average
non-initial word (15% versus 8%).

2. But the overall error rate for the first word (36%) is actually less than the average other word (40%), because
the substitution rate is much lower (16% versus 28%).

Table 41: WS97-DevTest error rates in Utterance-Initial versus Non-initial words with baseline LM.

WER (%)
Type Initial Non-Initial

Correct 64 60
Substitutions 16 28
Deletions 15 8
Insertions 4 3

We hypothesize that the high initial deletion rate is caused by reduced utterance-initial pronunciation, but this
requires further investigation. We suspect the reduced overall error rate for the initial word has to do with the stronger
LM predictability of the initial word; the utterance-initial word always has the correct context ( � s � ) for its bigram
prediction.

8 CONCLUSIONS

We have described a new approach for statistical modeling and detection of discourse structure for natural conversa-
tional speech. Our algorithm has possibilities for reducing word error in speech recognition. Although the skewed
dialog act distribution limited our maximum word error improvement for SWBD, improvements for WER of individual
dialog acts suggests that the algorithm has potential to improve recognition on other tasks (like conversational agents)
where questions and other non-statements are more common. Furthermore, by combining our 3 knowledge sources,
we achieved significant improvements in our ability to automatically detect dialog acts, which will help address tasks
like understanding spontaneous dialog and building human-computer dialog systems.
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