Cardinality
and
The Nature of Infinity
Recap from Last Time
Functions

- A function f is a mapping such that every value in A is associated with a single value in B.
 - For every $a \in A$, there exists some $b \in B$ with $f(a) = b$.
 - If $f(a) = b_0$ and $f(a) = b_1$, then $b_0 = b_1$.
- If f is a function from A to B, we call A the **domain** of f and B the **codomain** of f.
- We denote that f is a function from A to B by writing $f : A \rightarrow B$.
Injective Functions

- A function $f : A \rightarrow B$ is called **injective** (or **one-to-one**) iff each element of the codomain has at most one element of the domain associated with it.

- A function with this property is called an **injection**.

- Formally:

 \[
 \text{If } f(x_0) = f(x_1), \text{ then } x_0 = x_1
 \]

- An intuition: injective functions label the objects from A using names from B.
Surjective Functions

- A function $f: A \rightarrow B$ is called **surjective** (or **onto**) iff each element of the codomain has at least one element of the domain associated with it.
 - A function with this property is called a **surjection**.
 - Formally:

 For any $b \in B$, there exists at least one $a \in A$ such that $f(a) = b$.

- An intuition: surjective functions cover every element of B with at least one element of A.
Bijectons

• A function that associates each element of the codomain with a unique element of the domain is called **bijective**.
 • Such a function is a **bijection**.
• Formally, a bijection is a function that is both **injective** and **surjective**.
• A bijection is a one-to-one correspondence between two sets.
Comparing Cardinalities

• The relationships between set cardinalities are defined in terms of functions between those sets.

• \(|S| = |T|\) is defined using bijections.

\[|S| = |T| \text{ iff there is a bijection } f : S \rightarrow T \]
Infinite Cardinalities

\[\mathbb{N} \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad \ldots \]

\[\mathbb{Z} \quad 0 \quad -1 \quad 1 \quad -2 \quad 2 \quad -3 \quad 3 \quad -4 \quad 4 \quad \ldots \]
Infinite Cardinalities

<table>
<thead>
<tr>
<th>(\mathbb{N})</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{Z})</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>-2</td>
<td>2</td>
<td>-3</td>
<td>3</td>
<td>-4</td>
<td>4</td>
<td>...</td>
</tr>
</tbody>
</table>

\[
 f(x) = \begin{cases}
 2x & \text{if } x \geq 0
\end{cases}
\]
Infinite Cardinalities

\[f(x) = \begin{cases}
2x & \text{if } x \geq 0 \\
-2x - 1 & \text{otherwise}
\end{cases} \]
Theorem: $|\mathbb{Z}| = |\mathbb{N}|$.

Proof: We exhibit a bijection from \mathbb{Z} to \mathbb{N}. Let $f: \mathbb{Z} \to \mathbb{N}$ be defined as follows:

$$f(x) = \begin{cases}
2x & \text{if } x \geq 0 \\
-2x - 1 & \text{otherwise}
\end{cases}$$

First, we prove this is a legal function from \mathbb{Z} to \mathbb{N}. Consider any $x \in \mathbb{Z}$. Note that if $x \geq 0$, then $f(x) = 2x$. Since in this case x is nonnegative, $2x$ is a natural number. Thus $f(x) \in \mathbb{N}$. Otherwise, $x < 0$, so $f(x) = -2x - 1 = 2(-x) - 1$. Since $x < 0$, we have $-x > 0$, so $-x \geq 1$. Then $f(x) = 2(-x) - 1 \geq 2 - 1 = 1$. Thus $f(x)$ is a positive integer, so $f(x) \in \mathbb{N}$. In either case $f(x) \in \mathbb{N}$, so $f: \mathbb{Z} \to \mathbb{N}$.

Next, we prove f is injective. Suppose that $f(x) = f(y)$. We will prove that $x = y$. Note that, by construction, $f(z)$ is even iff z is nonnegative. Since $f(x) = f(y)$, we know x and y must have the same sign. We consider two cases:

Case 1: x and y are nonnegative. Then $f(x) = 2x$ and $f(y) = 2y$. Since $f(x) = f(y)$, we have $2x = 2y$. Thus $x = y$.

Case 2: x and y are negative. Then $f(x) = -2x - 1$ and $f(y) = -2y - 1$. Since $f(x) = f(y)$, we have $-2x - 1 = -2y - 1$, so $x = y$.

Finally, we prove f is surjective. Consider any $n \in \mathbb{N}$. We will prove that there is some $x \in \mathbb{Z}$ such that $f(x) = n$. We consider two cases:

Case 1: n is even. Then $n / 2$ is a nonnegative integer. Moreover, $f(n / 2) = 2(n / 2) = n$.

Case 2: n is odd. Then $-(n + 1) / 2$ is a negative integer. Moreover, $f(-(n + 1) / 2) = -2(-(n + 1) / 2) - 1 = n + 1 - 1 = n$.

Since f is injective and surjective, it is a bijection. Thus $|\mathbb{Z}| = |\mathbb{N}|$. ■
Why This Matters

- Note the thought process from this proof:
 - Start by drawing a picture to get an intuition.
 - Convert the picture into a mathematical object (here, a function).
 - Prove the object has the desired properties.

- This technique is at the heart of mathematics.

- We will use it extensively throughout the rest of this lecture.
Cantor's Theorem Revisited
Comparing Cardinalities

- We define $|S| \leq |T|$ as follows:

 $|S| \leq |T|$ iff there is an injection $f : S \rightarrow T$

![Diagram showing the concept of comparing cardinalities through injection](image.png)
Comparing Cardinalities

- Formally, we define $<$ on cardinalities as

 $|S| < |T|$ iff $|S| \leq |T|$ and $|S| \neq |T|$

- In other words:
 - There is an injection from S to T.
 - There is no bijection between S and T.
Cantor's Theorem

- **Cantor's Theorem** states that

 For every set S, $|S| < |\mathcal{P}(S)|$

- This is how we concluded that there are more problems to solve than programs to solve them.

- We informally sketched a proof of this in the first lecture.

- Let's now formally prove Cantor's Theorem.
Lemma: For any set S, $|S| \leq |\mathcal{P}(S)|$.

Proof: Consider any set S. We show that there is an injection $f : S \to \mathcal{P}(S)$. Define $f(x) = \{x\}$.

To see that $f(x)$ is a legal function from S to $\mathcal{P}(S)$, consider any $x \in S$. Then $\{x\} \subseteq S$, so $\{x\} \in \mathcal{P}(S)$. This means that $f(x) \in \mathcal{P}(S)$, so f is a valid function from S to $\mathcal{P}(S)$.

To see that f is injective, consider any x_0 and x_1 such that $f(x_0) = f(x_1)$. We prove that $x_0 = x_1$. To see this, note that if $f(x_0) = f(x_1)$, then $\{x_0\} = \{x_1\}$. Since two sets are equal iff their elements are equal, this means that $x_0 = x_1$ as required. Thus f is an injection from S to $\mathcal{P}(S)$, so $|S| \leq |\mathcal{P}(S)|$. ■
The Key Step

- We now need to show that

 \[\text{For any set } S, \; |S| \neq |\wp(S)| \]

- By definition, \(|S| = |\wp(S)| \) iff there exists a bijection \(f : S \rightarrow \wp(S) \).

- This means that

 \[|S| \neq |\wp(S)| \text{ iff there is no bijection } f : S \rightarrow \wp(S) \]

- Prove this by contradiction:
 - Assume that there is a bijection \(f : S \rightarrow \wp(S) \).
 - Derive a contradiction by showing that \(f \) is not a bijection.
<table>
<thead>
<tr>
<th></th>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_0</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_1</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_3</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_4</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>x_5</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Flip all Y's to N's and vice-versa to get a new set.
<table>
<thead>
<tr>
<th></th>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_0</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_1</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_2</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_3</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>x_4</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>x_5</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Flip all Y’s to N’s and vice-versa to get a new set.

N Y Y Y Y Y N ...
Which row in the table is paired with this set?
Formalizing the Diagonal Argument

- Proof by contradiction; assume there is a bijection \(f : S \rightarrow \mathcal{P}(S) \).
- The diagonal argument shows that \(f \) cannot be a bijection:
 - Construct the table given the bijection \(f \).
 - Construct the complemented diagonal.
 - Show that the complemented diagonal cannot appear anywhere in the table.
 - Conclude, therefore, that \(f \) is not a bijection.
<table>
<thead>
<tr>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

$f(x_0) = \{ x_0, x_2, x_4, \ldots \}$

$f(x_1) = \{ x_0, x_3, x_4, \ldots \}$

$f(x_2) = \{ x_4, \ldots \}$

$f(x_3) = \{ x_1, x_3, x_4, \ldots \}$

$f(x_4) = \{ x_1, x_5, \ldots \}$

$f(x_5) = \{ x_1, x_4, x_5, \ldots \}$
<table>
<thead>
<tr>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>...</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

\[
f(x_0) = \{ x_0, x_2, x_4, \ldots \}
\]
\[
f(x_1) = \{ x_0, x_3, x_4, \ldots \}
\]
\[
f(x_2) = \{ x_4, \ldots \}
\]
\[
f(x_3) = \{ x_1, x_3, x_4, \ldots \}
\]
\[
f(x_4) = \{ x_1, x_5, \ldots \}
\]
\[
f(x_5) = \{ x_1, x_4, x_5, \ldots \}
\]
The **diagonal set** D is the set

$$D = \{ x \in S \mid x \notin f(x) \}$$

There is no longer a dependence on the existence of the two-dimensional table.
Lemma: For any set S, $|S| \neq |\wp(S)|$.

Proof: By contradiction; assume that there exists a set S such that $|S| = |\wp(S)|$. This means that there exists a bijection $f : S \rightarrow \wp(S)$. Consider the set $D = \{ x \in S \mid x \notin f(x) \}$. Note that $D \subseteq S$, since by construction every $x \in D$ satisfies $x \in S$.

Since f is a bijection, it is surjective, so there must be some $y \in S$ such that $f(y) = D$. Now, either $y \in f(y)$, or $y \notin f(y)$. We consider these cases separately:

Case 1: $y \in f(y)$. By our definition of D, this means that $y \notin D$. However, since $y \in f(y)$ and $f(y) = D$, we have $y \in D$. We have reached a contradiction.

Case 2: $y \notin f(y)$. By our definition of D, this means that $y \in D$. However, since $y \notin f(y)$ and $f(y) = D$, we have $y \notin D$. We have reached a contradiction.

In either case we reach a contradiction, so our assumption must have been wrong. Thus for every set S, we have that $|S| \neq |\wp(S)|$. ■
Theorem (Cantor's Theorem): For any set S, we have $|S| < |\mathcal{P}(S)|$.

Proof: Consider any set S. By our first lemma, we have that $|S| \leq |\mathcal{P}(S)|$. By our second lemma, we have that $|S| \neq |\mathcal{P}(S)|$. Thus $|S| < |\mathcal{P}(S)|$. ■
Why All This Matters

• The intuition behind a result is often more important than the result itself.

• Given the intuition, you can usually reconstruct the proof.

• Given just the proof, it is almost impossible to reconstruct the intuition.

• Think about compilation – you can more easily go from a high-level language to machine code than the other way around.
Cantor's *Other* Diagonal Argument
What is $|\mathbb{R}|$?
Theorem: \(|\mathbb{N}| < |\mathbb{R}|.\)
Sketch of the Proof

• To prove that $|\mathbb{N}| < |\mathbb{R}|$, we will use a modification of the proof of Cantor's theorem.

• First, we will directly prove that $|\mathbb{N}| \leq |\mathbb{R}|$.

• Second, we will use a proof by diagonalization to show that $|\mathbb{N}| \neq |\mathbb{R}|$.
Theorem: \(|\mathbb{N}| \leq |\mathbb{R}|\).

Proof: We will exhibit an injection \(f: \mathbb{N} \to \mathbb{R}\). Thus by definition, \(|\mathbb{N}| \leq |\mathbb{R}|\).

Consider the function \(f(n) = n\). Since all natural numbers are real numbers, this is a valid function from \(\mathbb{N}\) to \(\mathbb{R}\). Moreover, it is injective. To see this, consider any \(n_0, n_1 \in \mathbb{N}\) such that \(f(n_0) = f(n_1)\). We will prove that \(n_0 = n_1\). To see this, note that \(n_0 = f(n_0) = f(n_1) = n_1\). Thus \(n_0 = n_1\), as required, so \(f\) is injective. ■
Now, we need to show that $|\mathbb{N}| \neq |\mathbb{R}|$.

To do this, we will use a proof by diagonalization similar to the one for Cantor's Theorem.

- Assume there is a bijection $f : \mathbb{N} \rightarrow \mathbb{R}$.
- Construct a two-dimensional table from f.
- Construct a "diagonal number" from the table.
- Show the diagonal number is not in the table.
- Conclude f is not a bijection.
<table>
<thead>
<tr>
<th></th>
<th>d_0</th>
<th>d_1</th>
<th>d_2</th>
<th>d_3</th>
<th>d_4</th>
<th>d_5</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8.</td>
<td>6.</td>
<td>7.</td>
<td>5.</td>
<td>3.</td>
<td>0.</td>
<td>…</td>
</tr>
<tr>
<td>1</td>
<td>3.</td>
<td>1.</td>
<td>4.</td>
<td>1.</td>
<td>5.</td>
<td>9.</td>
<td>…</td>
</tr>
<tr>
<td>2</td>
<td>0.</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>5.</td>
<td>8.</td>
<td>…</td>
</tr>
<tr>
<td>3</td>
<td>-1.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>…</td>
</tr>
<tr>
<td>4</td>
<td>2.</td>
<td>7.</td>
<td>1.</td>
<td>8.</td>
<td>2.</td>
<td>8.</td>
<td>…</td>
</tr>
<tr>
<td>5</td>
<td>1.</td>
<td>6.</td>
<td>1.</td>
<td>8.</td>
<td>0.</td>
<td>3.</td>
<td>…</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td></td>
<td>d_0</td>
<td>d_1</td>
<td>d_2</td>
<td>d_3</td>
<td>d_4</td>
<td>d_5</td>
<td>...</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>0</td>
<td>8.</td>
<td>6.</td>
<td>7.</td>
<td>5.</td>
<td>3.</td>
<td>0.</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>3.</td>
<td>1.</td>
<td>4.</td>
<td>1.</td>
<td>5.</td>
<td>9.</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>0.</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>5.</td>
<td>8.</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>-1.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>2.</td>
<td>7.</td>
<td>1.</td>
<td>8.</td>
<td>2.</td>
<td>8.</td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>1.</td>
<td>6.</td>
<td>1.</td>
<td>8.</td>
<td>0.</td>
<td>3.</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>
Set all nonzero values to 0 and all 0s to 1.
<table>
<thead>
<tr>
<th></th>
<th>d_0</th>
<th>d_1</th>
<th>d_2</th>
<th>d_3</th>
<th>d_4</th>
<th>d_5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8.</td>
<td>6.</td>
<td>7.</td>
<td>5.</td>
<td>3.</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>3.</td>
<td>1.</td>
<td>4.</td>
<td>1.</td>
<td>5.</td>
<td>9</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>0.</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>5.</td>
<td>8</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>-1.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>2.</td>
<td>7</td>
<td>1.</td>
<td>8</td>
<td>2.</td>
<td>8</td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>1.</td>
<td>6</td>
<td>1.</td>
<td>8</td>
<td>0</td>
<td>3</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Set all nonzero values to 0 and all 0s to 1.

```
0. 0 0 0 1 0 0 ...
```
<table>
<thead>
<tr>
<th></th>
<th>d_0</th>
<th>d_1</th>
<th>d_2</th>
<th>d_3</th>
<th>d_4</th>
<th>d_5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8.</td>
<td>6.</td>
<td>7.</td>
<td>5.</td>
<td>3.</td>
<td>0.</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>3.</td>
<td>1.</td>
<td>4.</td>
<td>1.</td>
<td>5.</td>
<td>9.</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>0.</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>5.</td>
<td>8.</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>-1.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>2.</td>
<td>7.</td>
<td>1.</td>
<td>8.</td>
<td>2.</td>
<td>8.</td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>1.</td>
<td>6.</td>
<td>1.</td>
<td>8.</td>
<td>0.</td>
<td>3.</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Which natural number is paired with this real number?

0. 0 0 1 0 0 ...
Theorem: \(|\mathbb{N}| \neq |\mathbb{R}|.\)

Proof: By contradiction; suppose that \(|\mathbb{N}| = |\mathbb{R}|.\) Then there exists a bijection \(f : \mathbb{N} \rightarrow \mathbb{R}.\)

We introduce some new notation. For a real number \(r,\) let \(r_0\) be the integer part of \(r,\) and let \(r_n\) for \(n \in \mathbb{N}, n > 0,\) be the \(n\)th digit in the decimal representation of \(r.\) Now, define the real number \(d\) as follows:

\[
d_n = \begin{cases}
1 & \text{if } f(n)_n = 0 \\
0 & \text{otherwise}
\end{cases}
\]

Since \(d \in \mathbb{R},\) there must be some \(n \in \mathbb{N}\) such that \(f(n) = d.\) So consider \(f(n)_n\) and \(d_n.\) We consider two cases:

Case 1: \(f(n)_n = 0.\) Then by construction \(d_n = 1,\) meaning that \(f(n) \neq d.\)

Case 2: \(f(n)_n \neq 0.\) Then by construction \(d_n = 0,\) meaning that \(f(n) \neq d.\)

In either case, \(f(n) \neq d.\) This contradicts the fact that \(f(n) = d.\) We have reached a contradiction, so our assumption must have been wrong. Thus \(|\mathbb{N}| \neq |\mathbb{R}|.\) ■

The Power of Diagonalization

- A large number of fundamental results in computability and complexity theory are based on diagonal arguments.
- We will see at least three of them in the remainder of the quarter.
Cantor's *Other Other Other* Diagonal Argument

(This one is different!)
What is $|\mathbb{N}^2|$?
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(0, 0)</td>
<td>(0, 1)</td>
<td>(0, 2)</td>
<td>(0, 3)</td>
<td>(0, 4)</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>(1, 0)</td>
<td>(1, 1)</td>
<td>(1, 2)</td>
<td>(1, 3)</td>
<td>(1, 4)</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>(2, 0)</td>
<td>(2, 1)</td>
<td>(2, 2)</td>
<td>(2, 3)</td>
<td>(2, 4)</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>(3, 0)</td>
<td>(3, 1)</td>
<td>(3, 2)</td>
<td>(3, 3)</td>
<td>(3, 4)</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>(4, 0)</td>
<td>(4, 1)</td>
<td>(4, 2)</td>
<td>(4, 3)</td>
<td>(4, 4)</td>
<td>...</td>
</tr>
</tbody>
</table>

...
This function is called Cantor’s Pairing Function.

\[f(a, b) = \frac{(a + b)(a + b + 1)}{2} + a \]
Theorem: \(|\mathbb{N}^2| = |\mathbb{N}|\).
Formalizing the Proof

- We need to show that this function \(f \) is injective and surjective.
- These proofs are nontrivial, but have beautiful intuitions.
- I've included the proofs at the end of these slides if you're curious.
Appendix: Proof that $|\mathbb{N}^2| = |\mathbb{N}|$
Proving Surjectivity

• Given just the definition of our function:
 \[f(a, b) = (a + b)(a + b + 1) / 2 + a \]
 It is not at all clear that every natural number can be generated.

• However, given our intuition of how the function works (crawling along diagonals), we can start to formulate a proof of surjectivity.
Proving Surjectivity

\[f(a, b) = \frac{(a + b)(a + b + 1)}{2} + a \]

- What pair of numbers maps to 137?
- We can figure this out by first trying to figure out what diagonal this would be in.
Proving Surjectivity

\[f(a, b) = \frac{(a + b)(a + b + 1)}{2} + a \]

- What pair of numbers maps to 137?
- We can figure this out by first trying to figure out what diagonal this would be in.

\[
\begin{array}{ccc}
0 & 1 & 2 \\
0 & (0, 0) & (0, 1) & (0, 2) \\
1 & (1, 0) & (1, 1) & (1, 2) \\
2 & (2, 0) & (2, 1) & (2, 2) \\
\end{array}
\]
Proving Surjectivity

\[f(a, b) = (a + b)(a + b + 1) / 2 + a \]

- What pair of numbers maps to 137?
- We can figure this out by first trying to figure out what diagonal this would be in.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(0, 0)</td>
<td>(0, 1)</td>
<td>(0, 2)</td>
</tr>
<tr>
<td>1</td>
<td>(1, 0)</td>
<td>(1, 1)</td>
<td>(1, 2)</td>
</tr>
<tr>
<td>2</td>
<td>(2, 0)</td>
<td>(2, 1)</td>
<td>(2, 2)</td>
</tr>
</tbody>
</table>
Proving Surjectivity

\[f(a, b) = (a + b)(a + b + 1) / 2 + a \]

- What pair of numbers maps to 137?
- We can figure this out by first trying to figure out what diagonal this would be in.

```
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(0,0)</td>
<td>(0,1)</td>
<td>(0,2)</td>
</tr>
<tr>
<td>1</td>
<td>(1,0)</td>
<td>(1,1)</td>
<td>(1,2)</td>
</tr>
<tr>
<td>2</td>
<td>(2,0)</td>
<td>(2,1)</td>
<td>(2,2)</td>
</tr>
</tbody>
</table>
```

Total number of elements before

- Row 0: 0
- Row 1: 1
- Row 2: 3
- Row 3: 6
- Row 4: 10
- \[\text{Row } m: m(m + 1) / 2 \]
Proving Surjectivity

\[f(a, b) = \frac{(a + b)(a + b + 1)}{2} + a \]

- What pair of numbers maps to 137?
- We can figure this out by first trying to figure out what diagonal this would be in.
 - Answer: Diagonal 16, since there are 136 pairs that come before it.
- Now that we know the diagonal, we can figure out the index into that diagonal.
 - \(137 - 136 = 1 \).
 - So we'd expect the first entry of diagonal 16 to map to 137.

\[f(1, 15) = \frac{16 \times 17}{2} + 1 = 136 + 1 = 137 \]
Generalizing Into a Proof

- We can generalize this logic as follows.
- To find a pair that maps to n:
 - Find which diagonal the number is in by finding the largest d such that
 \[d(d + 1) / 2 \leq n \]
 - Find which index the in that diagonal it is in by subtracting the starting position of that diagonal:
 \[k = n - d(d + 1) / 2 \]
 - The kth entry of diagonal d is the answer:
 \[f(k, d - k) = n \]
Lemma: Let \(f(a, b) = (a + b)(a + b + 1) / 2 + a \) be a function from \(\mathbb{N}^2 \) to \(\mathbb{N} \). Then \(f \) is surjective.

Proof: Consider any \(n \in \mathbb{N} \). We will show that there exists a pair \((a, b) \in \mathbb{N}^2 \) such that \(f(a, b) = n \).

Consider the largest \(d \in \mathbb{N} \) such that \(d(d + 1) / 2 \leq n \). Then, let \(k = n - d(d + 1) / 2 \). Since \(d(d + 1) / 2 \leq n \), we have that \(k \in \mathbb{N} \). We further claim that \(k \leq d \). To see this, suppose for the sake of contradiction that \(k > d \). Consequently, \(k \geq d + 1 \). This means that

\[
\begin{align*}
d + 1 & \leq k \\
d + 1 & \leq n - d(d + 1) / 2 \\
d + 1 + d(d + 1) / 2 & \leq n \\
(2(d + 1) + d(d + 1)) / 2 & \leq n \\
(d + 1)(d + 2) / 2 & \leq n
\end{align*}
\]

But this means that \(d \) is not the largest natural number satisfying the inequality \(d(d + 1) / 2 \leq n \), a contradiction. Thus our assumption must have been wrong, so \(k \leq d \).

Since \(k \leq d \), we have that \(0 \leq k - d \), so \(k - d \in \mathbb{N} \). Now, consider the value of \(f(k, d - k) \). This is

\[
\begin{align*}
f(k, d - k) & = (k + d - k)(k + d - k + 1) / 2 + k \\
& = d(d + 1) / 2 + k \\
& = d(d + 1) / 2 + n - d(d + 1) / 2 \\
& = n
\end{align*}
\]

Thus there is a pair \((a, b) \in \mathbb{N}^2 \) (namely, \((k, d - k)\)) such that \(f(a, b) = n \). Consequently, \(f \) is surjective. ■
Proving Injectivity

- Given the function
 \[f(a, b) = \frac{(a + b)(a + b + 1)}{2} + a \]
- It is not at all obvious that \(f \) is injective.
- We'll have to use our intuition to figure out why this would be.
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(0,0)</td>
<td>(0,1)</td>
<td>(0,2)</td>
<td>(0,3)</td>
<td>(0,4)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(1,0)</td>
<td>(1,1)</td>
<td>(1,2)</td>
<td>(1,3)</td>
<td>(1,4)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(2,0)</td>
<td>(2,1)</td>
<td>(2,2)</td>
<td>(2,3)</td>
<td>(2,4)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(3,0)</td>
<td>(3,1)</td>
<td>(3,2)</td>
<td>(3,3)</td>
<td>(3,4)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(4,0)</td>
<td>(4,1)</td>
<td>(4,2)</td>
<td>(4,3)</td>
<td>(4,4)</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The table continues with rows and columns numbered from 0 to 4, with each entry being a pair of numbers indicating the position in the grid.
Proving Injectivity

\[f(a, b) = (a + b)(a + b + 1) / 2 + a \]

- Suppose that \(f(a, b) = f(c, d) \). We need to prove \((a, b) = (c, d) \).

- Our proof will proceed in two steps:
 - First, we'll prove that \((a, b) \) and \((c, d) \) have to be in the same diagonal.
 - Next, using the fact that they're in the same diagonal, we'll show that they're at the same position within that diagonal.
 - From this, we can conclude \((a, b) = (c, d) \).
Lemma: Suppose \(f(a, b) = (a + b)(a + b + 1) / 2 + a \). Then the largest \(m \in \mathbb{N} \) for which \(m(m + 1) / 2 \leq f(a, b) \) is given by \(m = a + b \).

Proof: First, we show that \(m = a + b \) satisfies the above inequality. Note that if \(m = a + b \), we have

\[
\begin{align*}
f(a, b) &= (a + b)(a + b + 1) / 2 + a \\
&\geq (a + b)(a + b + 1) / 2 \\
&= m(m + 1) / 2
\end{align*}
\]

So \(m \) satisfies the inequality.

Next, we will show that any \(m' \in \mathbb{N} \) with \(m' > a + b \) will not satisfy the inequality. Take any \(m' \in \mathbb{N} \) where \(m' > a + b \). This means that \(m' \geq a + b + 1 \). Consequently, we have

\[
\begin{align*}
m'(m' + 1) / 2 &\geq (a + b + 1)(a + b + 2) / 2 \\
&= ((a + b)(a + b + 2) + 2(a + b + 1)) / 2 \\
&= (a + b)(a + b + 1) / 2 + a + b + 1 \\
&> (a + b)(a + b + 1) / 2 + a \\
&= f(a, b)
\end{align*}
\]

Thus \(m' \) does not satisfy the inequality. Consequently, \(m = a + b \) is the largest natural number satisfying the inequality. ■
Theorem: Let \(f(a, b) = (a + b)(a + b + 1) / 2 + a \). Then \(f \) is injective.

Proof: Consider any \((a, b), (c, d) \in \mathbb{N}^2\) such that \(f(a, b) = f(c, d) \). We will show that \((a, b) = (c, d)\).

First, we will show that \(a + b = c + d \). To do this, assume for the sake of contradiction that \(a + b \neq c + d \). Then either \(a + b < c + d \) or \(a + b > c + d \). Assume without loss of generality that \(a + b < c + d \).

By our lemma, we know that \(m = a + b \) is the largest natural number such that \(f(a, b) \leq m(m + 1) / 2 \). Since \(a + b < c + d \), this means that

\[
\begin{align*}
 f(a, b) &= (a + b)(a + b + 1) / 2 + a \\
 &< (c + d)(c + d + 1) / 2 \\
 &\leq (c + d)(c + d + 1) / 2 + c \\
 &= f(c, d)
\end{align*}
\]

But this means that \(f(a, b) < f(c, d) \), contradicting that \(f(a, b) = f(c, d) \). We have reached a contradiction, so our assumption must have been wrong. Thus \(a + b = c + d \). Given this, we have that

\[
\begin{align*}
 f(a, b) &= f(c, d) \\
 (a + b)(a + b + 1) / 2 + a &= (c + d)(c + d + 1) / 2 + c \\
 (a + b)(a + b + 1) / 2 + a &= (a + b)(a + b + 1) / 2 + c \\
 a &= c
\end{align*}
\]

Since \(a = c \) and \(a + b = c + d \), we have that \(b = d \). Thus \((a, b) = (c, d) \), as required. \(\blacksquare \)