Decidability and Undecidability
Major Ideas from Last Time

- Every TM can be converted into a string representation of itself.
 - The **encoding** of M is denoted $\langle M \rangle$.
- The **universal Turing machine** $U(TM)$ accepts an encoding $\langle M, w \rangle$ of a TM M and string w, then simulates the execution of M on w.
- The language of $U(TM)$ is the language $A(TM)$:
 \[
 A(TM) = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts } w. \}
 \]
- Equivalently:
 \[
 A(TM) = \{ \langle M, w \rangle \mid M \text{ is a TM and } w \in \mathcal{L}(M) \}
 \]
Major Ideas from Last Time

- The universal Turing machine U_{TM} can be used as a subroutine in other Turing machines.

\[H = \text{“On input } (M)\text{, where } M \text{ is a Turing machine:} \]
- Run M on ε.
- If M accepts ε, then H accepts (M).
- If M rejects ε, then H rejects (M).

\[H = \text{“On input } (M)\text{, where } M \text{ is a Turing machine:} \]
- Nondeterministically guess a string w.
- Run M on w.
- If M accepts w, then H accepts (M).
- If M rejects w, then H rejects (M).
Major Ideas from Last Time

- The **diagonalization language**, which we denote L_D, is defined as

 $$L_D = \{ \langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathcal{L}(M) \}$$

- That is, L_D is the set of descriptions of Turing machines that do not accept themselves.

- **Theorem:** $L_D \notin \text{RE}$
Regular Languages (CFLs, DCFLs)

RE

All Languages

L_D
Outline for Today

- **More non-RE Languages**
 - We now know $L_D \notin \text{RE}$. Can we use this to find other non-RE languages?

- **Decidability and Class R**
 - How do we formalize the idea of an algorithm?

- **Undecidable Problems**
 - What problems admit no algorithmic solution?
Additional Unsolvable Problems
Finding Unsolvable Problems

- We can use the fact that $L_D \not\in \text{RE}$ to show that other languages are also not \text{RE}.

- General proof approach: to show that some language L is not \text{RE}, we will do the following:
 - Assume for the sake of contradiction that $L \in \text{RE}$, meaning that there is some TM M for it.
 - Show that we can build a TM that uses M as a subroutine in order to recognize L_D.
 - Reach a contradiction, since no TM recognizes L_D.
 - Conclude, therefore, that $L \not\in \text{RE}$.
The Complement of A_{TM}

- Recall: the language A_{TM} is the language of the universal Turing machine U_{TM}:

$$A_{TM} = \mathcal{L}(U_{TM}) = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$$

- The complement of A_{TM} (denoted \overline{A}_{TM}) is the language of all strings not contained in A_{TM}.

- Questions:
 - What language is this?
 - Is this language RE?
\(A_{TM} \) and \(\overline{A}_{TM} \)

- The language \(A_{TM} \) is defined as
 \[
 \{ \langle M, w \rangle \mid M \text{ is a TM that accepts } w \}
 \]

- Equivalently:
 \[
 \{ x \mid x = \langle M, w \rangle \text{ for some TM } M \\
 \text{and string } w, \text{ and } M \text{ accepts } w \}
 \]

- Thus \(\overline{A}_{TM} \) is
 \[
 \{ x \mid x \neq \langle M, w \rangle \text{ for any TM } M \text{ and string } w, \\
 \text{or } M \text{ is a TM that does not accept } w \}
 \]
Cheating With Math

• As a mathematical simplification, we will assume the following:

 Every string can be decoded into any collection of objects.

• Every string is an encoding of some TM M.

• Every string is an encoding of some TM M and string w.

• Can do this as follows:
 • If the string is a legal encoding, go with that encoding.
 • Otherwise, pretend the string decodes to some predetermined group of objects.
Cheating With Math

- Example: Every string will be a valid C++ program.
- If it's already a C++ program, just compile it.
- Otherwise, pretend it's this program:

```cpp
int main() {
    return 0;
}
```
A_{TM} and \overline{A}_{TM}

- The language A_{TM} is defined as
 \[
 \{\langle M, w \rangle \mid M \text{ is a TM that accepts } w\}\]
- Thus \overline{A}_{TM} is the language
 \[
 \{\langle M, w \rangle \mid M \text{ is a TM that doesn't accept } w\}\]
$\overline{A_{TM}} \notin \text{RE}$

- Although the language $A_{TM} \in \text{RE}$ (since it's the language of U_{TM}), its complement $\overline{A_{TM}} \notin \text{RE}$.

- We will prove this as follows:
 - Assume, for contradiction, that $\overline{A_{TM}} \in \text{RE}$.
 - This means there is a TM R for $\overline{A_{TM}}$.
 - Using R as a subroutine, we will build a TM H that will recognize L_D.
 - This is impossible, since $L_D \notin \text{RE}$.
 - Conclude, therefore, that $\overline{A_{TM}} \notin \text{RE}$.
Comparing L_D and $\overline{A_{TM}}$

- The languages L_D and $\overline{A_{TM}}$ are closely related:
 - L_D: Does M not accept $\langle M \rangle$?
 - $\overline{A_{TM}}$: Does M not accept string w?
- Given this connection, we will show how to turn a hypothetical recognizer for $\overline{A_{TM}}$ into a hypothetical recognizer for L_D.
$H = \text{"On input } \langle M \rangle \text{:}
\begin{itemize}
 \item Construct the string $\langle M, \langle M \rangle \rangle$.
 \item Run R on $\langle M, \langle M \rangle \rangle$.
 \item If R accepts $\langle M, \langle M \rangle \rangle$, then H accepts $\langle M \rangle$.
 \item If R rejects $\langle M, \langle M \rangle \rangle$, then H rejects $\langle M \rangle$.
\end{itemize}$

What happens if...

M does not accept $\langle M \rangle$?

- **Accept**

M accepts $\langle M \rangle$?

- **Reject or Loop**

H is a TM for L_D!
Theorem: $\overline{A}_{\text{TM}} \notin \text{RE}$.

Proof: By contradiction; assume that $\overline{A}_{\text{TM}} \in \text{RE}$. Then there must be a recognizer for \overline{A}_{TM}; call it R.

Consider the TM H defined below:

$$H = \text{"On input } \langle M \rangle, \text{ where } M \text{ is a TM:}$$
$$\text{Construct the string } \langle M, \langle M \rangle \rangle.$$
$$\text{Run } R \text{ on } \langle M, \langle M \rangle \rangle.$$
$$\text{If } R \text{ accepts } \langle M, \langle M \rangle \rangle, \text{ } H \text{ accepts } \langle M \rangle.$$
$$\text{If } R \text{ rejects } \langle M, \langle M \rangle \rangle, \text{ } H \text{ rejects } \langle M \rangle."$$

We claim that $\mathcal{L}(H) = L_D$. We will prove this by showing that $\langle M \rangle \in L_D$ iff H accepts $\langle M \rangle$.

By construction we have that H accepts $\langle M \rangle$ iff R accepts $\langle M, \langle M \rangle \rangle$. Since R is a recognizer for \overline{A}_{TM}, R accepts $\langle M, \langle M \rangle \rangle$ iff M does not accept $\langle M \rangle$. Finally, note that M does not accept $\langle M \rangle$ iff $\langle M \rangle \in L_D$. Therefore, we have H accepts $\langle M \rangle$ iff $\langle M \rangle \in L_D$, so $\mathcal{L}(H) = L_D$. But this is impossible, since $L_D \notin \text{RE}$.

We have reached a contradiction, so our assumption must have been incorrect. Thus $\overline{A}_{\text{TM}} \notin \text{RE}$, as required. ■
Regular Languages

DCFLs

CFLs

RE

All Languages
Why All This Matters

- We finally have found concrete examples of unsolvable problems!
- We are starting to see a line of reasoning we can use to find unsolvable problems:
 - Start with a known unsolvable problem.
 - Try to show that the unsolvability of that problem entails the unsolvability of other problems.
- We will see this used extensively in the upcoming weeks.
Revisiting RE
Recall: Language of a TM

- The language of a Turing machine M, denoted $\mathcal{L}(M)$, is the set of all strings that M accepts:
 \[\mathcal{L}(M) = \{ w \in \Sigma^* | M \text{ accepts } w \} \]
- For any $w \in \mathcal{L}(M)$, M accepts w.
- For any $w \notin \mathcal{L}(M)$, M does not accept w.
 - It might loop forever, or it might explicitly reject.
- A language is called **recognizable** if it is the language of some TM.
- Notation: RE is the set of all recognizable languages.

\[L \in \text{RE} \iff L \text{ is recognizable} \]
Why “Recognizable?”

- Given TM M with language $\mathcal{L}(M)$, running M on a string w will not necessarily tell you whether $w \in \mathcal{L}(M)$.
- If the machine is running, you can't tell whether
 - It is eventually going to halt, but just needs more time, or
 - It is never going to halt.
- However, if you know for a fact that $w \in \mathcal{L}(M)$, then the machine can confirm this (it eventually accepts).
- The machine can't decide whether or not $w \in \mathcal{L}(M)$, but it can recognize strings that are in the language.
- We sometimes call a TM for a language L a recognizer for L.
Deciders

- Some Turing machines always halt; they never go into an infinite loop.
- Turing machines of this sort are called **deciders**.
- For deciders, accepting is the same as not rejecting and rejecting is the same as not accepting.

\[
\begin{align*}
\text{Accept} & \quad \text{halts (always)} \\
\text{Reject} & \\
\end{align*}
\]
Decidable Languages

- A language L is called **decidable** iff there is a decider M such that $\mathcal{L}(M) = L$.

- Given a decider M, you can learn whether or not a string $w \in \mathcal{L}(M)$.
 - Run M on w.
 - Although it might take a staggeringly long time, M will eventually accept or reject w.

- The set R is the set of all decidable languages.
 \[L \in R \text{ iff } L \text{ is decidable} \]
R and RE Languages

- Intuitively, a language is in **RE** if there is some way that you could exhaustively search for a proof that \(w \in L \).
 - If you find it, accept!
 - If you don't find one, keep looking!
- Intuitively, a language is in **R** if there is a concrete algorithm that can determine whether \(w \in L \).
 - It tends to be *much* harder to show that a language is in **R** than in **RE**.
Examples of R Languages

- All regular languages are in R.
 - If L is regular, we can run the DFA for L on a string w and then either accept or reject w based on what state it ends in.

- $\{0^n1^n \mid n \in \mathbb{N}\}$ is in R.
 - The TM we built last Wednesday is a decider.

- Multiplication is in R.
 - Can check if $m \times n = p$ by repeatedly subtracting out copies of n. If the equation balances, accept; if not, reject.
CFLs and \(\mathbb{R} \)

- Using an NTM, we sketched a proof that all CFLs are in \(\mathbb{RE} \).
 - Nondeterministically guess a derivation, then deterministically check that derivation.
- Harder result: all CFLs are in \(\mathbb{R} \).
 - Read Sipser, Ch. 4.1 for details.
 - Or come talk to me after lecture!
Why \mathbb{R} Matters

- If a language is in \mathbb{R}, there is an algorithm that can decide membership in that language.
 - Run the decider and see what it says.
- If there is an algorithm that can decide membership in a language, that language is in \mathbb{R}.
 - By the Church-Turing thesis, any effective model of computation is equivalent in power to a Turing machine.
 - Thus if there is any algorithm for deciding membership in the language, there must be a decider for it.
 - Thus the language is in \mathbb{R}.
- A language is in \mathbb{R} iff there is an algorithm for deciding membership in that language.
\[R \neq RE \]

- Every decider is a Turing machine, but not every Turing machine is a decider.
- Thus \(R \subseteq RE \).
- Hugely important theoretical question:

\[\text{Is } R = RE? \]

- That is, if we can verify that a string is in a language, can we decide whether that string is in the language?
Which Picture is Correct?
Which Picture is Correct?

- Regular Languages
- DCFLs
- CFLs
- R
- RE
- All Languages
An Important Observation
R is Closed Under Complementation

If $L \in R$, then $\overline{L} \in R$ as well.

Decider for L

$M' = \text{"On input } w:\n$
* Run M on w.
* If M accepts w, reject.
* If M rejects w, accept."

Will this work if M is a recognizer, rather than a decider?
Theorem: R is closed under complementation.

Proof: Consider any $L \in R$. We will prove that $\overline{L} \in R$ by constructing a decider M' such that $\mathcal{L}(M') = \overline{L}$.

Let M be a decider for L. Then construct the machine M' as follows:

$$M' = \text{"On input } w \in \Sigma^*: \quad \text{Run } M \text{ on } w. \quad \text{If } M \text{ accepts } w, \text{ reject.} \quad \text{If } M \text{ rejects } w, \text{ accept."}$$

We need to show that M' is a decider and that $\mathcal{L}(M') = \overline{L}$.

To show that M' is a decider, we will prove that it always halts. Consider what happens if we run M' on any input w. First, M' runs M on w. Since M is a decider, M either accepts w or rejects w. If M accepts w, M' rejects w. If M rejects w, M' accepts w. Thus M' always accepts or rejects, so M' is a decider.

To show that $\mathcal{L}(M') = \overline{L}$, we will prove that M' accepts w iff $w \in \overline{L}$. Note that M' accepts w iff $w \in \Sigma^*$ and M rejects w. Since M is a decider, M rejects w iff M does not accept w. M does not accept w iff $w \notin \mathcal{L}(M)$. Thus M' accepts w iff $w \in \Sigma^*$ and $w \notin \mathcal{L}(M)$, so M' accepts w iff $w \in \overline{L}$. Therefore, $\mathcal{L}(M') = \overline{L}$.

Since M' is a decider with $\mathcal{L}(M') = \overline{L}$, we have $\overline{L} \in R$, as required. ■
We can now resolve the question of $R \neq RE$.

If $R = RE$, we need to show that if there is a recognizer for any RE language L, there has to be a decider for L.

If $R \neq RE$, we just need to find a single language in RE that is not in R.
\(A_{TM} \)

- Recall: the language \(A_{TM} \) is the language of the universal Turing machine \(U_{TM} \).
- Consequently, \(A_{TM} \in RE \).
- Is \(A_{TM} \in R \)?
Theorem: $A_{TM} \notin R$.

Proof: By contradiction; assume $A_{TM} \in R$. Since R is closed under complementation, this means that $\overline{A_{TM}} \in R$. Since $R \subseteq RE$, this means that $\overline{A_{TM}} \in RE$. But this is impossible, since we know $\overline{A_{TM}} \notin RE$.

We have reached a contradiction, so our assumption must have been incorrect. Thus $A_{TM} \notin R$, as required. ■
The Limits of Computability

- Regular Languages
- DCFLs
- CFLs
- R
- All Languages
- A_{TM}
- A_{TM}^{-}
- L_D
- RE

Diagram showing the relationships between different classes of languages.
What this Means

- The undecidability of A_{TM} means that we cannot “cheat” with Turing machines.

- We cannot necessarily build a TM to do an exhaustive search over a space (i.e. a recognizer), then decide whether it accepts without running it.

- **Intuition:** In most cases, you cannot decide what a TM will do without running it to see what happens.

- In some cases, you can recognize when a TM has performed some task.

- In some cases, you can't do either. For example, you cannot always recognize that a TM will not accept a string.
What this Means

- **Major result:** $\mathbb{R} \neq \text{RE}$.
- There are some problems where we can only give a “yes” answer when the answer is “yes” and cannot necessarily give a yes-or-no answer.
- Solving a problem is *fundamentally* harder than recognizing a correct answer.
Another Undecidable Problem
L_D Revisited

- The diagonalization language L_D is the language

$$L_D = \{\langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathcal{L}(M) \}$$

- As we saw before, $L_D \notin \text{RE}$.

- But what about $\overline{L_D}$?
L_D

- The language L_D is the language
 $$L_D = \{\langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \notin \mathcal{L}(M)\}$$
- Therefore, \overline{L}_D is the language
 $$L_D = \{\langle M \rangle \mid M \text{ is a TM and } \langle M \rangle \in \mathcal{L}(M)\}$$
- Two questions:
 - What is this language?
 - Is this language RE?
<table>
<thead>
<tr>
<th>$\langle M_0 \rangle$</th>
<th>$\langle M_1 \rangle$</th>
<th>$\langle M_2 \rangle$</th>
<th>$\langle M_3 \rangle$</th>
<th>$\langle M_4 \rangle$</th>
<th>$\langle M_5 \rangle$</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>...</td>
</tr>
<tr>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>...</td>
</tr>
<tr>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>Acc</td>
<td>...</td>
</tr>
<tr>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>...</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td>Acc</td>
<td>No</td>
<td>...</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>Acc</td>
<td>Acc</td>
<td>No</td>
<td>No</td>
<td>...</td>
</tr>
</tbody>
</table>

{ $\langle M \rangle \mid M$ is a TM and $\langle M \rangle \in \mathcal{L}(M)$ }

This language is \mathcal{I}_D.
\[\overline{L_D} \in \text{RE} \]

- Here's an TM for \(\overline{L_D} \):

 \[
 R = \text{"On input } \langle M \rangle:\text{"}
 \]
 \[
 \text{Run } M \text{ on } \langle M \rangle.
 \]
 \[
 \text{If } M \text{ accepts } \langle M \rangle, \text{ accept.}
 \]
 \[
 \text{If } M \text{ rejects } \langle M \rangle, \text{ reject.}"
 \]

- Then \(R \) accepts \(\langle M \rangle \) iff \(\langle M \rangle \in \mathcal{L}(M) \) iff \(\langle M \rangle \in \overline{L_D} \), so \(\mathcal{L}(R) = \overline{L_D} \).
Is \overline{L}_D Decidable?

- We know that $\overline{L}_D \in \text{RE}$. Is $\overline{L}_D \in \text{R}$?
- **No** – by a similar argument from before.
 - If $\overline{L}_D \in \text{R}$, then $\overline{\overline{L}_D} = L_D \in \text{R}$.
 - Since $\text{R} \subset \text{RE}$, this means that $L_D \in \text{RE}$.
 - This contradicts that $L_D \notin \text{RE}$.
 - So our assumption is wrong and $\overline{L}_D \notin \text{R}$.
The Limits of Computability

- Regular Languages (CFLs)
- DCFLs
- ALL Languages

- R
- A_{TM}
- L_{D}

- \overline{A}_{TM}
- \overline{L}_{D}

- RE

All Languages
Finding Unsolvable Problems

Diagram:

- L_D: Not RE
- A_{TM}: Not RE
- A_{TM}: Not R
- L_D: Not R

Relationships:

- $L_D \rightarrow \overline{A_{TM}} \rightarrow A_{TM}$
- $\overline{L_D} \rightarrow \overline{A_{TM}} \rightarrow A_{TM}$