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Problem Set 7

This problem explores Turing machines, nondeterministic computation, properties of the RE and 
R languages, and the limits of RE and R languages. This will be your first experience exploring 
the limits of computation, and I hope that you find it exciting!

As always, please feel free to drop by office hours or send us emails if you have any questions.  
We'd be happy to help out.

This problem set has 125 possible points.  It is weighted at 7% of your total grade.

Good luck, and have fun!

Due Monday, November 18th at 2:15 PM

A Note on Turing Machine Design
Many questions in this problem set will ask you to design Turing machines that solve various 
problems. In some cases, we will want you to write out the states and transitions within the Turing 
machine, and in other cases you will only need to provide a high-level description.

If a problem asks you to draw the state-transition diagram for a Turing machine, we expect 
you to draw out a concrete Turing machine by showing the states in that Turing machine and the 
individual transitions between them. If a question asks you to do this, as a courtesy to your TAs, 
please include with your Turing machines the following information:

• A short, one-paragraph description of the high-level operation of the machine.

• A brief description of any subroutines in the Turing machine or any groups of states in the 
Turing machine that represent storing a constant in the TM's finite-state control.

For simplicity, you may assume that all missing transitions implicitly cause the TM to reject.

If a problem asks you to give a high-level description of a Turing machine, you can just provide 
a high-level description of the machine along the lines of what we did in lecture. More generally, 
unless you are specifically asked to give a state-transition diagram, any time that you are asked to 
design a Turing machine, you are encouraged to do so by giving a high-level description.

Unless stated otherwise, any TM you design should be a deterministic TM.

If you have any questions about this, please feel free to ask!



Problem One: The Collatz Conjecture (24 Points)
In last Wednesday's lecture, we discussed the Collatz conjecture, which claims that the following pro-
cedure (called the hailstone sequence) terminates for all positive natural numbers n:

• If n = 1, stop.
• If n is even, set n = n / 2.
• If n is odd, set n = 3n + 1.
• Repeat.

In lecture, we claimed that it was possible to build a TM for the language L = { 1n | the hailstone se-
quence terminates for n } over the alphabet Σ = {1}. In this problem, you will do exactly that. The first 
two parts to this question ask you to design key subroutines for the TM, and the final piece asks you to 
put everything together to assemble the final machine.

i. Draw the state transition diagram for a Turing machine that, when given a tape holding 12n sur-
rounded by infinitely many blanks, ends with  1n written on its tape, surrounded by infinitely 
many blanks. You can assume the tape head begins reading the first 1, and your TM should end 
with the tape head reading the first 1 of the result. For example, given this initial configuration:

… 1 1 1 1 1 1 1 1 …

The TM would end with this configuration:

… 1 1 1 1 …

You can assume that there are an even number of 1s on the tape at startup and can have your 
TM behave however you'd like if this isn't the case. Please provide a description of your TM as 
discussed at the start of this problem set. (For reference, our solution has 7 states. If you have  
significantly more than this, you might want to change your approach.)

ii. Draw the state transition diagram for a Turing machine that, when given a tape holding 1n sur-
rounded by infinitely many blanks, ends with 13n+1 written on its tape, surrounded by infinitely 
many blanks. You can assume that the tape head begins reading the first 1, and your TM should 
end with the tape head reading the first 1 of the result. For example, given this configuration:

… 1 1 1 …

The TM would end with this configuration:

… 1 1 1 1 1 1 1 1 1 …1

Please provide a description of your TM as discussed at the start of this problem set. (For refer-
ence, our solution has  9 states. If you have significantly more than this, you might want to  
change your approach.)

(continued on the next page)



iii. Using your TMs from parts (i) and (ii) as subroutines,  draw the state transition diagram for a 
Turing machine M that recognizes L. You do not need to copy your machines from part (i) and 
(ii) into the resulting machine.  Instead, you can introduce “phantom states” that stand for the 
entry or exit states of those subroutines  and then add transitions into or out of those states. 
Please provide a description of your TM as discussed at the start of this problem set. (For refer-
ence, our solution has  8 states. If you have significantly more than this, you might want to  
change your approach.)

Problem Two: Manipulating Encodings (16 Points)
In what follows, you can assume that Σ = {0, 1}. In Friday's lecture, we discussed string encodings of 
objects and ways in which TMs could manipulate those encodings. To help give you a better feeling for 
why this is possible, this question asks you to design two TM subroutines to perform common manipu-
lations on encodings.

When discussing encodings, we saw that it was possible to take two encodings of objects ⟨O1  and ⟩ ⟨O2⟩ 
and combine them together to form a single string ⟨O1, O2  that encodes both ⟩ of those objects. The spe-
cific encoding scheme we suggested was the following: the string ⟨O1, O2  is the string formed by⟩

• doubling each character in ⟨O1  (i.e. ⟩ 0 becomes 00 and 1 becomes 11),

• then writing out the string 01 as a delimiter, and finally

• writing out the description of ⟨O2  unchanged.⟩

For example, suppose that ⟨O1  = ⟩ 1010 and ⟨O2  = ⟩ 11111. The encoding ⟨O1, O2  would ⟩ then be the 
string 110011000111111 (I've underlined the parts of the encoding corresponding to ⟨O1  ⟩ and ⟨O2⟩)

In order for this representation to be useful, Turing machines need to be to extract the first and second 
part of an encoded pair. This problem asks you to design TMs that do precisely these tasks.

i. Draw the state transition diagram for a Turing machine that, given an encoding ⟨O1, O2  of two⟩  
objects, ends with the string ⟨O1  written on its tape, surrounded by infinitely many blanks.  You⟩  
can assume that the tape head begins reading the first character of ⟨O1, O2 , and should design⟩  
the TM so it ends with its tape head reading the first character of ⟨O1 . The input will be sur⟩ -
rounded by infinitely many blanks.

For example, given this initial configuration:

… 1 1 0 0 0 0 1 1 0 …1 1 1 0 0

The TM should end in this configuration:

… 1 0 0 1  …

You can assume that the encoding is properly formatted and can have your TM behave however 
you'd like if this isn't the case. Please provide a description of your TM as discussed at the start 
of this problem set.  (For  reference, our solution has  9 states. If you have significantly more  
than this, you might want to change your approach.)

(continued on the next page)



ii. Draw the state transition diagram for a Turing machine that, given an encoding ⟨O1, O2  of two⟩  
objects, ends with the string ⟨O2  written on its tape, surrounded by infinitely many blanks.  You⟩  
can assume that the tape head begins reading the first character of ⟨O1, O2 , and should design⟩  
the TM so it ends with its tape head reading the first character of ⟨O2 . The input will be sur⟩ -
rounded by infinitely many blanks.

For example, given this initial configuration:

… 1 1 0 0 0 0 1 1 0 …1 1 1 0 0

The TM should end in this configuration:

… 1 1 0 0  …

You can assume that the encoding is properly formatted and can have your TM behave however 
you'd like if this isn't the case. Please provide a description of your TM as discussed at the start 
of this problem set. (For reference, our solution has 2 states.)

Problem Three: Finding Flaws in Proofs (12 Points)
The RE languages are closed under union: if L1  ∈ RE and L2  ∈ RE, then L1  ∪ L2  ∈ RE as well.  Be-
low is an attempted proof that this is true:

Theorem: If L1  ∈ RE and L2  ∈ RE, then L1  ∪ L2  ∈ RE.

Proof: Consider any RE languages L1 and L2.  Since L1  ∈ RE and L2  ∈ RE, we know that 
that there must exist TMs M1 and M2 such that (ℒ M1) = L1 and (ℒ M2) = L2.  Now, let M 
be the following Turing machine, which we claim is a TM for L1  ∪ L2:

M = “On input w:
Run M1 on w.
If M1 accepts w, accept.
If M1 rejects w:
     Run M2 on w.
     If M2 accepts w, accept.
     If M2 rejects w, reject.”

We claim that (ℒ M) = L1  ∪ L2. To see this, note that by construction, M accepts w iff M1 

accepts  w or  M1 rejects  w and  M2 accepts  w.  Furthermore, note that  M1 accepts  w iff 
w ∈ L1 and M2 accepts w iff w  ∈ L2. Therefore, M accepts w iff w  ∈ L1 or w  ∈ L2. Since
w  ∈ L1  ∪ L2 iff w  ∈ L1 or w  ∈ L2, this means that M accepts w iff w  ∈ L1  ∪ L2. Thus we 
see (ℒ M) = L1  ∪ L2, so L1  ∪ L2  ∈ RE, as required. ■

Although the theorem being proven is correct, the purported proof is incorrect because the constructed 
machine M does not necessarily have language L1  ∪ L2.

Give concrete examples of languages L1 and L2 and give high-level descriptions of machines M1 and M2 

such that (ℒ M1) = L1 and (ℒ M2) = L2, but (ℒ M) ≠ L1  ∪ L2. You should explain why your languages and 
machines satisfy these properties, but you don't need to prove it. Then, determine the exact error in the 
proof that lets it justify (incorrectly) that (ℒ M) = L1  ∪ L2.



Problem Four: Nondeterministic Turing Machines (20 points)
Prove each of the following by giving a high-level description of an appropriate nondeterministic Tur-
ing machine and proving that the machine you describe has the appropriate language. Remember that 
for any NTM M, to prove that (ℒ M) = L, you should prove the following:

For any string w  Σ*, w  L iff there is some series of choices M can make such that M accepts w.∈ ∈

Notice that this statement is a biconditional.

In order to receive credit for your answers, your solutions  must use nondeterminism as a key part of 
their operation, and you must write a proof of correctness.

i. Prove that the  RE languages are closed under union. That is, if  L1  ∈ RE and  L2  ∈ RE, then 
L1 ∪ L2  ∈ RE.

ii. Prove that the RE languages are closed under concatenation. That is, if L1  ∈ RE and L2  ∈ RE, 
then L1L2  ∈ RE as well.

We will cover the material necessary to solve the remaining problems in Wednesday's lecture.

Problem Five: R and RE Languages (24 Points)
We have covered a lot of terminology and concepts in the past few days pertaining to Turing machines 
and R and RE languages. These problems are designed to explore some of the nuances of how Turing 
machines, languages, decidability, and recognizability all relate to one another. Please don't hesitate to 
ask if you're having trouble answering these questions – we hope that by working through them, you'll 
get a much better understanding of key computability concepts.

i. Give a high-level description of  a TM  M such that ℒ(M)  ∈ R, but  M is not a decider. This 
shows that just because a TM's language is decidable, it's not necessarily the case that the TM 
itself must be a decider.

ii. Only  languages can be decidable or recognizable;  there's  no such thing as an “undecidable 
string” or “unrecognizable string.” Prove that there is no string w where every language contain-
ing w is undecidable and no string w where every language containing w is unrecognizable. This 
result is important – the reason that languages become undecidable or unrecognizable is that 
there is no TM that can always give back the correct answer for every string in the language, not 
because there is some “bad string” that makes the language undecidable or unrecognizable.

iii. Prove that for every language L, there is a decider M+ that accepts every string in L and a de-
cider M- that rejects every string not in L. Explain why this result doesn't prove that every lan-
guage is in R.

iv. Give a high-level description of a TM M with the following properties: (ℒ M) is an infinite sub-
set of ATM, but  M is a decider. That is,  M accepts infinitely many strings of the form ⟨N,  w ,⟩  
where N is a TM that accepts string w, yet the machine M is a decider. Prove that your machine 
has the required properties. This shows that even though ATM is undecidable, it is still possible 
to build a TM that will decide ATM for infinitely many inputs.



Problem Six: Why Decidability and Recognizability? (24 Points)
There are two classes of languages associated with Turing machines – the RE languages, which can be 
recognized by a Turing machine, and the R languages, which can be decided by a Turing machine.

Why didn't we talk about a model of computation that accepted just the R languages and nothing else? 
After all, having such a model of computation would be useful – if we could reason about automata 
that just accept the R languages, it would be easier to see what problems are and are not decidable.

It turns out, interestingly, that there is no class of automata with this property, and in fact the only way 
to build automata that can decide all R languages is to also have those automata also accept some lan-
guages that are RE but not R.  This problem explores why.

Suppose, for the sake of contradiction, that there is a type of automaton called a hypothetical machine 
(or HM for short) that has the computational power to decide precisely the R languages. That is, L  ∈ R 
iff there is a HM that decides L. We can't assume much about how HMs work – perhaps they use an in-
finite tape and a finite-state control, or maybe they use a combination of stacks and queues, or perhaps 
they just use magic widgets – so we can't design concrete HMs. However, we will make the following 
(reasonable) assumptions about HMs:

• Any R language is accepted by some HM, and each HM accepts an R language.  

• Since HMs accept precisely the R languages, all HMs halt on all inputs. That is, once started, an 
HM will always eventually terminate with an answer.

• Since HMs are a type of automaton, each HM is finite and can be encoded as a string. For any 
HM H, we will let the encoding of H be represented by ⟨H .⟩

• HMs are an effective model of computation. Thus the Church-Turing thesis says that the Turing 
machine is at least as powerful as a HM. Thus there is some Turing machine UHM that takes as 
input a description of a HM H and some string w, then accepts if H accepts w and rejects if H 
rejects w. Note that UHM can never loop infinitely, because H is a hypothetical machine and al-
ways eventually accepts or rejects.  More specifically,  UHM is the decider “On input ⟨H,  w ,⟩  
where H is an HM and w is a string, simulate the execution of H on w. If H accepts w, accept. 
If H rejects w, reject.”

Unfortunately, these four properties are impossible to satisfy simultaneously.

i. Consider the language REJECTHM = { ⟨H  | ⟩ H is a HM that rejects ⟨H  }.  Prove that ⟩ REJECTHM 

is decidable.

ii. Prove that there is no HM that decides REJECTHM.

Your result from (ii) allows us to prove that there is no class of automaton like the HM that decides pre-
cisely the R languages. If one were to exist, then it should be able to decide all of the R languages, in-
cluding  REJECTHM. However, there is no  HM that accepts the decidable language  REJECTHM. This 
means that one of our assumptions must have be wrong, so at least one of the following must be true:

• HMs do not accept precisely the R languages, or

• HMs do not halt on all inputs, or

• HMs cannot be encoded as strings (meaning they lack finite descriptions), or

• HMs cannot be simulated by a TM (they are not effective models of computation)

Thus there is no effective model of computation that decides just the R languages.



Problem Seven: Course Feedback (5 Points)
We want this course to be as good as it can be, and we'd really appreciate your feedback on how we're 
doing.  For a free five points, please fill out the  feedback questions for this problem set, available at 
https://docs.google.com/forms/d/1mKJMlID3WHfD9tq-N0R41iOf3oDdyZ4amXq0Hke4T4k/viewform.We 
will give you full credit for any answers you write (as long as you answer all the parts of the question!), 
though we'd appreciate it if you were honest in your feedback.

Extra Credit Problem: TMs and Regular Languages (5 Points Extra Credit)
We can measure the amount of time that a Turing machine takes to run on some string w by counting 
the total number of transitions the Turing machine makes when running on w. Let's denote the number 
of transitions that M takes when run on string w by T(M, w)

Let M be a Turing machine with input alphabet Σ. Prove that if there is some fixed constant n such that 
T(M, w) ≤ n for any w  Σ*, then (∈ ℒ M) is regular. (Intuitively, this means that if there's some fixed up-
per bound to the amount of time that a TM takes to run, then its language must be regular.)

https://docs.google.com/forms/d/1mKJMlID3WHfD9tq-N0R41iOf3oDdyZ4amXq0Hke4T4k/viewform

