
  

Indirect Proofs



  

Announcements

● Problem Set 1 out.

● Checkpoint due Monday, September 30.
● Grade determined by attempt rather than accuracy.  

It's okay to make mistakes – we want you to give it 
your best effort, even if you're not completely sure 
what you have is correct.

● We will get feedback back to you with comments on 
your proof technique and style.

● The more an effort you put in, the more you'll get 
out.

● Remaining problems due Friday, October 4.
● Feel free to email us with questions!



  

Submitting Assignments

● You can submit assignments by
● handing them in at the start of class,
● dropping it off in the filing cabinet near Keith's office (details on 

the assignment handouts), or
● emailing the submissions mailing list at 

cs103-aut1314-submissions@lists.stanford.edu and 
attaching your solution as a PDF.  (Please don't email the staff 
list directly with submissions)  See Handout #02 for more 
details.

● Late policy:
● Three “late periods:” extend due date by one class period.
● Can use at most one per assignment.
● No work accepted more than one class period after the due date.

mailto:cs103-aut1314-submissions@lists.stanford.edu


  



  

Office hours start tomorrow.

Schedule available on the course website.



  

Friday Four Square

● Good snacks!
● Good company!
● Good game!
● Good fun!
● Today at 4:15 

in front of 
Gates.

Don't be this guy!



  

Outline for Today

● Logical Implication
● What does “If P, then Q” mean?

● Proof by Contrapositive
● The basic method.
● An interesting application.

● Proof by Contradiction
● The basic method.
● Contradictions and implication.
● Contradictions and quantifiers.



  

Logical Implication



  

Implications

● An implication is a statement of the 
form 

If P, then Q.
● When discussing implications in the 

abstract, we denote that P implies Q by 
writing P → Q.

● When P → Q, we call P the antecedent 
and Q the consequent.



  

What Implication Means

● The statement P → Q means exactly the 
following:

If P is true, then
Q must be true as well.

● For example:
● n is an even integer → n2 is an even integer.
● (A ⊆ B and B ⊆ A) → A = B



  

What Implication Doesn't Mean
● P → Q doesn't mean that whenever Q is true, P is true.

● “If you die in Canada, you die in real life” doesn't mean that 
if you die in real life, you die in Canada.

● P → Q doesn't say anything about what happens if P is 
false.

● “If an animal is a puppy, you should hug it” doesn't mean 
that if that animal isn't a puppy, you shouldn't hug it.

● Vacuous truth: If P is never true, then P → Q is always true.

● P → Q doesn't say anything about causality.

● “If I like math, then 2 + 2 = 4” is true because any time that 
I like make, 2 + 2 = 4 is true.

● “If I don't like math, then 2 + 2 = 4” is also true, since 
whenever I don't like math, 2 + 2 = 4 is true.



  

Implication, Diagrammatically

Times when Q is true

Times when P is true

Any time P is 
true, Q is 
true as well.

Any time P is 
true, Q is 
true as well.

Any time P 
isn't true, Q 
may or may 
not be true.

Any time P 
isn't true, Q 
may or may 
not be true.



  

Proof by Contrapositive



  

Honk If You Love Formal Logic

Suppose that you're 
driving this car and you 
don't get honked at.

What can you say about 
the people driving 

behind you?

Suppose that you're 
driving this car and you 
don't get honked at.

What can you say about 
the people driving 

behind you?



  

The Contrapositive

● The contrapositive of “If P, then Q” is the 
statement “If not Q, then not P.”

● Example:
● “If I stored the cat food inside, then the raccoons 

wouldn't have stolen my cat food.”
● Contrapositive: “If the raccoons stole my cat food, 

then I didn't store it inside.”

● Another example:
● “If you liked it, then you should have put a ring

on it.”
● Contrapositive: “If you shouldn't have put a ring

on it, then you didn't like it.”



  

To show that P → Q, you may 
instead show that ¬Q → ¬P.

This is called a 
proof by contrapositive.

An Important Proof Strategy



  

Theorem: For any n ∈ ℤ, if n2 is even, then n is even.
 

Proof: By contrapositive; we prove that if n is
odd, then n2 is odd.  

 

Since n is odd, n = 2k + 1 for some
integer k. Then

 

n2 = (2k + 1)2

n2 = 4k2 + 4k + 1
n2 = 2(2k2 + 2k) + 1.

 

Therefore, there exists an integer m
(namely, 2k2 + 2k) such that n2 = 2m + 1.

 

Thus n2 is odd, as required. ■



  

Theorem: For any n ∈ ℤ, if n2 is even, then n is even.
 

Proof: By contrapositive; we prove that if n is
odd, then n2 is odd.  

 

Since n is odd, n = 2k + 1 for some
integer k. Then

 

n2 = (2k + 1)2

n2 = 4k2 + 4k + 1
n2 = 2(2k2 + 2k) + 1.

 

Therefore, there exists an integer m
(namely, 2k2 + 2k) such that n2 = 2m + 1.

 

Thus n2 is odd, as required. ■

Notice the structure of the 
proof.  We begin by 

announcing that it's a proof by 
contrapositive, then state the 
contrapositive, and finally 

prove it.

Notice the structure of the 
proof.  We begin by 

announcing that it's a proof by 
contrapositive, then state the 
contrapositive, and finally 

prove it.



  

Biconditionals

● Combined with what we saw on Wednesday, 
we have proven that, if n is an integer:

If n is even, then n2 is even.

If n2 is even, then n is even.
● Therefore, if n is an integer:

n is even if and only if n2 is even.
● “If and only if” is often abbreviated iff:

n is even iff n2 is even.
● This is called a biconditional.



  

P iff Q

Set where P 
is true

Set where Q 
is true



  

Proving Biconditionals

● To prove P iff Q, you need to prove that 
P implies Q and that Q implies P.

● You can any proof techniques you'd like 
to show each of these statements.
● In our case, we used a direct proof and a 

proof by contrapositive.



  

The Pigeonhole Principle



  

The Pigeonhole Principle

● Suppose that you have n pigeonholes.
● Suppose that you have m > n pigeons.
● If you put the pigeons into the 

pigeonholes, some pigeonhole will have 
more than one pigeon in it.



  

Theorem: Let m objects be distributed into n bins.  If
           m > n, then some bin contains at least two objects.
  

Proof: By contrapositive; we prove that if every bin
           contains at most one object, then m ≤ n.
  

           Let xi be the number of objects in bin i.  Since m is
           the number of total objects, we have that
  

m = x₁ + x₂ + … + xₙ
  

           Since every bin has at most one object, xi ≤ 1 for
           all i.  Thus
  

m = x₁ + x₂ + … + xₙ
≤ 1 + 1 + … + 1 (n times)
= n

  

           So m ≤ n, as required. ■



  

Using the Pigeonhole Principle

● The pigeonhole principle is an enormously 
useful lemma in many proofs.
● We'll spend a full lecture on it in a few weeks.

● General structure of a pigeonhole proof:
● Find m objects to distribute into n buckets, with 

m > n.
● Using the pigeonhole principle, conclude that 

some bucket has at least two objects in it.
● Use this conclusion to show the desired result.



  

Some Simple Applications
● Any group of 367 people must have a pair of people that 

share a birthday.
● 366 possible birthdays (pigeonholes)
● 367 people (pigeons)

● Two people in San Francisco have the exact same number 
of hairs on their head.
● Maximum number of hairs ever found on a human head is no 

greater than 500,000.
● There are over 800,000 people in San Francisco.

● Each day, two people in New York City drink the same 
amount of water, to the thousandth of a fluid ounce.
● No one can drink more than 50 gallons of water each day.
● That's 6,400 fluid ounces.  This gives 6,400,000 possible 

numbers of thousands of fluid ounces.
● There are about 8,000,000 people in New York City proper.



  

Some Words of Caution



  

An Incorrect Proof

Theorem: For any sets A and B,
if x ∉ A ∩ B, then x ∉ A.

Proof: By contrapositive; we show that
if x ∈ A ∩ B, then x ∈ A.

Since x ∈ A ∩ B, x ∈ A and x ∈ B.
Consequently, x ∈ A as required. ■
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Proof: By contrapositive; we show that
if x ∈ A ∩ B, then x ∈ A.

Since x ∈ A ∩ B, x ∈ A and x ∈ B.
Consequently, x ∈ A as required. ■



  

Common Pitfalls

To prove P → Q by contrapositive, prove

¬Q → ¬P

Be careful not to prove

¬P → ¬Q

(Proving ¬P → ¬Q proves Q → P, which 
isn't what you want!)



  

More Generally

● When doing a proof by contrapositive, 
your proof is only valid if you actually 
prove the contrapositive of the statement 
you want to prove.

● Make sure to set up the proof correctly; 
double- and triple-check you have taken 
the contrapositive correctly!

● This is true in general of most indirect 
proofs.



  

Proof by Contradiction



  

“When you have eliminated all which is 
impossible, then whatever remains, 

however improbable, must be the truth.”

- Sir Arthur Conan Doyle, The Adventure of the Blanched Soldier



  

Proof by Contradiction

● A proof by contradiction is a proof that 
works as follows:
● To prove that P is true, assume that P is not 

true.
● Based on the assumption that P is not true, 

conclude something impossible.
● Assuming the logic is sound, the only valid 

explanation is that the assumption that P is 
not true is incorrect.

● Conclude, therefore, that P is true.



  

Theorem: There is no integer that is both even
and odd.

Proof: By contradiction; suppose some integer is
both even and odd.  Let that integer be k.

Since k is even, there is some r ∈ ℤ such that 
k = 2r.  Since k is odd, there is some s ∈ ℤ such 
that k = 2s + 1.

Therefore, 2r = 2s + 1, so 2r – 2s = 1 and 
therefore r – s = ½.  Since r and s are integers, 
their difference is an integer.  But this is 
impossible, since ½ is not an integer.

We have reached a contradiction, so our 
assumption must have been wrong.  Thus there 
is no integer that is both even and odd. ■



  

Theorem: There is no integer that is both even
and odd.

Proof: By contradiction; suppose some integer is
both even and odd.  Let that integer be k.

Since k is even, there is some r ∈ ℤ such that 
k = 2r.  Since k is odd, there is some s ∈ ℤ such 
that k = 2s + 1.

Therefore, 2r = 2s + 1, so 2r – 2s = 1 and 
therefore r – s = ½.  Since r and s are integers, 
their difference is an integer.  But this is 
impossible, since ½ is not an integer.

We have reached a contradiction, so our 
assumption must have been wrong.  Thus there 
is no integer that is both even and odd. ■

The three key pieces:
 

   1. State that the proof is by contradiction.
   2. State what you are assuming is the negation of the
      statement to prove.
   3. State you have reached a contradiction and what the
      contradiction entails.
 

In CS103, please include all these steps in your proofs!

The three key pieces:
 

   1. State that the proof is by contradiction.
   2. State what you are assuming is the negation of the
      statement to prove.
   3. State you have reached a contradiction and what the
      contradiction entails.
 

In CS103, please include all these steps in your proofs!



  

Rational and Irrational Numbers



  

Rational and Irrational Numbers

● A rational number is a number r that can be 
written as

where p and q are integers and q ≠ 0.

● A number that is not rational is called 
irrational.

● Useful theorem: If r is rational, r can be written 
as p / q where q ≠ 0 and where p and q have no 
common factors other than ±1.

r=
p
q



  

A Famous and Beautiful Proof
Theorem: √2 is irrational. 
Proof: By contradiction; assume √2is rational.  Then there exists
           integers p and q such that q ≠ 0, p / q = √ , and p and q have
           no common divisors other than 1 and -1.
 

           Since p / q = √2 and q ≠ 0, we have p = √2q, so p2 = 2q2.
 

           Since q2 is an integer and p2 = 2q2, we have that p2 is even.  By
                   our earlier result, since p2 is even, we know p is even.  Thus
                   there is an integer k such that p = 2k.
 

           Therefore, 2q2 = p2 = (2k)2 = 4k2, so q2 = 2k2.
 

           Since k2 is an integer and q2 = 2k2, we know q2 is even.  By our
                   earlier result, since q2 is even, we have that q is even.  But
           this means that both p and q have 2 as a common divisor.  This
           contradicts our earlier assertion that their only common
           divisors are 1 and -1.
 

           We have reached a contradiction, so our assumption was
           incorrect.  Consequently, √2 is irrational. ■

√2

√2 √2

√2

√2
√2
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Vi Hart on Pythagoras and
the Square Root of Two:

http://www.youtube.com/watch?v=X1E7I7_r3Cw

http://www.youtube.com/watch?v=X1E7I7_r3Cw


  

A Word of Warning

● To attempt a proof by contradiction, 
make sure that what you're assuming 
actually is the opposite of what you want 
to prove.

● Otherwise, the core logic of your proof 
will be incorrect.

● Also true in proofs by contrapositive, but 
can be a lot more subtle in proofs by 
contradiction.



  

Negations of Standard Statements

● It's good to know how to negate three 
general types of statements:
● Implications: “If P, then Q.”
● Universal statements: “For all x, P(x) is 

true.”
● Existential statements: “There exists an x 

where P(x) is true.”

● Let's quickly go over how to prove these 
statements by contradiction. 



  

Negating Implications



  

When P Doesn't Imply Q

● Recall: What does “If P, then Q” mean?
● Answer: If P is true, then Q is true as well.

● When will “If P, then Q” be false?
● Answer: P is true, but Q is false.

● The only way to disprove that P implies Q 
is to show that there is some way for P to 
be true and Q to be false.



  

When P Doesn't Imply Q

Times when Q is true

Times 
when P 
is true

P can be 
true without 
Q being true 

as well

P can be 
true without 
Q being true 

as well



  

A Common Mistake

● To show that P → Q is false, it is not sufficient 
to find a case where P is false and Q is false.

Times when
Q is true

Times when
P is true Both P 

and Q 
are false

Both P 
and Q 
are false



  

Contradictions and Implications

● Suppose we want to prove that P → Q is 
true by contradiction.

● The proof will look something like this:
● Assume that P is true and Q is false.
● Using this assumption, derive a 

contradiction.
● Conclude that P → Q must be true.



  

A Simple Proof by Contradiction
Theorem: If n is an integer and n2 is even, then n is even.
Proof: By contradiction; assume n is an integer and n2 is
       even, but that n is odd.  

       Since n is odd, n = 2k + 1 for some integer k.  

       Then n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.

       Now, let m = 2k2 + 2k.  Then n2 = 2m + 1, so by
       definition n2 is odd.  But this is impossible, since n2 
       is even.  

       We have reached a contradiction, so our assumption
       was false.  Thus if n is an integer and n2 is even, n is
       even as well. ■
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Negating Existential and
Universal Statements



  

An Incorrect Proof

Theorem: For any natural number n, the sum of all
natural numbers less than n is not equal to n.

Proof: By contradiction; assume that for any natural
number n, the sum of all smaller natural numbers
is equal to n.  But this is clearly false, because
5 ≠ 1 + 2 + 3 + 4 = 10.  We have reached a
contradiction, so our assumption was false and the
theorem must be true. ■



  

An Incorrect Proof

Theorem: For any natural number n, the sum of all
natural numbers less than n is not equal to n.

Proof: By contradiction; assume that for any natural
number n, the sum of all smaller natural numbers
is equal to n.  But this is clearly false, because
5 ≠ 1 + 2 + 3 + 4 = 10.  We have reached a
contradiction, so our assumption was false and the
theorem must be true. ■

Is this really the 
negation of the 
original statement?

Is this really the 
negation of the 
original statement?



  

The negation of the universal statement

For all x, P(x) is true.

is not

For all x, P(x) is false.



  

“All My Friends Are Taller Than Me”

Me
My Friends



  

The negation of the universal statement

For all x, P(x) is true.

is the existential statement

There exists an x such that P(x) is false.



  

For all natural numbers n,
the sum of all natural numbers
smaller than n is not equal to n.

becomes

There exists a natural number n such that
the sum of all natural numbers

smaller than n is equal to n



  

The negation of the existential statement

There exists an x such that P(x) is true.

is not

There exists an x such that P(x) is false.



  

“Some Friend Is Shorter Than Me”

Me
My Friends



  

The negation of the existential statement

There exists an x such that P(x) is true.

is the universal statement

For all x, P(x) is false.



  

Negating Implications

“If P, then Q”

becomes

“P but not Q”

Negating Universal Statements

“For all x, P(x) is true”

becomes

“There is an x where P(x) is false.”

Negating Existential Statements

“There exists an x where P(x) is true”

becomes 

“For all x, P(x) is false.”



  

Next Time

● Proof by Induction
● Proofs on sums, programs, algorithms, etc.
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