The Pigeonhole Principle
&

Functions

Problem set Two due
in the box up front,




The pigeonhole principle is the following:

If m objects are placed into n bins,
where m > n, then some bin contains
at least two objects.

(We sketched a proof in Lecture #02)



Why This Matters

 The pigeonhole principle can be used to
show results must be true because they are
“too big to fail.”

* Given a large enough number of objects
with a bounded number of properties,
eventually at least two of them will share a
property.

 Can be used to prove some surprising
results.



Using the Pigeonhole Principle

« To use the pigeonhole principle:

 Find the m objects to distribute.

e Find the n < m buckets into which to distribute
them.

« Conclude by the pigeonhole principle that there
must be two objects in some bucket.

 The details of how to proceeds from there
are specific to the particular proof you're
doing.



A Surprising Application

Theorem: Suppose that every point in the real plane
i1s colored either red or blue. Then for any distance
d > 0, there are two points exactly distance d from
one another that are the same color.



A Surprising Application

Theorem: Suppose that every point in the real plane
i1s colored either red or blue. Then for any distance
d > 0, there are two points exactly distance d from
one another that are the same color.

Thought: There are fwo colors here, so if we
start picking points, we'll be dropping them
info one of Two buckets (red or blue).

How many points do we need to pick fo
quaranfee that we get fwo of the same
color?
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A Surprising Application

Theorem: Suppose that every point in the real plane
i1s colored either red or blue. Then for any distance
d > 0, there are two points exactly distance d from
one another that are the same color.

wWhat if we could
force these two
points to be
distfance d from
one another?




A Surprising Application

Theorem: Suppose that every point in the real plane
i1s colored either red or blue. Then for any distance
d > 0, there are two points exactly distance d from
one another that are the same color.




A Surprising Application

Theorem: Suppose that every point in the real plane
is colored either red or blue. Then for any distance
d > 0, there are two points exactly distance d from
one another that are the same color.

Any pair ot these points

is af distance d tfrom one

another, Since two must d d
be the same color, fhere

is a pair of poinfs of fhe d
same color at distance o




A Surprising Application

Theorem: Suppose that every point in the real plane
i1s colored either red or blue. Then for any distance
d > 0, there are two points exactly distance d from
one another that are the same color.

Proof: Consider any equilateral triangle whose side
lengths are d. Put this triangle anywhere in the
plane. By the pigeonhole principle, because there
are three vertices, two of the vertices must have
the same color. These vertices are at distance d
from each other, as required. B



The Hadwiger-Nelson Problem

 No matter how you color the points of the plane, there
will always be two points at distance 1 that are the
same color.

« Relation to graph coloring:

« Every point in the real plane is a node.

 There's an edge between two points that are at distance
exactly one.

* Question: What is the chromatic number of this graph?
(That is, how many colors do you need to ensure no
points at distance 1 are the same color?)

« This is the Hadwiger-Nelson problem. It's known
that the number is between 4 and 7, but no one knows
for sure!



Theorem: For any nonzero natural number n, there is
a nonzero multiple of n whose digits are all Os and 1s.
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11111111
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Proof Idea

e Generate the numbers 1, 11, 111, ... until
n + 1 numbers are generated.

 There are n possible remainders modulo
n, so two of these numbers have the
same remainder.

« Their difference is a multiple of n.
 Their difference consists of 1s and Os.
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Announcements!



Friday Four Square!
Today at 4:15PM, in front of Gates



Problem Set Three

 Problem Set Two due at the start of
today's lecture, or Monday with a
late period.

e Problem Set Three out.

e Checkpoint due next Monday at the
start of lecture.

* Rest of the problem set due Friday.

« Play around with graphs, relations, and
the pigeonhole principle!



C3S103

Mathematical Foundations of Computing

Ements Handouts Resources
Three Out 00: Course Information Course Reader
01: Syllabus Lecture Videos
02: Problem Set Policies Theorem and Definition Reference

't Three goes out today. This problem 03: Honor Code 5 s Schedule
graphs, relations, and the pigeonhole 04: Set Theory Definitions
will give you a chance to play around 07: Guide to Proofs

structures. The checkpoint problem is
, October 14 and the rest fo the

Lectures



Your Questions



“How do you decide whether a statement
needs to be proved with a lemma or is
counted as logical reasoning?”



“Can we email you or TAs questions we
have about homework?”

Yes! Please! I




Functions



A function is a means of associating each
object in one set with an object in some
other set.



Dikdik

Nubian
Ibex

Sloth







» Black and White




Terminology

« A function fis a mapping such that every element
of A is associated with a single element of B.

« For each a € A, there is some b € B with f(a) = b.
. If fla) = b, and f(a) = b,, then b, = b,.

« If fis a function from A to B, we say that fis a
mapping from A to B.

« We call A the domain of f.
« We call B the codomain of f.
« We denote that fis a function from A to B by
writing
f:A- B



Defining Functions

» Typically, we specity a function by
describing a rule that maps every element
of the domain to some element of the
codomain.

« Examples:
e fn)=n+1,wheref:Z2-7Z
* f(x) =sin x, wheref: R—- R
» f(x) =[x], where f: R—- Z

« Notice that we're giving both a rule and
the domain/codomain.



Defining Functions

This is The ceiling function -
the smallest infeger greater
Than or equal To x, For
example, 11 = 1, [1.37] = 2,
and [n] - 4,

 f(x) =|x], wheref: R—-Z
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Is this a function from A to B?




Is this a function from A to B?

Each object in The domain
has To be associated with
— | exactly one object in the

codomain:




Is this a function from A to B?

California

New York

Delaware

Washington
DC

A

Dover

Sacramento

Albany

Each object in The domain
has To be associated with
exaclly one object in The

codomain




Is this a function from A to B?

Wish

IT's ftine that nothing is
associated with Friend;
functions do not need
To use the entire
codomain,

Tenderheart

Friend



Piecewise Functions

 Functions may be specified piecewise,
with different rules applying to different
elements.

 Example:

_r —n/2 1if n is even
f(n)_&(n+1)/2 otherwise

« When defining a function piecewise, it's
up to you to confirm that it defines a legal
function!
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Injective Functions

« A function f: A — B is called injective (or
one-to-one) if each element of the codomain

has at most one element of the domain that
maps to it.

« A function with this property is called an
injection.

« Formally, f: A — B is an injection iff
For any x,, x, € A:
if f(x,) = f(x,), then x, = x,

« An intuition: injective functions label the
objects from A using names from B.
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Surjective Functions

« A function f: A - B is called surjective (or
onto) if each element of the codomain has at
least one element of the domain that maps to
it.

« A function with this property is called a
surjection.

 Formally, f: A — B is a surjection iff

For every b € B, there exists at
least one a € A such that f(a) = b.

 Intuition: surjective functions cover every
element of B with at least one element of A.



Injections and Surjections

* An injective function associates at most
one element of the domain with each
element of the codomain.

» A surjective function associates at least
one element of the domain with each
element of the codomain.

« What about functions that associate
exactly one element of the domain with
each element of the codomain?
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Bijections

A function that associates each element of
the codomain with a unique element of the
domain is called bijective.

* Such a function is a bijection.

 Formally, a bijection is a function that is
both injective and surjective.

» Bijections are sometimes called one-to-one
correspondences.

e Not to be confused with “one-to-one functions.”
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Function Composition

eJetf:A—-Bandg:B - C.

 The composition of f and g (denoted
g ° f) is the function g - f: A — C defined as

(g - NH(x) = g(f(x))

 Note that f is applied first, but fis on the
right side!

 Function composition is associative:
ho(gof)z(hog)of



Function Composition

« Supposef:A—-Aandg:A - A.
« Then both g - fand f - g are defined.
 Does g ° falways equal f - g°?
 In general, no:

« Let f(x) = 2x

e Letg(x) =x+1

* (g ° NX) = g(f(x) = g(2x) = 2x + 1

* (feg)X) =f(gx¥)) =fix +1) =2x + 2



Next Time

 Cardinality

« Formalizing infinite cardinalities
 Diagonalization

+ IN| £ [R|

 Formalizing Cantor's Theorem
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