
  

Regular Expressions

Problem Set Four is due 
using a late period in 
the box up front.

Problem Set Four is due 
using a late period in 
the box up front.



  

Concatenation

● The concatenation of two languages L1 
and L2 over the alphabet Σ is the 
language

L₁L₂ = { wx ∈ Σ* | w ∈ L₁ ∧ x ∈ L₂ }
● Intuitively, the set of all strings formed 

by concatenating some string from L₁ 
and some string from L₂.

● Conceptually similar to the Cartesian 
product of two sets, only with strings.



  

Language Exponentiation

● We can define what it means to 
“exponentiate” a language as follows:

● L0 = { ε }
● The set containing just the empty string.
● Idea: Any string formed by concatenating zero 

strings together is the empty string.

● Ln+1 = LLn

● Idea: Concatenating (n+1) strings together 
works by concatenating n strings, then 
concatenating one more.



  

The Kleene Closure

● An important operation on languages is 
the Kleene Closure, which is defined as

● Mathematically:

w ∈ L*     iff     ∃n ∈ ℕ. w ∈ Ln

● Intuitively, all possible ways of 
concatenating any number of copies of 
strings in L together.

∪∞
Li L* =

i = 0



  

Closure Properties

● The regular languages are closed under 
the following operations:
● Complementation
● Union
● Intersection
● Concatenation
● Kleene closure



  

Another View of Regular Languages



  

Rethinking Regular Languages

● We currently have several tools for 
showing a language is regular.
● Construct a DFA for it.
● Construct an NFA for it.
● Apply closure properties to existing 

languages.

● We have not spoken much of this last 
idea.



  

Constructing Regular Languages

● Idea: Build up all regular languages as 
follows:
● Start with a small set of simple languages we 

already know to be regular.
● Using closure properties, combine these 

simple languages together to form more 
elaborate languages.

● A bottom-up approach to the regular 
languages.



  

Regular Expressions

● Regular expressions are a family of 
descriptions that can be used to capture 
the regular languages.

● Often provide a compact and 
human-readable description of the 
language.

● Used as the basis for numerous software 
systems (Perl, flex, grep, etc.)



  

Atomic Regular Expressions

● The regular expressions begin with three 
simple building blocks.

● The symbol Ø is a regular expression 
that represents the empty language Ø.

● The symbol ε is a regular expression that 
represents the language { ε }
● This is not the same as Ø!

● For any a ∈ Σ, the symbol a is a regular 
expression for the language { a }



  

Compound Regular Expressions

● We can combine together existing regular expressions in 
four ways.

● If R1 and R2 are regular expressions, R1R2 is a regular 
expression for the concatenation of the languages of R1 
and R2.

● If R1 and R2 are regular expressions, R1 | R2 is a regular 
expression for the union of the languages of R1 and R2.

● If R is a regular expression, R* is a regular expression for 
the Kleene closure of the language of R.

● If R is a regular expression, (R) is a regular expression 
with the same meaning as R.



  

Operator Precedence

● Regular expression operator precedence: 

(R)

R*

R1R2

R1 | R2 

● So ab*c|d is parsed as ((a(b*))c)|d



  

Regular Expression Examples

● The regular expression trick|treat 
represents the regular language { trick, 
treat }

● The regular expression booo* represents 
the regular language { boo, booo, boooo, 
… }

● The regular expression candy!(candy!)* 
represents the regular language { candy!, 
candy!candy!, candy!candy!candy!, … }



  

Regular Expressions, Formally

● The language of a regular expression is the 
language described by that regular expression.

● Formally:
● ℒ(ε) = {ε}
● ℒ(Ø) = Ø
● ℒ(a) = {a}

● ℒ(R1R2) = (ℒ R1) (ℒ R2)

● ℒ(R1 | R2) = (ℒ R1) ∪ (ℒ R2)

● ℒ(R*) = (ℒ R)*
● ℒ((R)) = (ℒ R)

Worthwhile activity: Apply 
this recursive definition to

a(b|c)((d))

and see what you get.

Worthwhile activity: Apply 
this recursive definition to

a(b|c)((d))

and see what you get.



  

Regular Expressions are Awesome

● Let Σ = {0, 1}

● Let L = { w ∈ Σ* | w contains 00 as a 
substring }

(0 | 1)*00(0 | 1)*

11011100101
0000

11111011110011111



  

Regular Expressions are Awesome

● Let Σ = {0, 1}

● Let L = { w ∈ Σ* | w contains 00 as a 
substring }

Σ*00Σ*

11011100101
0000

11111011110011111



  

Regular Expressions are Awesome

Let Σ = {0, 1}

Let L = { w ∈ Σ* | |w| = 4 }

The length of 
a string w is 
denoted |w|

The length of 
a string w is 
denoted |w|



  

Regular Expressions are Awesome

● Let Σ = {0, 1}

● Let L = { w ∈ Σ* | |w| = 4 }

0000
1010
1111
1000

ΣΣΣΣ



  

Regular Expressions are Awesome

● Let Σ = {0, 1}

● Let L = { w ∈ Σ* | |w| = 4 }

0000
1010
1111
1000

Σ4



  

Regular Expressions are Awesome

● Let Σ = {0, 1}

● Let L = { w ∈ Σ* | w contains at most one 0 }

1*(0 | ε)1*

11110111
111111

0111
0



  

Regular Expressions are Awesome

● Let Σ = {0, 1}

● Let L = { w ∈ Σ* | w contains at most one 0 }

1*0?1*

11110111
111111

0111
0



  

Regular Expressions are Awesome

● Let Σ = { a, ., @ }, where a represents 
“some letter.”

● Regular expression for email addresses:



  

Regular Expressions are Awesome

● Let Σ = { a, ., @ }, where a represents 
“some letter.”

● Regular expression for email addresses:

aa*(.aa*)* aa*.aa*@ (.aa*)*

cs103@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov 



  

Regular Expressions are Awesome

● Let Σ = { a, ., @ }, where a represents 
“some letter.”

● Regular expression for email addresses:

cs103@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov 

a+(.a+)*@a+(.a+)+



  

Regular Expressions are Awesome

a+(.a+)*@a+(.a+)+

q1

start
q3

@

q2

.       a

q0
a

       a        a

q5
. q6

q7

.       a

       a

a

q8

@, .

., @            @            @, .
 @

@, .

q0q4
q0

a

@, .

a, @, .



  

Shorthand Summary

● Rn is shorthand for RR … R (n times).
● Σ is shorthand for “any character in Σ.”
● R? is shorthand for (R | ε), meaning “zero 

or one copies of R.”
● R⁺ is shorthand for RR*, meaning “one or 

more copies of R.”



  

Break for Announcements!



  

Midterm Logistics

● Midterm is tomorrow, October 29, from
7PM  - 10PM 

● Room determined by last name:
● A – G: Go to Gates B01
● H – K: Go to Gates B03
● L – P: Go to 200-002
● Q – V: Go to 420-041
● W – Z: Go to Herrin T175



  

Your Questions



  

When writing a logic statement, do you 
have to include the universal or existential 
quantifier for every variable that you state? 

I thought you had to, but this one from 
lecture doesn't:

Tallest(x) → ∀y. (x ≠ y → IsShorterThan(y, x))

This example is a “sentence fragment” in 
first-order logic; without a definition of x, 
this isn't a valid statement. All variables need 

to be quantified.

This example is a “sentence fragment” in 
first-order logic; without a definition of x, 
this isn't a valid statement. All variables need 

to be quantified.



  

"When writing first-order logic statements 
with quantifiers, which one out of the 

following would be correct?

∀x P(x). ∃y. R(y)

or

∀x. (P(x) → ∃y. R(y))



  

If you find that the function f: A → B is not 
surjective, have you proven that |A| < |B|? 
Or do you still need to do additional proof 

steps?

f : ℕ → ℕ
 

f(n) = 137



  

“What is the best thing to do to prepare
for the exam between now and 7PM 

tomorrow?”



  

“Is there some mathematical automaton 
that can determine whether or not two 

first-order logical statements are 
equivalent?”

More on that later 
in the quarter...

More on that later 
in the quarter...



  

Back to Regular Expressions!



  

The Power of Regular Expressions

Theorem: If R is a regular expression, 
then (ℒ R) is regular.

Proof idea: Show how to convert a 
regular expression into an NFA.



  

A Marvelous Construction

start

● The following theorem proves the language of 
any regular expression is regular:

● Theorem: For any regular expression R, there 
is an NFA N such that

ℒ(R) = (ℒ N)
● N has exactly one accepting state.
● N has no transitions into its start state.
● N has no transitions out of its accepting state.



  

Base Cases

εstart

Automaton for ε

astart

Automaton for single character a

start

Automaton for Ø



  

Machine for R1

Construction for R1R2

Machine for R2

start         
ε



  

Construction for R1 | R2

Machine for R2

Machine for R1start

ε

ε

ε

ε



  

Construction for R*

Machine for R

start ε ε

ε

ε



  

Why This Matters

● Many software tools work by matching 
regular expressions against text.

● One possible algorithm for doing so:
● Convert the regular expression to an NFA.
● (Optionally) Convert the NFA to a DFA using the 

subset construction.
● Run the text through the finite automaton and 

look for matches.

● Runs extremely quickly!



  

The Power of Regular Expressions

Theorem: If L is a regular language, 
then there is a regular expression for L.

This is not obvious!

Proof idea: Show how to convert an 
arbitrary NFA into a regular expression.



  

From NFAs to Regular Expressions

                           s
1
 | s

2
 | … |  s

n

start

Regular expression: (s
1
 | s

2
 | … | s

n
)*

Key idea: Label 
transitions with 
arbitrary regular 

expressions.

Key idea: Label 
transitions with 
arbitrary regular 

expressions.



  

From NFAs to Regular Expressions

start

Regular expression: R

R

Key idea: If we can convert any 
NFA into something that looks 
like this, we can easily read off 

the regular expression.

Key idea: If we can convert any 
NFA into something that looks 
like this, we can easily read off 

the regular expression.



  

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2



  

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε



  

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

Could we eliminate 
this state from 

the NFA?

Could we eliminate 
this state from 

the NFA?



  

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12

Note: We're using 
concatenation and 

Kleene closure in order 
to skip this state.

Note: We're using 
concatenation and 

Kleene closure in order 
to skip this state.



  

From NFAs to Regular Expressions

qs qfqfq2
start ε

R11* R12

R22 | R21 R11* R12

Note: We're using union 
to combine these 

transitions together.

Note: We're using union 
to combine these 

transitions together.



  

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 | R21 R11* R12

R11* R12 (R22 | R21R11*R12)* ε



  

From NFAs to Regular Expressions

qs qfqf
start

R11* R12 (R22 | R21R11*R12)*



  

From NFAs to Regular Expressions

qs qfqf
start

R11* R12 (R22 | R21R11*R12)*

q1
start q2

R12

R21

R11 R22

q2



  

The Construction at a Glance

● Start with an NFA for the language L.

● Add a new start state qs and accept state qf to 
the NFA.
● Add ε-transitions from each original accepting state 

to qf, then mark them as not accepting.

● Repeatedly remove states other than qs and qf 
from the NFA by “shortcutting” them until only 
two states remain: qs and qf.

● The transition from qs to qf is then a regular 
expression for the NFA.



  

Our Transformations

DFA NFA Regexp

direct conversion

subset construction

state elimination

recursive transform



  

Theorem: The following are all equivalent:
 

  · L is a regular language.
  · There is a DFA D such that (ℒ D) = L.
  · There is an NFA N such that (ℒ N) = L.
  · There is a regular expression R such that (ℒ R) = L.



  

Next Time

● Applications of Regular Languages
● Answering “so what?”

● Intuiting Regular Languages
● What makes a language regular?

● The Pumping Lemma
● Proving languages aren't regular.
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