

Regular Expressions

Problem Set Four is due
using a late period in
the box up front.

Problem Set Four is due
using a late period in
the box up front.

Concatenation

● The concatenation of two languages L1
and L2 over the alphabet Σ is the
language

L₁L₂ = { wx ∈ Σ* | w ∈ L₁ ∧ x ∈ L₂ }
● Intuitively, the set of all strings formed

by concatenating some string from L₁
and some string from L₂.

● Conceptually similar to the Cartesian
product of two sets, only with strings.

Language Exponentiation

● We can define what it means to
“exponentiate” a language as follows:

● L0 = { ε }
● The set containing just the empty string.
● Idea: Any string formed by concatenating zero

strings together is the empty string.

● Ln+1 = LLn

● Idea: Concatenating (n+1) strings together
works by concatenating n strings, then
concatenating one more.

The Kleene Closure

● An important operation on languages is
the Kleene Closure, which is defined as

● Mathematically:

w ∈ L* iff ∃n ∈ ℕ. w ∈ Ln

● Intuitively, all possible ways of
concatenating any number of copies of
strings in L together.

∪∞
Li L* =

i = 0

Closure Properties

● The regular languages are closed under
the following operations:
● Complementation
● Union
● Intersection
● Concatenation
● Kleene closure

Another View of Regular Languages

Rethinking Regular Languages

● We currently have several tools for
showing a language is regular.
● Construct a DFA for it.
● Construct an NFA for it.
● Apply closure properties to existing

languages.

● We have not spoken much of this last
idea.

Constructing Regular Languages

● Idea: Build up all regular languages as
follows:
● Start with a small set of simple languages we

already know to be regular.
● Using closure properties, combine these

simple languages together to form more
elaborate languages.

● A bottom-up approach to the regular
languages.

Regular Expressions

● Regular expressions are a family of
descriptions that can be used to capture
the regular languages.

● Often provide a compact and
human-readable description of the
language.

● Used as the basis for numerous software
systems (Perl, flex, grep, etc.)

Atomic Regular Expressions

● The regular expressions begin with three
simple building blocks.

● The symbol Ø is a regular expression
that represents the empty language Ø.

● The symbol ε is a regular expression that
represents the language { ε }
● This is not the same as Ø!

● For any a ∈ Σ, the symbol a is a regular
expression for the language { a }

Compound Regular Expressions

● We can combine together existing regular expressions in
four ways.

● If R1 and R2 are regular expressions, R1R2 is a regular
expression for the concatenation of the languages of R1
and R2.

● If R1 and R2 are regular expressions, R1 | R2 is a regular
expression for the union of the languages of R1 and R2.

● If R is a regular expression, R* is a regular expression for
the Kleene closure of the language of R.

● If R is a regular expression, (R) is a regular expression
with the same meaning as R.

Operator Precedence

● Regular expression operator precedence:

(R)

R*

R1R2

R1 | R2

● So ab*c|d is parsed as ((a(b*))c)|d

Regular Expression Examples

● The regular expression trick|treat
represents the regular language { trick,
treat }

● The regular expression booo* represents
the regular language { boo, booo, boooo,
… }

● The regular expression candy!(candy!)*
represents the regular language { candy!,
candy!candy!, candy!candy!candy!, … }

Regular Expressions, Formally

● The language of a regular expression is the
language described by that regular expression.

● Formally:
● ℒ(ε) = {ε}
● ℒ(Ø) = Ø
● ℒ(a) = {a}

● ℒ(R1R2) = (ℒ R1) (ℒ R2)

● ℒ(R1 | R2) = (ℒ R1) ∪ (ℒ R2)

● ℒ(R*) = (ℒ R)*
● ℒ((R)) = (ℒ R)

Worthwhile activity: Apply
this recursive definition to

a(b|c)((d))

and see what you get.

Worthwhile activity: Apply
this recursive definition to

a(b|c)((d))

and see what you get.

Regular Expressions are Awesome

● Let Σ = {0, 1}

● Let L = { w ∈ Σ* | w contains 00 as a
substring }

(0 | 1)*00(0 | 1)*

11011100101
0000

11111011110011111

Regular Expressions are Awesome

● Let Σ = {0, 1}

● Let L = { w ∈ Σ* | w contains 00 as a
substring }

Σ*00Σ*

11011100101
0000

11111011110011111

Regular Expressions are Awesome

Let Σ = {0, 1}

Let L = { w ∈ Σ* | |w| = 4 }

The length of
a string w is
denoted |w|

The length of
a string w is
denoted |w|

Regular Expressions are Awesome

● Let Σ = {0, 1}

● Let L = { w ∈ Σ* | |w| = 4 }

0000
1010
1111
1000

ΣΣΣΣ

Regular Expressions are Awesome

● Let Σ = {0, 1}

● Let L = { w ∈ Σ* | |w| = 4 }

0000
1010
1111
1000

Σ4

Regular Expressions are Awesome

● Let Σ = {0, 1}

● Let L = { w ∈ Σ* | w contains at most one 0 }

1*(0 | ε)1*

11110111
111111

0111
0

Regular Expressions are Awesome

● Let Σ = {0, 1}

● Let L = { w ∈ Σ* | w contains at most one 0 }

1*0?1*

11110111
111111

0111
0

Regular Expressions are Awesome

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Regular expression for email addresses:

Regular Expressions are Awesome

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Regular expression for email addresses:

aa*(.aa*)* aa*.aa*@ (.aa*)*

cs103@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov

Regular Expressions are Awesome

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Regular expression for email addresses:

cs103@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov

a+(.a+)*@a+(.a+)+

Regular Expressions are Awesome

a+(.a+)*@a+(.a+)+

q1

start
q3

@

q2

. a

q0
a

 a a

q5
. q6

q7

. a

 a

a

q8

@, .

., @ @ @, .
 @

@, .

q0q4
q0

a

@, .

a, @, .

Shorthand Summary

● Rn is shorthand for RR … R (n times).
● Σ is shorthand for “any character in Σ.”
● R? is shorthand for (R | ε), meaning “zero

or one copies of R.”
● R⁺ is shorthand for RR*, meaning “one or

more copies of R.”

Break for Announcements!

Midterm Logistics

● Midterm is tomorrow, October 29, from
7PM - 10PM

● Room determined by last name:
● A – G: Go to Gates B01
● H – K: Go to Gates B03
● L – P: Go to 200-002
● Q – V: Go to 420-041
● W – Z: Go to Herrin T175

Your Questions

When writing a logic statement, do you
have to include the universal or existential
quantifier for every variable that you state?

I thought you had to, but this one from
lecture doesn't:

Tallest(x) → ∀y. (x ≠ y → IsShorterThan(y, x))

This example is a “sentence fragment” in
first-order logic; without a definition of x,
this isn't a valid statement. All variables need

to be quantified.

This example is a “sentence fragment” in
first-order logic; without a definition of x,
this isn't a valid statement. All variables need

to be quantified.

"When writing first-order logic statements
with quantifiers, which one out of the

following would be correct?

∀x P(x). ∃y. R(y)

or

∀x. (P(x) → ∃y. R(y))

If you find that the function f: A → B is not
surjective, have you proven that |A| < |B|?
Or do you still need to do additional proof

steps?

f : ℕ → ℕ

f(n) = 137

“What is the best thing to do to prepare
for the exam between now and 7PM

tomorrow?”

“Is there some mathematical automaton
that can determine whether or not two

first-order logical statements are
equivalent?”

More on that later
in the quarter...

More on that later
in the quarter...

Back to Regular Expressions!

The Power of Regular Expressions

Theorem: If R is a regular expression,
then (ℒ R) is regular.

Proof idea: Show how to convert a
regular expression into an NFA.

A Marvelous Construction

start

● The following theorem proves the language of
any regular expression is regular:

● Theorem: For any regular expression R, there
is an NFA N such that

ℒ(R) = (ℒ N)
● N has exactly one accepting state.
● N has no transitions into its start state.
● N has no transitions out of its accepting state.

Base Cases

εstart

Automaton for ε

astart

Automaton for single character a

start

Automaton for Ø

Machine for R1

Construction for R1R2

Machine for R2

start
ε

Construction for R1 | R2

Machine for R2

Machine for R1start

ε

ε

ε

ε

Construction for R*

Machine for R

start ε ε

ε

ε

Why This Matters

● Many software tools work by matching
regular expressions against text.

● One possible algorithm for doing so:
● Convert the regular expression to an NFA.
● (Optionally) Convert the NFA to a DFA using the

subset construction.
● Run the text through the finite automaton and

look for matches.

● Runs extremely quickly!

The Power of Regular Expressions

Theorem: If L is a regular language,
then there is a regular expression for L.

This is not obvious!

Proof idea: Show how to convert an
arbitrary NFA into a regular expression.

From NFAs to Regular Expressions

 s
1
 | s

2
 | … | s

n

start

Regular expression: (s
1
 | s

2
 | … | s

n
)*

Key idea: Label
transitions with
arbitrary regular

expressions.

Key idea: Label
transitions with
arbitrary regular

expressions.

From NFAs to Regular Expressions

start

Regular expression: R

R

Key idea: If we can convert any
NFA into something that looks
like this, we can easily read off

the regular expression.

Key idea: If we can convert any
NFA into something that looks
like this, we can easily read off

the regular expression.

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

Could we eliminate
this state from

the NFA?

Could we eliminate
this state from

the NFA?

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12

Note: We're using
concatenation and

Kleene closure in order
to skip this state.

Note: We're using
concatenation and

Kleene closure in order
to skip this state.

From NFAs to Regular Expressions

qs qfqfq2
start ε

R11* R12

R22 | R21 R11* R12

Note: We're using union
to combine these

transitions together.

Note: We're using union
to combine these

transitions together.

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 | R21 R11* R12

R11* R12 (R22 | R21R11*R12)* ε

From NFAs to Regular Expressions

qs qfqf
start

R11* R12 (R22 | R21R11*R12)*

From NFAs to Regular Expressions

qs qfqf
start

R11* R12 (R22 | R21R11*R12)*

q1
start q2

R12

R21

R11 R22

q2

The Construction at a Glance

● Start with an NFA for the language L.

● Add a new start state qs and accept state qf to
the NFA.
● Add ε-transitions from each original accepting state

to qf, then mark them as not accepting.

● Repeatedly remove states other than qs and qf
from the NFA by “shortcutting” them until only
two states remain: qs and qf.

● The transition from qs to qf is then a regular
expression for the NFA.

Our Transformations

DFA NFA Regexp

direct conversion

subset construction

state elimination

recursive transform

Theorem: The following are all equivalent:

 · L is a regular language.
 · There is a DFA D such that (ℒ D) = L.
 · There is an NFA N such that (ℒ N) = L.
 · There is a regular expression R such that (ℒ R) = L.

Next Time

● Applications of Regular Languages
● Answering “so what?”

● Intuiting Regular Languages
● What makes a language regular?

● The Pumping Lemma
● Proving languages aren't regular.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

