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Review: RE Languages

● The language of a TM M (denoted (ℒ M)) is the set 
of all strings M accepts.

● A language L is called recognizable (equivalently, 
L ∈ RE) iff L is the language of some TM.

● Intuitively: RE languages are languages where for 
each string in the language, there is some “proof” 
thatshows the string is in the language.

● The TM for L can work by searching all possible 
proofs to see if any of them work.

● The TM will definitely accept w if w ∈ L after finding 
the proof.

● There is not guarantee the TM will halt and produce 
an answer if w ∉ L.



  

Review: NTMs

● A nondeterministic Turing machine (or NTM) 
is a Turing machine where there can be multiple 
transitions defined for a given state/symbol 
combination.

● An NTM N accepts a string w iff there exists a 
choice of transitions N can follow when run on w 
that causes it to accept.

● Intuition: guess-and-check:
● Nondeterministically guess some information that 

will help prove w is in the language.
● Deterministically verify that the information proves 

that w is in the language.



  

The Story So Far

● We now have two different models of 
solving search problems:
● Build a worklist and explicitly step through 

all options.
● Use a nondeterministic Turing machine.

● Are these two approaches equivalent?
● That is, are NTMs and DTMs equal in 

power?



  

DFAs and NFAs

● Earlier, we proved that any NFA can be converted 
into a DFA using the subset construction.
● Can exponentially increase the size of the NFA; an n-state 

NFA turns into a DFA with at most 2n states.

● Why did this work?
● Only memory in an NFA is what set of states is currently 

active.
● Only finitely many sets of states possible.

● Can we directly apply this construction to Turing 
machines?
● No: Memory also includes tape, and there are infinitely 

many possible tapes!



  

DTMs and NTMs

● Theorem: For any NTM N, there is a DTM D 
such that (ℒ N) = (ℒ D).

● Nondeterminism does not add any more power 
than determinism!

● Proof idea: Build a DTM that simulates the 
behavior of the NTM.

● Challenges:
● Each branch of the NTM has its own tape; how can we 

store this?
● Need to build states in a way that simulates the 

operation of the NTM; how to simulate 
nondeterminism with determinism?



  

Review: Tree Computation

● One interpretation of 
nondeterminism is as a 
tree computation.

● Each node in the tree 
has children 
corresponding to each 
possible choice for the 
computation.

● The computation 
accepts if any node in 
tree enters an 
accepting state.

… … …



  

The Key Idea

● Idea: Simulate an NTM 
with a DTM by 
exhaustively searching 
the computation tree!

● Start at the root node 
and go layer by layer.

● If an accepting path is 
found, accept.

● If all paths reject, 
reject.

● Otherwise, keep 
looking.
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Exploring the Tree

● Each node in this tree consists of one 
possible configuration that the NTM 
might be in at any time.

● What does this consist of?
● The contents of the tape.
● The position of the tape head.
● The current state.



  

Instantaneous Descriptions

● At any instant in time, only finitely many 
cells on the TM's tape may be non-blank.

● An instantaneous description (ID) of a 
Turing machine is a string representation 
of the TM's tape, state, and tape head 
location.
● Only store the “interesting” part of the tape.

● There are many ways to encode an ID; 
we'll see one in a second.



  

Building an ID

● Start with the contents 
of the tape.

● Trim “uninteresting” 
blank symbols from 
the ends of the tape 
(though remember 
blanks under the tape 
head). 

● Insert a marker for the 
tape head position that 
encodes the current 
state.
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Manipulating IDs

Theorem: For any TM M, it is possible
  to build a second TM SimM that, given a
  a tape containing an ID of M, simulates
  one step of M's computation.



  

Manipulating IDs

Theorem: For any TM M, it is possible
  to build a second TM SimM that, given a
  a tape containing an ID of M, simulates
  one step of M's computation.

Proof sketch:

… 0 0 q3 1 1 1      …

SimM's tape.SimM's tape.

 

At this point, SimM can remember 
that it's seen state q3.  There are 
only finitely many possible states.

At this point, SimM can remember 
that it's seen state q3.  There are 
only finitely many possible states.



  

Manipulating IDs

Theorem: For any TM M, it is possible
  to build a second TM SimM that, given a
  a tape containing an ID of M, simulates
  one step of M's computation.

Proof sketch:

… 0 0 q3 1 1 1      …

SimM's tape.SimM's tape.

 

… 0 0 1 1 1      …

What M would 
see here.

What M would 
see here.

 



  

Manipulating IDs

Theorem: For any TM M, it is possible
  to build a second TM SimM that, given a
  a tape containing an ID of M, simulates
  one step of M's computation.

Proof sketch:

… 0 0 q3 1 1 1      …

SimM's tape.SimM's tape.

 

SimM now knows 
that M is in state 
q3 and reading 1.
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Manipulating IDs

Theorem: For any TM M, it is possible
  to build a second TM SimM that, given a
  a tape containing an ID of M, simulates
  one step of M's computation.

Proof sketch:

… 0 0 q3 1 1 1      …

SimM's tape.SimM's tape.

 

SimM now knows 
that M is in state 
q3 and reading 1.
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that M is in state 
q3 and reading 1. q
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moving left.

SimM can then go 
simulate writing a 0 and 

moving left.



  

Manipulating IDs

Theorem: For any TM M, it is possible
  to build a second TM SimM that, given a
  a tape containing an ID of M, simulates
  one step of M's computation.

Proof sketch:

… 0 q3 0 0 1 1      …

SimM's tape.SimM's tape.

 

… 0 0 0 1 1      …

What M would 
see here.

What M would 
see here.

 



  

Putting Everything Together

● Theorem: For any NTM N, there exists a DTM D
     such that (ℒ N) = (ℒ D).

● Proof sketch: D uses a worklist to exhaustively
     search over N's computation tree.
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Schematically

Workspace Worklist of IDs

 

To simulate the NTM N with a DTM D, we construct D 
as follows:

· On input w, D converts w into an initial ID for N
  starting on w.
 

· While D has not yet found an accepting state:
 

    · D finds the next ID for N from the worklist.
 

    · D copies this ID once for each possible transition.
 

    · D simulates one step of the computation for each
       of these IDs.
 

    · D copies these IDs to the back of the worklist.
 

 

To simulate the NTM N with a DTM D, we construct D 
as follows:

· On input w, D converts w into an initial ID for N
  starting on w.
 

· While D has not yet found an accepting state:
 

    · D finds the next ID for N from the worklist.
 

    · D copies this ID once for each possible transition.
 

    · D simulates one step of the computation for each
       of these IDs.
 

    · D copies these IDs to the back of the worklist.
 



  

Why All This Matters

● All of the TM design techniques we've 
seen have come into play here:
● Building and manipulating lists.
● Exhaustively searching over an infinite 

space.
● Storing constant information in the 

finite-state control.
● Simulating one TM with another.

● TMs can do a huge number of complex 
computations!



  

Just how powerful are Turing machines?



  

Effective Computation

● An effective method of computation is a 
form of computation with the following 
properties:
● The computation consists of a set of steps.
● There are fixed rules governing how one step 

leads to the next.
● Any computation that yields an answer does so in 

finitely many steps.
● Any computation that yields an answer always 

yields the correct answer.

● This is not a formal definition. Rather, it's a 
set of properties we want to have.



  

The Church-Turing Thesis states that

Every effective method of computation 
is either equivalent to or weaker than a 

Turing machine.

This is not a mathematical fact – it's a 
hypothesis about the nature of 

computation.



  

Regular
Languages CFLs

All Languages

Problems 
Solvable by 

Any Feasible 
Computing 

Machine



  

Regular
Languages CFLs

All Languages

RE

What problems 
are out here?
What problems 
are out here?



  

Time-Out For Announcements!



  

Friday Four Square!
Today at 4:15PM outside Gates



  

Your Questions



  

“Do you do research? If so, what kind of 
research do you do?”



  

“What are some of the famous open 
questions computer theorists are trying to 
prove (within the scope of the material that 

we have covered so far)?”

When converting an NTM to a DTM, how much 
more time will the DTM take relative to the 

NTM to determine whether to accept? (More on 
that later in CS103...)

If a problem can be solved by an NTM, can it be 
solved by a TM that makes random choices 
about which transitions to take rather than 

making nondeterministic choices about which 
transitions to take? (Take CS254!)



  

“What's the significance of the number 
137? It's always cropping up in examples.”

α=
e2

4πϵ0 h̄ c
≈

1
137



  

“I wanna introduce mathematical theory to 
martial arts. I think math is the language of 
science and engineering including martial 

arts. And I wanna make martial arts an 
formal official course just like computer 

science. Do you think it is possible?”



  

High-Level Descriptions



  

The Church-Turing Thesis

● The Church-Turing thesis states that all 
effective models of computation are 
equivalent to or weaker than a Turing 
machine.

● As as a result, we can start to be less 
precise with our TM descriptions.



  

High-Level Descriptions

● A high-level description of a Turing machine is a 
description of the form

                 M = “On input x:
                              Do something with x.”

● Example:

M = “On input x:

              Repeat the following:

                  If |x| ≤ 1, accept.

                  If the first and last symbols of x aren't 
                          the same, reject.

                  Remove the first and last characters of x.”



  

High-Level Descriptions

● A high-level description of a Turing machine is a 
description of the form

                 M = “On input x:
                              Do something with x.”

● Example:

M = “On input x:

              Construct y, the reverse of x.

              If x = y, accept.

              Otherwise, reject.”



  

High-Level Descriptions

● A high-level description of a Turing machine is a 
description of the form

                 M = “On input x:
                              Do something with x.”

● Example:

M = “On input x:

              If x is a palindrome, accept.

              Otherwise, reject.”



  

High-Level Descriptions

● A high-level description of a Turing machine is a 
description of the form

                 M = “On input x:
                              Do something with x.”

● Example:

M = “On input x:

              Check that x has the form 0n1m2p.

              If not, reject.

              If nm = p, accept.

              Otherwise, reject.”



  

High-Level Descriptions

● A high-level description of a Turing machine is a 
description of the form

                 M = “On input x:
                              Do something with x.”

● Example:

M = “On input x:

              Check that x has the form 1n+1m 1≟ p.

              If not, reject.

              If so, if n + m = p, accept.

              Otherwise, reject.”



  

Formatted Input

● Many languages require the input to be in 
some particular format.

● We can encode this directly into our TMs:

M = “On input 1n+1m 1≟ p:

              If n + m = p, accept.

              Otherwise, reject.”
● Machines of this form implicitly reject any 

inputs that don't have the right format.



  

What's Allowed?

● Rule of thumb:

You can include anything in
a high-level description,

as long as you could write
a computer program for it.

● A few exceptions: can't get input from the user, 
make purely random decisions, etc.

● Unsure about what you can do?  Try building 
the TM explicitly, or ask the course staff!



  

Encodings



  

Computing over Objects

● Turing machines always compute over strings.

● We have seen examples of automata that can 
essentially compute over other objects:
● Walking your Dog: Compute over paths.
● Multiplication: Compute over numbers.
● IDs: Compute over TM configurations.

● We have always said how we will encode 
objects:
● e.g. { 1m×1n=1mn | m, n ∈ ℕ }



  

A Multitude of Encodings

● There can be many ways of encoding the same thing.

● Example: the natural number 13:

● In unary: 1111111111111

● In binary: 1101

● In decimal: 13

● In hexadecimal: D

● In Roman numerals: XIII

● …

● Claim: Turing machines are sufficiently powerful 
to transform any one of these representations into 
any other of these representations.



  

An Abstract Idea of Encodings

● For simplicity, from this point forward we will 
make the following assumption:

For any finite, discrete object O, it  
is always possible to find some way  

of encoding O as a string.  
● When working with Turing machines, it really 

doesn't matter how we do the encoding.  A TM 
can convert any reasonable encoding scheme 
into any other encoding scheme.



  

Notation for Encodings

● For any object O, we will denote a string encoding 
of O by writing O in angle brackets: O is encoded 
as ⟨O⟩.

● This makes it much easier to specify languages.

● Examples:

     { ⟨R⟩ | R is a regular expression that matches ε }

     { ⟨n⟩ | n ∈ ℕ and the hailstone sequence
               terminates for n.}

● The encoding scheme can make a difference when 
trying to determine whether a language is regular or 
context-free because of the relative weakness of DFAs 
and CFGs.



  

Encoding Multiple Objects

● Suppose that we want to provide an 
encoding of multiple objects.
● Two natural numbers and their product.
● A graph and a path in the graph.
● “I just met you” and “this is crazy.”

● We can get encodings of each individual 
object.

● Can we make one string encoding all of 
these objects?



  

One Encoding Scheme

0 10 01

0 0 1 1 0 00 0 1 1 0

⟨X1⟩ ⟨X2⟩

⟨X1, X2⟩



  

Encoding Multiple Objects

● Given several different objects O1, …, On, 
we can represent the encoding of those n 
objects as ⟨O1, O2, …, On⟩.

● Examples:
● { ⟨m, n, mn⟩ | m, n ∈ ℕ }
● { ⟨G, w⟩ | G is a context-free grammar that

                generates w }



  

Next Time

● The Universal Turing Machine
● One machine to run them all?

● An Unsolvable Problem
● Finally... something we honestly can't solve!

● More Unsolvable Problems
● What other languages are not RE?

● Decidability
● How do we formalize the definition of an algorithm?
● What problems can we learn the answer to?
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