

Turing Machines
Part III

Review: RE Languages

● The language of a TM M (denoted (ℒ M)) is the set
of all strings M accepts.

● A language L is called recognizable (equivalently,
L ∈ RE) iff L is the language of some TM.

● Intuitively: RE languages are languages where for
each string in the language, there is some “proof”
thatshows the string is in the language.

● The TM for L can work by searching all possible
proofs to see if any of them work.

● The TM will definitely accept w if w ∈ L after finding
the proof.

● There is not guarantee the TM will halt and produce
an answer if w ∉ L.

Review: NTMs

● A nondeterministic Turing machine (or NTM)
is a Turing machine where there can be multiple
transitions defined for a given state/symbol
combination.

● An NTM N accepts a string w iff there exists a
choice of transitions N can follow when run on w
that causes it to accept.

● Intuition: guess-and-check:
● Nondeterministically guess some information that

will help prove w is in the language.
● Deterministically verify that the information proves

that w is in the language.

The Story So Far

● We now have two different models of
solving search problems:
● Build a worklist and explicitly step through

all options.
● Use a nondeterministic Turing machine.

● Are these two approaches equivalent?
● That is, are NTMs and DTMs equal in

power?

DFAs and NFAs

● Earlier, we proved that any NFA can be converted
into a DFA using the subset construction.
● Can exponentially increase the size of the NFA; an n-state

NFA turns into a DFA with at most 2n states.

● Why did this work?
● Only memory in an NFA is what set of states is currently

active.
● Only finitely many sets of states possible.

● Can we directly apply this construction to Turing
machines?
● No: Memory also includes tape, and there are infinitely

many possible tapes!

DTMs and NTMs

● Theorem: For any NTM N, there is a DTM D
such that (ℒ N) = (ℒ D).

● Nondeterminism does not add any more power
than determinism!

● Proof idea: Build a DTM that simulates the
behavior of the NTM.

● Challenges:
● Each branch of the NTM has its own tape; how can we

store this?
● Need to build states in a way that simulates the

operation of the NTM; how to simulate
nondeterminism with determinism?

Review: Tree Computation

● One interpretation of
nondeterminism is as a
tree computation.

● Each node in the tree
has children
corresponding to each
possible choice for the
computation.

● The computation
accepts if any node in
tree enters an
accepting state.

… … …

The Key Idea

● Idea: Simulate an NTM
with a DTM by
exhaustively searching
the computation tree!

● Start at the root node
and go layer by layer.

● If an accepting path is
found, accept.

● If all paths reject,
reject.

● Otherwise, keep
looking.

0

21 3

4 5 6

7 8 9 10

… … …

Exploring the Tree

● Each node in this tree consists of one
possible configuration that the NTM
might be in at any time.

● What does this consist of?
● The contents of the tape.
● The position of the tape head.
● The current state.

Instantaneous Descriptions

● At any instant in time, only finitely many
cells on the TM's tape may be non-blank.

● An instantaneous description (ID) of a
Turing machine is a string representation
of the TM's tape, state, and tape head
location.
● Only store the “interesting” part of the tape.

● There are many ways to encode an ID;
we'll see one in a second.

Building an ID

● Start with the contents
of the tape.

● Trim “uninteresting”
blank symbols from
the ends of the tape
(though remember
blanks under the tape
head).

● Insert a marker for the
tape head position that
encodes the current
state.

0 0 1 1 1

q
2

q
1q

0

q
3

start

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

q
acc

 → ☐ ☐, R

q
acc

1 → , R☐

 → ☐ ☐, R
0 → 0, R

q
acc

q
acc

q
1

q
3

q
4

q
3

q
rej

Find a
1
q

2

Go to
×
q

5

Go to
×

Cross
off 1

q
1

q
0

Start
over
q

7
Clear
Marks
q

6

start 1 → , R☐

1 → 1, R

× → ×, R 1 → 1, R

1 → 1, R
= → =, R

 → ☐ ☐, L

1 → , L☐1 → 1, L
= → =, L
1 → 1, L

× → ×, R
 1 → 1, R

 = → =, L

1 → 1, L

× → ×, L

1 → 1, L

 → ☐ ☐, R

q
rej

= → =, R

Rehydrating IDs

1 1 1 1 1× = 1 1 1 1 1q3

q
3

q
3

q
4

q
rej

Find a
1
q

2

Go to
×
q

5

Go to
×

Cross
off 1

q
1

q
0

Start
over
q

7
Clear
Marks
q

6

start 1 → , R☐

1 → 1, R

× → ×, R 1 → 1, R

1 → 1, R
= → =, R

 → ☐ ☐, L

1 → , L☐1 → 1, L
= → =, L
1 → 1, L

× → ×, R
 1 → 1, R

 = → =, L

1 → 1, L

× → ×, L

1 → 1, L

 → ☐ ☐, R

q
rej

= → =, R

Rehydrating IDs

1 1 1 1 1× = 1 1 1 1 1… …

Manipulating IDs

Theorem: For any TM M, it is possible
 to build a second TM SimM that, given a
 a tape containing an ID of M, simulates
 one step of M's computation.

Manipulating IDs

Theorem: For any TM M, it is possible
 to build a second TM SimM that, given a
 a tape containing an ID of M, simulates
 one step of M's computation.

Proof sketch:

… 0 0 q3 1 1 1 …

SimM's tape.SimM's tape.

At this point, SimM can remember
that it's seen state q3. There are
only finitely many possible states.

At this point, SimM can remember
that it's seen state q3. There are
only finitely many possible states.

Manipulating IDs

Theorem: For any TM M, it is possible
 to build a second TM SimM that, given a
 a tape containing an ID of M, simulates
 one step of M's computation.

Proof sketch:

… 0 0 q3 1 1 1 …

SimM's tape.SimM's tape.

… 0 0 1 1 1 …

What M would
see here.

What M would
see here.

Manipulating IDs

Theorem: For any TM M, it is possible
 to build a second TM SimM that, given a
 a tape containing an ID of M, simulates
 one step of M's computation.

Proof sketch:

… 0 0 q3 1 1 1 …

SimM's tape.SimM's tape.

SimM now knows
that M is in state
q3 and reading 1.

SimM now knows
that M is in state
q3 and reading 1. q

3

0 → 1, L
1 → 0, L (Hypothetically, suppose

that this is the state q3 in
the machine M)

(Hypothetically, suppose
that this is the state q3 in

the machine M)

Manipulating IDs

Theorem: For any TM M, it is possible
 to build a second TM SimM that, given a
 a tape containing an ID of M, simulates
 one step of M's computation.

Proof sketch:

… 0 0 q3 1 1 1 …

SimM's tape.SimM's tape.

SimM now knows
that M is in state
q3 and reading 1.

SimM now knows
that M is in state
q3 and reading 1. q

3

0 → 1, L
1 → 0, L SimM can then go

simulate writing a 0 and
moving left.

SimM can then go
simulate writing a 0 and

moving left.

Manipulating IDs

Theorem: For any TM M, it is possible
 to build a second TM SimM that, given a
 a tape containing an ID of M, simulates
 one step of M's computation.

Proof sketch:

… 0 q3 0 0 1 1 …

SimM's tape.SimM's tape.

… 0 0 0 1 1 …

What M would
see here.

What M would
see here.

Putting Everything Together

● Theorem: For any NTM N, there exists a DTM D
 such that (ℒ N) = (ℒ D).

● Proof sketch: D uses a worklist to exhaustively
 search over N's computation tree.

… 1 1 0 …

q
1

Go
leftq

0
start

1 → 0, R

0 → 1, R
1 → 1, R

 → ☐ ☐, L

0 → 1, R
1 → 0, R

 → ☐ ☐, L

Schematically

Workspace Worklist of IDs

To simulate the NTM N with a DTM D, we construct D
as follows:

· On input w, D converts w into an initial ID for N
 starting on w.

· While D has not yet found an accepting state:

 · D finds the next ID for N from the worklist.

 · D copies this ID once for each possible transition.

 · D simulates one step of the computation for each
 of these IDs.

 · D copies these IDs to the back of the worklist.

To simulate the NTM N with a DTM D, we construct D
as follows:

· On input w, D converts w into an initial ID for N
 starting on w.

· While D has not yet found an accepting state:

 · D finds the next ID for N from the worklist.

 · D copies this ID once for each possible transition.

 · D simulates one step of the computation for each
 of these IDs.

 · D copies these IDs to the back of the worklist.

Why All This Matters

● All of the TM design techniques we've
seen have come into play here:
● Building and manipulating lists.
● Exhaustively searching over an infinite

space.
● Storing constant information in the

finite-state control.
● Simulating one TM with another.

● TMs can do a huge number of complex
computations!

Just how powerful are Turing machines?

Effective Computation

● An effective method of computation is a
form of computation with the following
properties:
● The computation consists of a set of steps.
● There are fixed rules governing how one step

leads to the next.
● Any computation that yields an answer does so in

finitely many steps.
● Any computation that yields an answer always

yields the correct answer.

● This is not a formal definition. Rather, it's a
set of properties we want to have.

The Church-Turing Thesis states that

Every effective method of computation
is either equivalent to or weaker than a

Turing machine.

This is not a mathematical fact – it's a
hypothesis about the nature of

computation.

Regular
Languages CFLs

All Languages

Problems
Solvable by

Any Feasible
Computing

Machine

Regular
Languages CFLs

All Languages

RE

What problems
are out here?
What problems
are out here?

Time-Out For Announcements!

Friday Four Square!
Today at 4:15PM outside Gates

Your Questions

“Do you do research? If so, what kind of
research do you do?”

“What are some of the famous open
questions computer theorists are trying to
prove (within the scope of the material that

we have covered so far)?”

When converting an NTM to a DTM, how much
more time will the DTM take relative to the

NTM to determine whether to accept? (More on
that later in CS103...)

If a problem can be solved by an NTM, can it be
solved by a TM that makes random choices
about which transitions to take rather than

making nondeterministic choices about which
transitions to take? (Take CS254!)

“What's the significance of the number
137? It's always cropping up in examples.”

α=
e2

4πϵ0 h̄ c
≈

1
137

“I wanna introduce mathematical theory to
martial arts. I think math is the language of
science and engineering including martial

arts. And I wanna make martial arts an
formal official course just like computer

science. Do you think it is possible?”

High-Level Descriptions

The Church-Turing Thesis

● The Church-Turing thesis states that all
effective models of computation are
equivalent to or weaker than a Turing
machine.

● As as a result, we can start to be less
precise with our TM descriptions.

High-Level Descriptions

● A high-level description of a Turing machine is a
description of the form

 M = “On input x:
 Do something with x.”

● Example:

M = “On input x:

 Repeat the following:

 If |x| ≤ 1, accept.

 If the first and last symbols of x aren't
 the same, reject.

 Remove the first and last characters of x.”

High-Level Descriptions

● A high-level description of a Turing machine is a
description of the form

 M = “On input x:
 Do something with x.”

● Example:

M = “On input x:

 Construct y, the reverse of x.

 If x = y, accept.

 Otherwise, reject.”

High-Level Descriptions

● A high-level description of a Turing machine is a
description of the form

 M = “On input x:
 Do something with x.”

● Example:

M = “On input x:

 If x is a palindrome, accept.

 Otherwise, reject.”

High-Level Descriptions

● A high-level description of a Turing machine is a
description of the form

 M = “On input x:
 Do something with x.”

● Example:

M = “On input x:

 Check that x has the form 0n1m2p.

 If not, reject.

 If nm = p, accept.

 Otherwise, reject.”

High-Level Descriptions

● A high-level description of a Turing machine is a
description of the form

 M = “On input x:
 Do something with x.”

● Example:

M = “On input x:

 Check that x has the form 1n+1m 1≟ p.

 If not, reject.

 If so, if n + m = p, accept.

 Otherwise, reject.”

Formatted Input

● Many languages require the input to be in
some particular format.

● We can encode this directly into our TMs:

M = “On input 1n+1m 1≟ p:

 If n + m = p, accept.

 Otherwise, reject.”
● Machines of this form implicitly reject any

inputs that don't have the right format.

What's Allowed?

● Rule of thumb:

You can include anything in
a high-level description,

as long as you could write
a computer program for it.

● A few exceptions: can't get input from the user,
make purely random decisions, etc.

● Unsure about what you can do? Try building
the TM explicitly, or ask the course staff!

Encodings

Computing over Objects

● Turing machines always compute over strings.

● We have seen examples of automata that can
essentially compute over other objects:
● Walking your Dog: Compute over paths.
● Multiplication: Compute over numbers.
● IDs: Compute over TM configurations.

● We have always said how we will encode
objects:
● e.g. { 1m×1n=1mn | m, n ∈ ℕ }

A Multitude of Encodings

● There can be many ways of encoding the same thing.

● Example: the natural number 13:

● In unary: 1111111111111

● In binary: 1101

● In decimal: 13

● In hexadecimal: D

● In Roman numerals: XIII

● …

● Claim: Turing machines are sufficiently powerful
to transform any one of these representations into
any other of these representations.

An Abstract Idea of Encodings

● For simplicity, from this point forward we will
make the following assumption:

For any finite, discrete object O, it
is always possible to find some way

of encoding O as a string.
● When working with Turing machines, it really

doesn't matter how we do the encoding. A TM
can convert any reasonable encoding scheme
into any other encoding scheme.

Notation for Encodings

● For any object O, we will denote a string encoding
of O by writing O in angle brackets: O is encoded
as ⟨O⟩.

● This makes it much easier to specify languages.

● Examples:

 { ⟨R⟩ | R is a regular expression that matches ε }

 { ⟨n⟩ | n ∈ ℕ and the hailstone sequence
 terminates for n.}

● The encoding scheme can make a difference when
trying to determine whether a language is regular or
context-free because of the relative weakness of DFAs
and CFGs.

Encoding Multiple Objects

● Suppose that we want to provide an
encoding of multiple objects.
● Two natural numbers and their product.
● A graph and a path in the graph.
● “I just met you” and “this is crazy.”

● We can get encodings of each individual
object.

● Can we make one string encoding all of
these objects?

One Encoding Scheme

0 10 01

0 0 1 1 0 00 0 1 1 0

⟨X1⟩ ⟨X2⟩

⟨X1, X2⟩

Encoding Multiple Objects

● Given several different objects O1, …, On,
we can represent the encoding of those n
objects as ⟨O1, O2, …, On⟩.

● Examples:
● { ⟨m, n, mn⟩ | m, n ∈ ℕ }
● { ⟨G, w⟩ | G is a context-free grammar that

 generates w }

Next Time

● The Universal Turing Machine
● One machine to run them all?

● An Unsolvable Problem
● Finally... something we honestly can't solve!

● More Unsolvable Problems
● What other languages are not RE?

● Decidability
● How do we formalize the definition of an algorithm?
● What problems can we learn the answer to?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

