Regular Expressions

Recap from Last Time

Regular Languages

- A language L is a **regular language** if there is a DFA D such that $\mathscr{L}(D) = L$.
- **Theorem:** The following are equivalent:
 - *L* is a regular language.
 - There is a DFA for *L*.
 - There is an NFA for *L*.

The Union of Two Languages

- If L_1 and L_2 are languages over the alphabet Σ , the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?

Concatenation Example

- Let $\Sigma = \{ a, b, ..., z, A, B, ..., z \}$ and consider these languages over Σ :
 - **Noun** = { Puppy, Rainbow, Whale, ... }
 - **Verb** = { Hugs, Juggles, Loves, ... }
 - **The** = { **The** }
- The language *TheNounVerbTheNoun* is

{ ThePuppyHugsTheWhale, TheWhaleLovesTheRainbow, TheRainbowJugglesTheRainbow, ... }

Machine for L_2

The Kleene Closure

 An important operation on languages is the *Kleene Closure*, which is defined as

$$L^* = \bigcup_{i = 0}^{\infty} L^i$$

• Mathematically:

$w \in L^*$ iff $\exists n \in \mathbb{N}. w \in L^n$

• Intuitively, all possible ways of concatenating any number of copies of strings in *L* together.

Another View of Regular Languages

Rethinking Regular Languages

- We currently have several tools for showing a language is regular.
 - Construct a DFA for it.
 - Construct an NFA for it.
 - Apply closure properties to existing languages.
- We have not spoken much of this last idea.

Constructing Regular Languages

- **Idea:** Build up all regular languages as follows:
 - Start with a small set of simple languages we already know to be regular.
 - Using closure properties, combine these simple languages together to form more elaborate languages.
- A bottom-up approach to the regular languages.

Regular Expressions

- **Regular expressions** are a descriptive format used compactly describe a language.
- Used extensively in software systems for string processing and as the basis for tools like grep and flex.
- Conceptually: regular languages are strings describing how to assemble a larger language out of smaller pieces.

Atomic Regular Expressions

- The regular expressions begin with three simple building blocks.
- The symbol \mathcal{O} is a regular expression that represents the empty language \mathcal{O} .
- The symbol ϵ is a regular expression that represents the language { ϵ }
 - This is not the same as Ø!
- For any $a \in \Sigma$, the symbol a is a regular expression for the language $\{a\}$

Compound Regular Expressions

- We can combine together existing regular expressions in four ways.
- If R_1 and R_2 are regular expressions, R_1R_2 is a regular expression for the *concatenation* of the languages of R_1 and R_2 .
- If R_1 and R_2 are regular expressions, $R_1 \mid R_2$ is a regular expression for the *union* of the languages of R_1 and R_2 .
- If R is a regular expression, \mathbb{R}^* is a regular expression for the *Kleene closure* of the language of R.
- If R is a regular expression, (R) is a regular expression with the same meaning as R.

Operator Precedence

• Regular expression operator precedence:

(R) R^* R_1R_2 $R_1 \mid R_2$

So ab*c|d is parsed as ((a(b*))c)|d

Regular Expression Examples

- The regular expression trick treat represents the regular language { trick, treat }
- The regular expression booo* represents the regular language { boo, booo, boooo, ... }
- The regular expression candy! (candy!) * represents the regular language { candy!, candy!candy!, candy!candy!candy!, ... }

Regular Expressions, Formally

- The *language of a regular expression* is the language described by that regular expression.
- Formally:
 - $\mathscr{L}(\varepsilon) = \{\varepsilon\}$
 - $\mathcal{L}(\emptyset) = \emptyset$
 - $\mathscr{L}(\mathbf{a}) = \{\mathbf{a}\}$
 - $\mathscr{L}(R_1R_2) = \mathscr{L}(R_1) \mathscr{L}(R_2)$
 - $\mathscr{L}(R_1 \mid R_2) = \mathscr{L}(R_1) \cup \mathscr{L}(R_2)$
 - $\mathscr{L}(R^*) = \mathscr{L}(R)^*$
 - $\mathscr{L}((R)) = \mathscr{L}(R)$

Worthwhile activity: Apply this recursive definition to

a(b|c)((d))

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains } 00 \text{ as a substring } \}$

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains } 00 \text{ as a substring } \}$

(0 | 1)*00(0 | 1)*

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains } 00 \text{ as a substring } \}$

(0 | 1)*00(0 | 1)*

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains } 00 \text{ as a substring } \}$

(0 | 1)*00(0 | 1)*

11011100101 0000 11111011110011111

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains } 00 \text{ as a substring } \}$

(0 | 1)*00(0 | 1)*

11011100101 0000 11111011110011111

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains } 00 \text{ as a substring } \}$

Σ*00Σ*

11011100101 0000 11111011110011111

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$

Let $\Sigma = \{0, 1\}$ Let $L = \{ w \in \Sigma^* | |w| = 4 \}$

Let $\Sigma = \{0, 1\}$ Let $L = \{ w \in \Sigma^* | |w| = 4 \}$

The length of a string w is denoted IWI
- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$

ΣΣΣΣ

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$

ΣΣΣΣ

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$

ΣΣΣΣ

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$

ΣΣΣΣ

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$

Σ4

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid |w| = 4 \}$

Σ4

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* | w \text{ contains at most one } 0 \}$

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* | w \text{ contains at most one } 0 \}$

1*(0 | ε)1*

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* | w \text{ contains at most one } 0 \}$

1*(0 | ε)1*

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* | w \text{ contains at most one } 0 \}$

1*(0 | ε)1*

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* | w \text{ contains at most one } 0 \}$

1*(0 | ε)1*

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* | w \text{ contains at most one } 0 \}$

1*0?1*

- Let Σ = { a, ., @ }, where a represents "some letter."
- Regular expression for email addresses:

- Let Σ = { a, ., @ }, where a represents "some letter."
- Regular expression for email addresses:

aa*(.aa*)*@aa*.aa*(.aa*)*

- Let Σ = { a, ., @ }, where a represents "some letter."
- Regular expression for email addresses:

aa*(.aa*)*@aa*.aa*(.aa*)*

- Let Σ = { a, ., @ }, where a represents "some letter."
- Regular expression for email addresses:

aa*(.aa*)*@aa*.aa*(.aa*)*

- Let Σ = { a, ., @ }, where a represents "some letter."
- Regular expression for email addresses:

aa*(.aa*)*@aa*.aa*(.aa*)*

- Let Σ = { a, ., @ }, where a represents "some letter."
- Regular expression for email addresses:

aa*(.aa*)*@aa*.aa*(.aa*)*

- Let Σ = { a, ., @ }, where a represents "some letter."
- Regular expression for email addresses:

a⁺ (.aa^{*})^{*}@aa^{*}.aa^{*}(.aa^{*})^{*}

- Let Σ = { a, ., @ }, where a represents "some letter."
- Regular expression for email addresses:

a⁺ (.a⁺)^{*} @ a⁺.a⁺ (.a⁺)^{*}

- Let Σ = { a, ., @ }, where a represents "some letter."
- Regular expression for email addresses:

a⁺ (.**a**⁺)* @ **a**⁺.**a**⁺ (.**a**⁺)*

- Let Σ = { a, ., @ }, where a represents "some letter."
- Regular expression for email addresses:

 a^+ (. a^+)* @ a^+ (. a^+)*

- Let Σ = { a, ., @ }, where a represents "some letter."
- Regular expression for email addresses:

a⁺(.**a**⁺)*@a⁺(.**a**⁺)⁺

a⁺(.a⁺)*@a⁺(.a⁺)⁺ @,.

Shorthand Summary

- R^n is shorthand for $RR \dots R$ (*n* times).
- Σ is shorthand for "any character in $\Sigma.$ "
- R? is shorthand for $(R \mid \varepsilon)$, meaning "zero or one copies of R."
- R^+ is shorthand for RR^* , meaning "one or more copies of R."

Time-Out for Announcements!

Upcoming Talk

- WiCS is hosting a talk by Yoky Matsuoka, VP of Technology at Nest Labs and cofounder of Google[x].
- Before that, she was a professor of CS, neuroscience, and ME.
- Coming up next Thursday, November 6 at 4PM at Braun Auditorium.
- RSVP requested: http://goo.gl/forms/KwDpCiUfHn

STEM Fellows Program

- "[T]he Stanford Undergraduate STEM Fellows Program provides support to students who will promote the diversity (broadly defined) of the future professoriate. The program [... seeks] to increase the number of PhDs earned by under-represented groups in the areas of science, technology, engineering, and math."
- Deadline is December 8, but I'd encourage applying early.
- Details online at

https://undergrad.stanford.edu/opportunities-research/ fellowships/fellowships-listing/stanford-undergraduate -stem-fellows-program

Problem Set Four Solutions

- PS4 solutions will be available outside of class today and in the filing cabinet after that.
 - SCPD students: you should receive them soon.
- Want older solution sets? Pick them up soon before they get recycled!

Order in a World of Chaos

• *Please keep the box of exams alphabetized*. Everyone pays if even a small number of people scramble the exams.

Your Questions

"I've noticed that you're very passionate about diversity in CS. What advice would you have for someone who is part of a minority and is about to have a job/internship in an environment that is not likely to be diverse?" "In your opinion, what's the biggest number?"

"What do you do in your free time?"

"Why don't we have a class called Data Structures? Is 106B/X our equivalent of this? Recruiters and interviewers ask me why I haven't taken data structures all the time and I never know how to respond."
Back to CS103!

The Power of Regular Expressions

Theorem: If R is a regular expression, then $\mathscr{L}(R)$ is regular.

Proof idea: Show how to convert a regular expression into an NFA.

A Marvelous Construction

- The following theorem proves the language of any regular expression is regular:
- **Theorem:** For any regular expression *R*, there is an NFA *N* such that
 - $\mathscr{L}(R) = \mathscr{L}(N)$
 - *N* has exactly one accepting state.
 - *N* has no transitions into its start state.
 - *N* has no transitions out of its accepting state.

A Marvelous Construction

The following theorem proves the language of any regular expression is regular:

Theorem: For any regular expression *R*, there is an NFA *N* such that

 $\mathscr{L}(R) = \mathscr{L}(N)$

- *N* has exactly one accepting state.
- *N* has no transitions into its start state.
- *N* has no transitions out of its accepting state.

A Marvelous Construction

The following theorem j any regular expression

Theorem: For any regu is an NFA N such that

 $\mathscr{L}(R) = \mathscr{L}(N)$

These are stronger requirements than are necessary for a normal NFA. We enforce these rules to simplify the construction.

- *N* has exactly one accepting state.
- N has no transitions into its start state.
- *N* has no transitions out of its accepting state.

Base Cases

Automaton for ϵ

Why This Matters

- Many software tools work by matching regular expressions against text.
- One possible algorithm for doing so:
 - Convert the regular expression to an NFA.
 - (Optionally) Convert the NFA to a DFA using the subset construction.
 - Run the text through the finite automaton and look for matches.
- Runs extremely quickly!

The Power of Regular Expressions

Theorem: If L is a regular language, then there is a regular expression for L.

This is not obvious!

Proof idea: Show how to convert an arbitrary NFA into a regular expression.

$$s_{1} | s_{2} | \dots | s_{n}$$

start
$$s_{1} | s_{2} | \dots | s_{n}$$

Regular expression: $(s_{1} | s_{2} | \dots | s_{n}) *$

$$s_{1} | s_{2} | \dots | s_{n}$$

start
Regular expression: $(s_{1} | s_{2} | \dots | s_{n}) *$

Key idea: Label transitions with arbitrary regular expressions.

Key idea: If we can convert any NFA into something that looks like this, we can easily read off the regular expression.

 \mathbf{q}_{f}

ε R₁₁* R₁₂

Note: We're using concatenation and Kleene closure in order to skip this state.

 $R_{11} * R_{12}$

R₁₁* R₁₂

 $\mathbf{R}_{22} \mid \mathbf{R}_{21} \; \mathbf{R}_{11}^{*} \; \mathbf{R}_{12}^{}$

Note: We're using union to combine these transitions together.

$R_{11}^* R_{12} (R_{22} | R_{21}^* R_{11}^* R_{12})^* \epsilon$

$R_{11}^* R_{12} (R_{22} | R_{21}^* R_{11}^* R_{12})^* \epsilon$

$R_{11}^* R_{12} (R_{22} | R_{21}^* R_{11}^* R_{12})^* \epsilon$

$R_{11}^* R_{12} (R_{22} | R_{21}^* R_{11}^* R_{12})^*$

The Construction at a Glance

- Start with an NFA for the language *L*.
- Add a new start state $q_{\rm s}$ and accept state $q_{\rm f}$ to the NFA.
 - Add ϵ -transitions from each original accepting state to $q_{\rm f}$, then mark them as not accepting.
- Repeatedly remove states other than q_s and q_f from the NFA by "shortcutting" them until only two states remain: q_s and q_f .
- The transition from $q_{\rm s}$ to $q_{\rm f}$ is then a regular expression for the NFA.

Our Transformations

Theorem: The following are all equivalent:

- \cdot *L* is a regular language.
- · There is a DFA D such that $\mathcal{L}(D) = L$.
- · There is an NFA N such that $\mathscr{L}(N) = L$.
- · There is a regular expression R such that $\mathscr{L}(R) = L$.

Next Time

- Applications of Regular Languages
 - Answering "so what?"
- Intuiting Regular Languages
 - What makes a language regular?
- The Myhill-Nerode Theorem
 - The limits of regular languages.