

Complexity Theory
Part I

Outline for Today

● Recap from Last Time
● Reviewing Verifiers

● Nondeterministic Turing Machines
● What does nondeterminism mean in the context

of TMs? And just how powerful are NTMs?

● Complexity Theory
● A new framework for solvability.

● The Complexity Class P
● What problems can be solved efficiently?

Recap from Last Time

Verifiers

● A verifier for a language L is a TM V with the
following properties:

● V is a decider (that is, V halts on all inputs.)
● For any string w ∈ Σ*, the following is true:

w ∈ L iff ∃c ∈ Σ*. V accepts ⟨w, c⟩
● Some notes about V:

● If V accepts ⟨w, c⟩, then we're guaranteed w ∈ L.

● If V does not accept ⟨w, c⟩, then either

– w ∈ L, but you gave the wrong c, or
– w ∉ L, so no possible c will work.

Verifiers

● A verifier for a language L is a TM V with the
following properties:

● V is a decider (that is, V halts on all inputs.)
● For any string w ∈ Σ*, the following is true:

w ∈ L iff ∃c ∈ Σ*. V accepts ⟨w, c⟩
● Some notes about V:

● If w ∈ L, a string c for which V accepts ⟨w, c⟩ is
called a certificate for c.

● V is required to halt, so given any potential
certificate c for w, you can check whether the
certificate is correct.

Verifiers and RE

● Theorem: If there is a verifier V for a
language L, then L ∈ RE.

● Proof idea: Build a recognizer that tries
every possible certificate to see if w ∈ L.

● Proof sketch: Show that this TM is a
recognizer for L:

M = “On input w:
For i = 0 to ∞

For each string c of length i:
Run V on ⟨w, c⟩.
If V accepts ⟨w, c⟩, M accepts w.”

M = “On input w:
For i = 0 to ∞

For each string c of length i:
Run V on ⟨w, c⟩.
If V accepts ⟨w, c⟩, M accepts w.”

Verifiers and RE

● Theorem: If L ∈ RE, then there is a
verifier for L.

● Proof sketch: Let L be an RE language
and let M be a recognizer for it. Then
show that this is a verifier for L:

V = “On input ⟨w, n⟩, where n ∈ ℕ:
Run M on w for n steps.
If M accepts w within n steps, accept.
If M did not accept w in n steps, reject.”

V = “On input ⟨w, n⟩, where n ∈ ℕ:
Run M on w for n steps.
If M accepts w within n steps, accept.
If M did not accept w in n steps, reject.”

Nondeterministic Turing Machines

Nondeterministic TMs

● A nondeterministic Turing machine (or NTM) is a
Turing machine in which there can be zero or multiple
transitions defined at each state.

● Nondeterministic TMs do not have ε-transitions; they
have to read or write something and move the tape at
each step.

● As with NFAs, NTMs accept if any path accepts. In
other words, an NTM for a language L is one where

w ∈ L iff there is some series of choices N can
make that causes N to accept w.

● In particular, if w ∈ L, N only needs to accept w along
one branch. The rest can loop infinitely or reject.

Designing an NTM

● A tautonym is a word that consists of the same
string repeated twice.

● Some examples:
● dikdik (an adorable petite antelope)

● hotshots (people who aren't very fun to be around)

● Consider the following language ver Σ = {0, 1}:

L = { ww | w ∈ Σ* and w ≠ ε }
● This is the set of all nonempty tautonyms.
● How might we design a TM for this language?

What's Tricky

0 0 1 1 0 0 1 1 ……

Using Nondeterminism

0 0 1 1 0 0 1 1 ……

Using Nondeterminism

0 0 1 × 0 0 1 × ……

Guess
Split

To end

To endMatch
0

Match
1

0 → 0, R
1 → 1, R

0 → ×, R 1 → ×, R

 0 → 0, R
 1 → 1, R

0 → 0, R
1 → 1, R

 → ☐ ☐, L

 → ☐ ☐, L

Check
split0 → ×, L 1 → ×, L

start

0 0 1 1 0 0 1 1 ……

A huge difference between
NTMs and NFAs.

Guess
Split

To end

To endMatch
0

Match
1

0 → 0, R
1 → 1, R

0 → ×, R 1 → ×, R

 0 → 0, R
 1 → 1, R

0 → 0, R
1 → 1, R

 → ☐ ☐, L

 → ☐ ☐, L

Check
split

0 → ×, L

 1 → ×, L

start

0 1 0 0 1 0 ……

In an NFA, we can follow
multiple transitions at once by

just being in many states at
the same time.

That doesn't work with NTMs!
The tapes will be different in

each case.

In an NFA, we can follow
multiple transitions at once by

just being in many states at
the same time.

That doesn't work with NTMs!
The tapes will be different in

each case.

Guess
Split

To end

To endMatch
0

Match
1

0 → 0, R
1 → 1, R

0 → ×, R 1 → ×, R

 0 → 0, R
 1 → 1, R

0 → 0, R
1 → 1, R

 → ☐ ☐, L

 → ☐ ☐, L

Check
split

0 → ×, L

 1 → ×, L

start

0 1 0 0 1 0 ……

Guess
Split

To end

To endMatch
0

Match
1

0 → 0, R
1 → 1, R

0 → ×, R 1 → ×, R

 0 → 0, R
 1 → 1, R

0 → 0, R
1 → 1, R

 → ☐ ☐, L

 → ☐ ☐, L

Check
split

0 → ×, L

 1 → ×, L

start

× 1 0 0 1 0 ……

Every time we have multiple choices,
the entire computation branches.

Imagine that we completely clone the
Turing machine, then have one go
down one branch and one go down

the other.

Every time we have multiple choices,
the entire computation branches.

Imagine that we completely clone the
Turing machine, then have one go
down one branch and one go down

the other.

Intuiting Nondeterministic TMs

● Two of our previous NTM intuitions are useful here:
● Perfect guessing: If there is some choice of transitions

that leads to an accepting state, the NTM can perfectly
guess those transitions.
● There's just one NTM, and it makes the right guess if one exists.

● Massive parallelism: The NTM tries all options. Each
time it follows multiple transitions, it copies the current
state of the machine once for each option, then tries each
option.
● Each step of the computation creates multiple new NTMs to try

out each branch.

● The “guess-and-check” intuition from NFAs still applies
here and is probably the best way to design NTMs.

Guessing Arbitrary Objects

● NTMs can use their nondeterminism to
guess an arbitrary discrete, finite object.

● Idea: The NTM nondeterministically
chooses a string to write on its tape, then
does something with the string it just
wrote.

Guessing an Arbitrary String

● As an example, here's how an NTM can
guess an arbitrary string, then go do
something with it:

● As a high-level description:

Build
string

Back
home

Check
string

 → ☐ a, R
 → ☐ b, R

a → a, L
b → b, L

 → ☐ ☐, L → ☐ ☐, R

N = “On input w:
Nondeterministically guess a string x ∈ Σ*.
Deterministically check whether [...]”

N = “On input w:
Nondeterministically guess a string x ∈ Σ*.
Deterministically check whether [...]”

Just How Powerful are NTMs?

NTMs and DTMs

● Theorem: If L ∈ RE, then there is an
NTM for L.

● Proof Sketch: Every deterministic TM
(DTM) can be thought of as an NTM with
no nondeterminism, so if L is the
language of a DTM, it's also the language
of an NTM. ■

NTMs and DTMs

● Theorem: If L is the language of an NTM, then
L ∈ RE.

● Faulty Proof Idea: Use the subset
construction.

● Why doesn't this work?
● In an NFA, the only “memory” is which states are

active, so creating one state per configuration
simulates the NFA with a DFA.

● In an NTM, the memory is the current state plus the
tape contents, so building one state per
configuration is impossible.

NTMs and DTMs

● Theorem: If L is the language of an NTM, then
L ∈ RE.

● Proof Idea: Show how to construct an verifier for L
using the NTM.

● We showed how to build a verifier for an arbitrary
TM M by having the certificate for some w ∈ L be
the number of steps it takes for M to accept w.

● With an NTM, there might be many possible
executions of length n on the string w.

● Idea: Our certificate will be the series of transitions
that N is supposed to follow to accept w.

NTMs and DTMs

● Theorem: If L is the language of an NTM,
then L ∈ RE.

● Proof Sketch: Let N be an NTM for L. Then
we can prove that this is a verifier for L:

V = “On input ⟨w, T⟩, where T is a sequence of
 transitions:

· Run N on w, following transitions in the order
· specified in T.
· If any of the transitions in T are invalid or
· can't be followed, reject.
· If after following the transitions N accepts w,
· accept; otherwise reject.

V = “On input ⟨w, T⟩, where T is a sequence of
 transitions:

· Run N on w, following transitions in the order
· specified in T.
· If any of the transitions in T are invalid or
· can't be followed, reject.
· If after following the transitions N accepts w,
· accept; otherwise reject.

Where We Stand

● We now know a lot about R, RE, and co-RE:
● The RE languages are the languages for which

we can build a recognizer, an NTM, or which
can be verified.

● The R languages are the decidable languages,
or the languages which are both RE and co-RE.

● The co-RE languages are the complements of
the RE languages and the languages for which
there is a co-recognizer.

● The recursion theorem lets us find examples of
languages that aren't in some of these classes.

The Limits of Computability

RE

A
TMHALT

L
D

co-RE R
ADD

0*1*

A
TMHALT

L
D

EQ
TM

EQ
TM

What problems can be
solved by a computer?

What problems can be
solved efficiently by a computer?

Where We've Been

● The class R represents problems that can be
solved by a computer.

● The class RE represents problems where “yes”
answers can be verified by a computer.

● The class co-RE represents problems where
“no” answers can be verified by a computer.

The mapping reduction can be used to find
connections between problems.

Where We're Going

● The class P represents problems that can be
solved efficiently by a computer.

● The class NP represents problems where “yes”
answers can be verified efficiently by a
computer.

● The class co-NP represents problems where
“no” answers can be verified efficiently by a
computer.

● The polynomial-time mapping reduction can be
used to find connections between problems.

Time-Out for Announcements!

Casual CS Dinner Tonight

● WiCS is holding their second biquarterly
Casual CS Dinner tonight on the Gates
fifth floor at 6PM.

● Meet fellow women CS students, chat
with professors, talk with folks in
industry, and have a nice dinner!

Problem Set Six Grading

● The TAs are humming along and grading
PS6. It should be ready by Friday.

Your Questions

“The distribution for midterm 2 was very
discouraging. I got everything correct

except one detail and got put right below
median. I studied extremely hard but

apparently not doing it right. How can we
best prepare for exams to meet such high

curve?”

“I've spoken to friends in industry, and they
seem to only speak of discrete math as

something they did long ago – almost like a
rite of passage. How will CS103 help us

become better programmers? Why do we
need this? I'm missing the big picture.”

“Can we have a 103 trip for the Alan
Turing movie (aka the Imitation Game,

staring Benedict Cumberbatch)?”

“Keith, is it possible to build a Turing
Machine that checks {w | w is an encoding
of some Turing Machine H}? How about a

decider?”

“Is it theoretically possible for a machine to
create a machine that is more complex

than itself?”

“In class, you mentioned that there is no
physical analog to NFAs, and that quantum

computers "do not really match" how an
NFA works. I've read a bit about QFAs -

could you give us a broad idea of how they
can solve problems that we otherwise

can't?”

“How does quantum computing relate to
Turing Machines and DFAs? Do the same

bounds apply?”

“I get that there are some types of
problems that are impossible to compute,
but so far they all seem 100% theoretical.

What are the practical implications of what
we're talking about? Can you give
examples of real world problems

impossible to solve?”

Back to CS103!

It may be that since one is customarily
concerned with existence, […] decidability,
and so forth, one is not inclined to take
seriously the question of the existence of a
better-than-decidable algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”

A Decidable Problem
● Presburger arithmetic is a logical system for reasoning

about arithmetic.

● ∀x. x + 1 ≠ 0

● ∀x. ∀y. (x + 1 = y + 1 → x = y)

● ∀x. x + 0 = x

● ∀x. ∀y. (x + y) + 1 = x + (y + 1)

● ∀x. ((P(0) ∧ ∀y. (P(y) → P(y + 1))) → ∀x. P(x)

● Given a statement, it is decidable whether that statement can
be proven from the laws of Presburger arithmetic.

● Any Turing machine that decides whether a statement in
Presburger arithmetic is true or false has to move the tape
head at least times on some inputs of length n (for some
fixed constant c).

22
cn

For Reference

● Assume c = 1.

220

=2

221

=4

222

=16

223

=256

224

=65536

225

=18446744073709551616

226

=340282366920938463463374607431768211456

The Limits of Decidability

● The fact that a problem is decidable does not mean
that it is feasibly decidable.

● In computability theory, we ask the question

 Is it possible to solve problem L at all?

● In complexity theory, we ask the question

 Is it possible to solve problem L efficiently?

● In the remainder of this course, we will explore this
question in more detail.

 Undecidable Languages

Regular
Languages CFLs R

Efficiently
Decidable

Languages

The Setup

● In order to study computability, we
needed to answer these questions:
● What is “computation?”
● What is a “problem?”
● What does it mean to “solve” a problem?

● To study complexity, we need to answer
these questions:
● What does “complexity” even mean?
● What is an “efficient” solution to a problem?

Measuring Complexity

● Suppose that we have a decider D for some language L.
● How might we measure the complexity of D?

Number of states.

Size of tape alphabet.

Size of input alphabet.

Amount of tape required.
● Amount of time required.

Number of times a given state is entered.

Number of times a given symbol is printed.

Number of times a given transition is taken.

(Plus a whole lot more...)

What is an efficient algorithm?

Searching Finite Spaces

● Many decidable problems can be solved by
searching over a large but finite space of
possible options.

● Searching this space might take a
staggeringly long time, but only finite time.

● From a decidability perspective, this is totally
fine.

● From a complexity perspective, this is totally
unacceptable.

4 3 11 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

Longest so far: 4 11

How many different
subsequences are there in a
sequence of n elements? 2n

How long does it take to check
each subsequence? O(n) time.

Runtime is around O(n · 2n).

How many different
subsequences are there in a
sequence of n elements? 2n

How long does it take to check
each subsequence? O(n) time.

Runtime is around O(n · 2n).

3 5 6 8 10131379 711 93 1144 5 6 1 12 2 8 0 101 12 2 0

A Sample Problem

1 1 2 2 2 3 32 3 1 4 2 4 1 5

How many elements of the
sequence do we have to look at

when considering the kth
element of the sequence? k – 1

Total runtime is
1 + 2 + … + (n – 1) = O(n2)

How many elements of the
sequence do we have to look at

when considering the kth
element of the sequence? k – 1

Total runtime is
1 + 2 + … + (n – 1) = O(n2)

Another Problem

E

A

F

C

D

B

To

From

Number of possible
ways to order a

subset of n nodes is
O(n · n!)

Time to check a
path is O(n).

Runtime: O(n2 · n!)

Number of possible
ways to order a

subset of n nodes is
O(n · n!)

Time to check a
path is O(n).

Runtime: O(n2 · n!)

Another Problem

E

A

F

C

D

B

To

From

0

1

2

2

3

3

With a precise
analysis, runtime

is O(n + m),
where n is the

number of nodes
and m is the

number of edges.

With a precise
analysis, runtime

is O(n + m),
where n is the

number of nodes
and m is the

number of edges.

For Comparison

● Longest increasing
subsequence:
● Naive: O(n · 2n)
● Fast: O(n2)

● Shortest path
problem:
● Naive: O(n2 · n!)
● Fast: O(n + m),

where n is the
number of nodes
and m the number
of edges. (Take
CS161 for details!)

Defining Efficiency

● When dealing with problems that search
for the “best” object of some sort, there
are often at least exponentially many
possible options.

● Brute-force solutions tend to take at least
exponential time to complete.

● Clever algorithms often run in time O(n),
or O(n2), or O(n3), etc.

Polynomials and Exponentials

● An algorithm runs in polynomial time if
its runtime is some polynomial in n.
● That is, time O(nk) for some constant k.

● Polynomial functions “scale well.”
● Small changes to the size of the input do not

typically induce enormous changes to the
overall runtime.

● Exponential functions scale terribly.
● Small changes to the size of the input induce

huge changes in the overall runtime.

The Cobham-Edmonds Thesis

A language L can be decided efficiently if
there is a TM that decides it in polynomial time.

Equivalently, L can be decided efficiently iff
it can be decided in time O(nk) for some k ∈ ℕ.

Like the Church-Turing thesis, this is
not a theorem!

It's an assumption about the nature of
efficient computation, and it is

somewhat controversial.

Like the Church-Turing thesis, this is
not a theorem!

It's an assumption about the nature of
efficient computation, and it is

somewhat controversial.

The Cobham-Edmonds Thesis

● Efficient runtimes:
● 4n + 13
● n3 – 2n2 + 4n
● n log log n

● “Efficient” runtimes:
● n1,000,000,000,000

● 10500

● Inefficient runtimes:
● 2n

● n!
● nn

● “Inefficient” runtimes:
● n0.0001 log n

● 1.000000001n

Why Polynomials?

● Polynomial time somewhat captures efficient
computation, but has a few edge cases.

● However, polynomials have very nice mathematical
properties:
● The sum of two polynomials is a polynomial. (Running one

efficient algorithm after the other gives an efficient
algorithm.)

● The product of two polynomials is a polynomial. (Running
one efficient algorithm a “reasonable” number of times
gives an efficient algorithm.)

● The composition of two polynomials is a polynomial.
(Using the output of one efficient algorithm as the input to
another efficient algorithm gives an efficient algorithm.)

The Complexity Class P

● The complexity class P (for polynomial
time) contains all problems that can be
solved in polynomial time.

● Formally:

P = { L | There is a polynomial-time
decider for L }

● Assuming the Cobham-Edmonds thesis, a
language is in P if it can be decided
efficiently.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

