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Outline for Today

● Recap from Last Time
● Reviewing Verifiers

● Nondeterministic Turing Machines
● What does nondeterminism mean in the context 

of TMs? And just how powerful are NTMs?

● Complexity Theory
● A new framework for solvability.

● The Complexity Class P
● What problems can be solved efficiently?



  

Recap from Last Time



  

Verifiers

● A verifier for a language L is a TM V with the 
following properties:

● V is a decider (that is, V halts on all inputs.)
● For any string w ∈ Σ*, the following is true:

w ∈ L   iff   ∃c ∈ Σ*. V accepts ⟨w, c⟩
● Some notes about V:

● If V accepts ⟨w, c⟩, then we're guaranteed w ∈ L.

● If V does not accept ⟨w, c⟩, then either

– w ∈ L, but you gave the wrong c, or
– w ∉ L, so no possible c will work.



  

Verifiers

● A verifier for a language L is a TM V with the 
following properties:

● V is a decider (that is, V halts on all inputs.)
● For any string w ∈ Σ*, the following is true:

w ∈ L   iff   ∃c ∈ Σ*. V accepts ⟨w, c⟩
● Some notes about V:

● If w ∈ L, a string c for which V accepts ⟨w, c⟩ is 
called a certificate for c.

● V is required to halt, so given any potential 
certificate c for w, you can check whether the 
certificate is correct.



  

Verifiers and RE

● Theorem: If there is a verifier V for a 
language L, then L ∈ RE.

● Proof idea: Build a recognizer that tries 
every possible certificate to see if w ∈ L.

● Proof sketch: Show that this TM is a 
recognizer for L:

M = “On input w:
For i = 0 to ∞

For each string c of length i:
Run V on ⟨w, c⟩.
If V accepts ⟨w, c⟩, M accepts w.”

M = “On input w:
For i = 0 to ∞

For each string c of length i:
Run V on ⟨w, c⟩.
If V accepts ⟨w, c⟩, M accepts w.”



  

Verifiers and RE

● Theorem: If L ∈ RE, then there is a 
verifier for L.

● Proof sketch: Let L be an RE language 
and let M be a recognizer for it. Then 
show that this is a verifier for L:

V = “On input ⟨w, n⟩, where n ∈ ℕ:
Run M on w for n steps.
If M accepts w within n steps, accept.
If M did not accept w in n steps, reject.”

V = “On input ⟨w, n⟩, where n ∈ ℕ:
Run M on w for n steps.
If M accepts w within n steps, accept.
If M did not accept w in n steps, reject.”



  

Nondeterministic Turing Machines



  

Nondeterministic TMs

● A nondeterministic Turing machine (or NTM) is a 
Turing machine in which there can be zero or multiple 
transitions defined at each state.

● Nondeterministic TMs do not have ε-transitions; they 
have to read or write something and move the tape at 
each step.

● As with NFAs, NTMs accept if any path accepts. In 
other words, an NTM for a language L is one where

w ∈ L iff there is some series of choices N can 
make that causes N to accept w.

● In particular, if w ∈ L, N only needs to accept w along 
one branch. The rest can loop infinitely or reject.



  

Designing an NTM

● A tautonym is a word that consists of the same 
string repeated twice.

● Some examples:
● dikdik (an adorable petite antelope)

● hotshots (people who aren't very fun to be around)

● Consider the following language ver Σ = {0, 1}:

L = { ww | w ∈ Σ* and w ≠ ε }   
● This is the set of all nonempty tautonyms.
● How might we design a TM for this language?



  

What's Tricky

0 0 1 1 0 0 1 1 ……



  

Using Nondeterminism

0 0 1 1 0 0 1 1 ……



  

Using Nondeterminism

0 0 1 × 0 0 1 × ……



  

Guess
Split

To end

To endMatch
0

Match
1

0 → 0, R
1 → 1, R

0 → ×, R        1 → ×, R

                      0 → 0, R
                      1 → 1, R

0 → 0, R                      
1 → 1, R                      

                     → ☐ ☐, L

 → ☐ ☐, L                    

Check
split0 → ×, L               1 → ×, L

start

0 0 1 1 0 0 1 1 ……



  

A huge difference between
NTMs and NFAs.



  

Guess
Split

To end

To endMatch
0

Match
1

0 → 0, R
1 → 1, R

0 → ×, R        1 → ×, R

                      0 → 0, R
                      1 → 1, R

0 → 0, R                      
1 → 1, R                      

                     → ☐ ☐, L

 → ☐ ☐, L                    

Check
split

 

0 → ×, L      
 

      1 → ×, L

start

0 1 0 0 1 0 ……

In an NFA, we can follow 
multiple transitions at once by 

just being in many states at 
the same time.

That doesn't work with NTMs! 
The tapes will be different in 

each case.

In an NFA, we can follow 
multiple transitions at once by 

just being in many states at 
the same time.

That doesn't work with NTMs! 
The tapes will be different in 

each case.



  

Guess
Split

To end

To endMatch
0

Match
1

0 → 0, R
1 → 1, R

0 → ×, R        1 → ×, R

                      0 → 0, R
                      1 → 1, R

0 → 0, R                      
1 → 1, R                      

                     → ☐ ☐, L

 → ☐ ☐, L                    

Check
split

 

0 → ×, L      
 

      1 → ×, L

start

0 1 0 0 1 0 ……

Guess
Split

To end

To endMatch
0

Match
1

0 → 0, R
1 → 1, R

0 → ×, R        1 → ×, R

                      0 → 0, R
                      1 → 1, R

0 → 0, R                      
1 → 1, R                      

                     → ☐ ☐, L

 → ☐ ☐, L                    

Check
split

 

0 → ×, L      
 

      1 → ×, L

start

× 1 0 0 1 0 ……

Every time we have multiple choices, 
the entire computation branches.

 

Imagine that we completely clone the 
Turing machine, then have one go 
down one branch and one go down 

the other.

Every time we have multiple choices, 
the entire computation branches.

 

Imagine that we completely clone the 
Turing machine, then have one go 
down one branch and one go down 

the other.



  

Intuiting Nondeterministic TMs

● Two of our previous NTM intuitions are useful here:
● Perfect guessing: If there is some choice of transitions 

that leads to an accepting state, the NTM can perfectly 
guess those transitions.
● There's just one NTM, and it makes the right guess if one exists.

● Massive parallelism: The NTM tries all options. Each 
time it follows multiple transitions, it copies the current 
state of the machine once for each option, then tries each 
option.
● Each step of the computation creates multiple new NTMs to try 

out each branch.

● The “guess-and-check” intuition from NFAs still applies 
here and is probably the best way to design NTMs.



  

Guessing Arbitrary Objects

● NTMs can use their nondeterminism to 
guess an arbitrary discrete, finite object.

● Idea: The NTM nondeterministically 
chooses a string to write on its tape, then 
does something with the string it just 
wrote.



  

Guessing an Arbitrary String

● As an example, here's how an NTM can 
guess an arbitrary string, then go do 
something with it:

 

 
● As a high-level description:

Build
string

Back
home

Check
string

 → ☐ a, R
 → ☐ b, R

 

a → a, L
b → b, L

 

 → ☐ ☐, L    → ☐ ☐, R   

N = “On input w:
Nondeterministically guess a string x ∈ Σ*.
Deterministically check whether [...]”

N = “On input w:
Nondeterministically guess a string x ∈ Σ*.
Deterministically check whether [...]”



  

Just How Powerful are NTMs?



  

NTMs and DTMs

● Theorem: If L ∈ RE, then there is an 
NTM for L.

● Proof Sketch: Every deterministic TM 
(DTM) can be thought of as an NTM with 
no nondeterminism, so if L is the 
language of a DTM, it's also the language 
of an NTM. ■



  

NTMs and DTMs

● Theorem: If L is the language of an NTM, then 
L ∈ RE.

● Faulty Proof Idea: Use the subset 
construction.

● Why doesn't this work?
● In an NFA, the only “memory” is which states are 

active, so creating one state per configuration 
simulates the NFA with a DFA.

● In an NTM, the memory is the current state plus the 
tape contents, so building one state per 
configuration is impossible.



  

NTMs and DTMs

● Theorem: If L is the language of an NTM, then 
L ∈ RE.

● Proof Idea: Show how to construct an verifier for L 
using the NTM.

● We showed how to build a verifier for an arbitrary 
TM M by having the certificate for some w ∈ L be 
the number of steps it takes for M to accept w.

● With an NTM, there might be many possible 
executions of length n on the string w.

● Idea: Our certificate will be the series of transitions 
that N is supposed to follow to accept w.



  

NTMs and DTMs

● Theorem: If L is the language of an NTM, 
then L ∈ RE.

● Proof Sketch: Let N be an NTM for L. Then 
we can prove that this is a verifier for L:

V = “On input ⟨w, T⟩, where T is a sequence of
    transitions:

· Run N on w, following transitions in the order
· specified in T.
· If any of the transitions in T are invalid or
· can't be followed, reject.
· If after following the transitions N accepts w,
· accept; otherwise reject.

V = “On input ⟨w, T⟩, where T is a sequence of
    transitions:

· Run N on w, following transitions in the order
· specified in T.
· If any of the transitions in T are invalid or
· can't be followed, reject.
· If after following the transitions N accepts w,
· accept; otherwise reject.



  

Where We Stand

● We now know a lot about R, RE, and co-RE:
● The RE languages are the languages for which 

we can build a recognizer, an NTM, or which 
can be verified.

● The R languages are the decidable languages, 
or the languages which are both RE and co-RE.

● The co-RE languages are the complements of 
the RE languages and the languages for which 
there is a co-recognizer.

● The recursion theorem lets us find examples of 
languages that aren't in some of these classes.



  

The Limits of Computability

RE

A
TMHALT

L
D

co-RE R
ADD

0*1*

A
TMHALT

L
D

EQ
TM

EQ
TM



  

What problems can be
solved by a computer?



  

What problems can be
solved efficiently by a computer?



  

Where We've Been

● The class R represents problems that can be 
solved by a computer.

● The class RE represents problems where “yes” 
answers can be verified by a computer.                 
       

● The class co-RE represents problems where
“no” answers can be verified by a computer.         
         

The mapping reduction can be used to find 
connections between problems.



  

Where We're Going

● The class P represents problems that can be 
solved efficiently by a computer.

● The class NP represents problems where “yes” 
answers can be verified efficiently by a 
computer.

● The class co-NP represents problems where 
“no” answers can be verified efficiently by a 
computer.

● The polynomial-time mapping reduction can be 
used to find connections between problems.



  

Time-Out for Announcements!



  

Casual CS Dinner Tonight

● WiCS is holding their second biquarterly 
Casual CS Dinner tonight on the Gates 
fifth floor at 6PM.

● Meet fellow women CS students, chat 
with professors, talk with folks in 
industry, and have a nice dinner!



  

Problem Set Six Grading

● The TAs are humming along and grading 
PS6. It should be ready by Friday.



  

Your Questions



  

“The distribution for midterm 2 was very 
discouraging. I got everything correct 

except one detail and got put right below 
median. I studied extremely hard but 

apparently not doing it right. How can we 
best prepare for exams to meet such high 

curve?”



  

“I've spoken to friends in industry, and they 
seem to only speak of discrete math as 

something they did long ago – almost like a 
rite of passage. How will CS103 help us 

become better programmers? Why do we 
need this? I'm missing the big picture.”



  

“Can we have a 103 trip for the Alan 
Turing movie (aka the Imitation Game, 

staring Benedict Cumberbatch)?”



  

“Keith, is it possible to build a Turing 
Machine that checks {w | w is an encoding 
of some Turing Machine H}? How about a 

decider?”



  

“Is it theoretically possible for a machine to 
create a machine that is more complex 

than itself?”



  

“In class, you mentioned that there is no 
physical analog to NFAs, and that quantum 

computers "do not really match" how an 
NFA works. I've read a bit about QFAs - 

could you give us a broad idea of how they 
can solve problems that we otherwise 

can't?”

“How does quantum computing relate to 
Turing Machines and DFAs? Do the same 

bounds apply?”



  

“I get that there are some types of 
problems that are impossible to compute, 
but so far they all seem 100% theoretical. 

What are the practical implications of what 
we're talking about? Can you give 
examples of real world problems 

impossible to solve?”



  

Back to CS103!



  

It may be that since one is customarily 
concerned with existence, […] decidability, 
and so forth, one is not inclined to take 
seriously the question of the existence of a 
better-than-decidable algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”



  

A Decidable Problem
● Presburger arithmetic is a logical system for reasoning 

about arithmetic.

● ∀x. x + 1 ≠ 0

● ∀x. ∀y. (x + 1 = y + 1 → x = y)

● ∀x. x + 0 = x

● ∀x. ∀y. (x + y) + 1 = x + (y + 1)

● ∀x. ((P(0) ∧ ∀y. (P(y) → P(y + 1))) → ∀x. P(x)

● Given a statement, it is decidable whether that statement can 
be proven from the laws of Presburger arithmetic.

● Any Turing machine that decides whether a statement in 
Presburger arithmetic is true or false has to move the tape 
head at least       times on some inputs of length n (for some 
fixed constant c).

22
cn



  

For Reference

● Assume c = 1.

220

=2

221

=4

222

=16

223

=256

224

=65536

225

=18446744073709551616

226

=340282366920938463463374607431768211456



  

The Limits of Decidability

● The fact that a problem is decidable does not mean 
that it is feasibly decidable.

● In computability theory, we ask the question

          Is it possible to solve problem L at all?

● In complexity theory, we ask the question

       Is it possible to solve problem L efficiently?

● In the remainder of this course, we will explore this 
question in more detail.



  Undecidable Languages

Regular
Languages CFLs R

Efficiently
Decidable

Languages



  

The Setup

● In order to study computability, we 
needed to answer these questions:
● What is “computation?”
● What is a “problem?”
● What does it mean to “solve” a problem?

● To study complexity, we need to answer 
these questions:
● What does “complexity” even mean?
● What is an “efficient” solution to a problem?



  

Measuring Complexity

● Suppose that we have a decider D for some language L.
● How might we measure the complexity of D?

Number of states.

Size of tape alphabet.

Size of input alphabet.

Amount of tape required.
● Amount of time required.

Number of times a given state is entered.

Number of times a given symbol is printed.

Number of times a given transition is taken.

(Plus a whole lot more...)



  

What is an efficient algorithm?



  

Searching Finite Spaces

● Many decidable problems can be solved by 
searching over a large but finite space of 
possible options.

● Searching this space might take a 
staggeringly long time, but only finite time.

● From a decidability perspective, this is totally 
fine.

● From a complexity perspective, this is totally 
unacceptable.



  

4 3 11 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

Longest so far: 4 11

How many different 
subsequences are there in a 
sequence of n elements?  2n

How long does it take to check 
each subsequence?  O(n) time.

Runtime is around O(n · 2n).

How many different 
subsequences are there in a 
sequence of n elements?  2n

How long does it take to check 
each subsequence?  O(n) time.

Runtime is around O(n · 2n).



  

3 5 6 8 10131379 711 93 1144 5 6 1 12 2 8 0 101 12 2 0

A Sample Problem

1 1 2 2 2 3 32 3 1 4 2 4 1 5

How many elements of the 
sequence do we have to look at 

when considering the kth 
element of the sequence? k – 1

Total runtime is
1 + 2 + … + (n – 1) = O(n2)

How many elements of the 
sequence do we have to look at 

when considering the kth 
element of the sequence? k – 1

Total runtime is
1 + 2 + … + (n – 1) = O(n2)



  

Another Problem

E

A

F

C

D

B

To   

From
   

Number of possible 
ways to order a 

subset of n nodes is 
O(n · n!)

Time to check a 
path is O(n).

Runtime: O(n2 · n!)

Number of possible 
ways to order a 

subset of n nodes is 
O(n · n!)

Time to check a 
path is O(n).

Runtime: O(n2 · n!)



  

Another Problem

E

A

F

C

D

B

To   

From
   

0

1

2

2

3

3

With a precise 
analysis, runtime 

is O(n + m),
where n is the 

number of nodes 
and m is the 

number of edges.

With a precise 
analysis, runtime 

is O(n + m),
where n is the 

number of nodes 
and m is the 

number of edges.



  

For Comparison

● Longest increasing 
subsequence:
● Naive: O(n · 2n)
● Fast: O(n2)

● Shortest path 
problem:
● Naive: O(n2 · n!)
● Fast: O(n + m), 

where n is the 
number of nodes 
and m the number 
of edges. (Take 
CS161 for details!)



  

Defining Efficiency

● When dealing with problems that search 
for the “best” object of some sort, there 
are often at least exponentially many 
possible options.

● Brute-force solutions tend to take at least 
exponential time to complete.

● Clever algorithms often run in time O(n), 
or O(n2), or O(n3), etc.



  

Polynomials and Exponentials

● An algorithm runs in polynomial time if 
its runtime is some polynomial in n.
● That is, time O(nk) for some constant k.

● Polynomial functions “scale well.”
● Small changes to the size of the input do not 

typically induce enormous changes to the 
overall runtime.

● Exponential functions scale terribly.
● Small changes to the size of the input induce 

huge changes in the overall runtime.



  

The Cobham-Edmonds Thesis

A language L can be decided efficiently if
there is a TM that decides it in polynomial time.

Equivalently, L can be decided efficiently iff
it can be decided in time O(nk) for some k ∈ ℕ.

Like the Church-Turing thesis, this is 
not a theorem!

 

It's an assumption about the nature of 
efficient computation, and it is 

somewhat controversial.

Like the Church-Turing thesis, this is 
not a theorem!

 

It's an assumption about the nature of 
efficient computation, and it is 

somewhat controversial.



  

The Cobham-Edmonds Thesis

● Efficient runtimes:
● 4n + 13
● n3 – 2n2 + 4n
● n log log n

● “Efficient” runtimes:
● n1,000,000,000,000

● 10500

● Inefficient runtimes:
● 2n

● n!
● nn

● “Inefficient” runtimes:
● n0.0001 log n

● 1.000000001n



  

Why Polynomials?

● Polynomial time somewhat captures efficient 
computation, but has a few edge cases.

● However, polynomials have very nice mathematical 
properties:
● The sum of two polynomials is a polynomial. (Running one 

efficient algorithm after the other gives an efficient 
algorithm.)

● The product of two polynomials is a polynomial. (Running 
one efficient algorithm a “reasonable” number of times 
gives an efficient algorithm.)

● The composition of two polynomials is a polynomial. 
(Using the output of one efficient algorithm as the input to 
another efficient algorithm gives an efficient algorithm.)



  

The Complexity Class P

● The complexity class P (for polynomial 
time) contains all problems that can be 
solved in polynomial time.

● Formally:

P = { L | There is a polynomial-time   
decider for L }      

● Assuming the Cobham-Edmonds thesis, a 
language is in P if it can be decided 
efficiently.
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