
  

Welcome to CS103!

● Two Handouts
● Course Information
● Syllabus
● (Also available online if you'd like!)

● Today:
● Course Overview
● Introduction to Set Theory
● The Limits of Computation



  

Key Questions in CS103

● What problems can you solve with a 
computer?
● Computability Theory

● Why are some problems harder to solve 
than others?
● Complexity Theory

● How can we be certain in our answers to 
these questions?
● Discrete Mathematics
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http://cs103.stanford.edu

Course Website

http://cs103.stanford.edu/


  

“Prerequisite”

CS106A
There aren't any math prerequisites 

for this course – high-school 
algebra should be enough!

There aren't any math prerequisites 
for this course – high-school 
algebra should be enough!



  

Recommended Reading



  

Online Course Notes



  

Grading

40% Assignments
15% Midterm I
15% Midterm II
30% Final Exam



  

CS103A

● This quarter, we are piloting CS103A, a new, 
one-unit add-on course to CS103.

● Provides extra review and practice with the 
material from CS103 and covers general 
problem-solving techniques useful in discrete 
math.

● Meets for two hours each week (Tuesdays, 
6PM – 8PM, plus extra time at the end if you 
need it).

● Enrollment is limited this quarter (it's a pilot 
course); sorry about that!



  

Let's Get Started!



  

Introduction to Set Theory



  

“The chemical elements”
“Cute animals”

“Cool people”

“US coins”

“All the computers on the
Stanford network”

“CS103 students”



  

A set is an unordered collection of distinct 
objects, which may be anything (including 

other sets).



  

A set is an unordered collection of distinct 
objects, which may be anything (including 

other sets).

, , ,

Set notation: Curly braces 
with commas separating out 

the elements

Set notation: Curly braces 
with commas separating out 

the elements



  

A set is an unordered collection of distinct 
objects, which may be anything (including 

other sets).

, , ,

, , ,

These are 
the same 

set!

These are 
the same 

set!



  

A set is an unordered collection of distinct 
objects, which may be anything (including 

other sets).

,

, , , , ,

These are the 
same set!

These are the 
same set!



  

A set is an unordered collection of distinct 
objects, which may be anything (including 

other sets).

Ø
We use this symbol to 
denote the empty set.

The empty set 
contains no elements.

=



  

Are these equal to one another?

Ø Ø≠

This set contains 
nothing at all.

This set contains 
nothing at all.

This set has one 
element, which 

happens to be the 
empty set.

This set has one 
element, which 

happens to be the 
empty set.



  

Are these equal to one another?

1 1≠

This is a 
number.
This is a 
number.

This is a set.  
It contains a 

number.

This is a set.  
It contains a 

number.



  

Membership

, , ,

Is          in this set?

∈



  

Membership

, , ,

Is           in this set?

∉



  

Set Membership

● Given a set S and an object x, we write

x ∈ S

if x is contained in S, and

x ∉ S 

otherwise.
● If x ∈ S, we say that x is an element of S.
● Given any object x and any set S, either 

x ∈ S or x ∉ S.



  

Infinite Sets

● Some sets contain infinitely many elements!

● The set ℕ = { 0, 1, 2, 3, …} is the set of all the 
natural numbers.
● Some mathematicians don't include zero; in this 

class, assume that 0 is a natural number.
● The set ℤ = { …, -2, -1, 0, 1, 2, … } is the set of 

all the integers.
● Z is from German “Zahlen.”

● The set ℝ is the set of all real numbers.

● e ∈ ℝ, π ∈ ℝ, 4 ∈ ℝ, etc.



  

Describing Complex Sets

● Here are some English descriptions of 
infinite sets:

“The set of all even numbers.”

“The set of all real numbers less than 137.”

“The set of all negative integers.”

● To describe complex sets like these 
mathematically, we'll use set-builder 
notation.



  

{ n | n ∈ ℕ and n is even }

Even Natural Numbers



  

{ n | n ∈ ℕ and n is even }

The set of all n

n is a natural 
number

and n is even

Even Natural Numbers

where

{ 0, 2, 4, 6, 8, 10, 12, 14, 16, … }



  

Set Builder Notation

● A set may be specified in set-builder 
notation:

{ x | some property x satisfies }
● For example:

{ r | r ∈ ℝ and r < 137 }

{ n | n is an even natural number }

{ S | S is a set of US currency }

{ a | a is cute animal }



  

Combining Sets



  

Venn Diagrams

A B

A

1

2

4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }



  

Venn Diagrams

A B

B

1

2

4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }



  

Venn Diagrams

A B

A ∪ B

1

2

4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }

Union

{ 1, 2, 3, 4, 5 }



  

Venn Diagrams

A B

A ∩ B

1

2

4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }

Intersection

{ 3 }



  

Venn Diagrams

A B

A – B

1

2

4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }

Difference

{ 1, 2 }



  

Venn Diagrams

A B

A \ B

1

2

4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }

Difference

{ 1, 2 }



  

Venn Diagrams

A B

A Δ B

1

2

4

5

3

A = { 1, 2, 3 }
B = { 3, 4, 5 }

Symmetric
Difference

{ 1, 2, 4, 5 }



  

Venn Diagrams

A B

A Δ B



  

Venn Diagrams



  

Venn Diagrams for Three Sets



  

Venn Diagrams for Four Sets

A

B C

D

Question to ponder: 
why can't we just 
draw four circles?

Question to ponder: 
why can't we just 
draw four circles?



  

Venn Diagrams for Five Sets



  

Venn Diagrams for Seven Sets

http://moebio.com/research/sevensets/

http://moebio.com/research/sevensets/


  

Subsets and Power Sets



  

Subsets

● A set S is a subset of a set T (denoted 
S ⊆ T) if all elements of S are also 
elements of T.

● Examples:
● { 1, 2, 3 } ⊆ { 1, 2, 3, 4 }
● ℕ ⊆ ℤ   (every natural number is an integer)
● ℤ ⊆ ℝ   (every integer is a real number)



  

What About the Empty Set?

● A set S is a subset of a set T (denoted 
S ⊆ T) if all elements of S are also 
elements of T.

● Are there any sets S where Ø ⊆ S?
● Equivalently, is there a set S where the 

following statement is true?

“All elements of Ø are
also elements of S”

● Yes! In fact, this statement is true for 
every choice of S!



  

Vacuous Truth

● A statement of the form

“All objects of type P
are also of type Q”

is called vacuously true if there are no objects of 
type P.

● Vacuously true statements are true by definition. 
This is a convention used throughout mathematics.

● Some examples:
● All unicorns are pink.
● All unicorns are blue.
● Every element of Ø is also an element of S.



  

,,,,

,S = 

℘(S) = 

℘(S) is the power set of S (the 
set of all subsets of S)

Formally, (℘ S) = { T | T ⊆ S }

℘(S) is the power set of S (the 
set of all subsets of S)

Formally, (℘ S) = { T | T ⊆ S }

Ø



  

What is (Ø)?℘

Answer: {Ø}

Remember that Ø ≠ {Ø}!



  

Cardinality



  

Cardinality

● The cardinality of a set is the number of 
elements it contains.

● If S is a set, we denote its cardinality by 
writing |S|.

● Examples:
● |{a, b, c, d, e}| = 5
● |{{a, b}, {c, d, e, f, g}, {h}}| = 3
● |{1, 2, 3, 3, 3, 3, 3}| = 3
● |{ n ∈ ℕ | n < 137}| = 137



  

The Cardinality of ℕ

● What is |ℕ|?
● There are infinitely many natural numbers.
● |ℕ| can't be a natural number, since it's 

infinitely large.

● We need to introduce a new term.

● Let's define ₀ℵ  = |ℕ|.
● ₀ ℵ is pronounced “aleph-zero,” “aleph-

nought,” or “aleph-null.”



  

Consider the set

S = { n | n ∈ ℕ and n is even }

What is |S|?



  

How Big Are These Sets?

, , ,

, ,,



  

Comparing Cardinalities

● By definition, two sets have the same size 
if their elements can be paired off with 
no elements remaining.

● The intuition:

, , ,

, ,,
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Comparing Cardinalities

● By definition, two sets have the same size 
if their elements can be paired off with 
no elements remaining.

● The intuition:

, , ,

,,
Everything has been 
paired up, and this 
one is all alone.

Everything has been 
paired up, and this 
one is all alone.



  

Infinite Cardinalities

0 1 2 3 4 5 6 7 8 ...

0 2 4 6 8 10 12 14 16 ...

n ↔ 2n

S = { n | n ∈ ℕ and n is even }

|S| = |ℕ| = ℵ0

ℕ

S



  

Infinite Cardinalities

0 1 2 3 4 5 6 7 8 ...

-3-2-1

ℕ

ℤ 0 1 2 3 4 ...-4

Pair nonnegative integers with even natural numbers.
Pair negative integers with odd natural numbers.

|ℕ| = |ℤ| = ℵ0



  

Important Question

Do all infinite sets have
the same cardinality?



  

,,,,

,S = 

℘(S) = Ø
|S| < | (S)|℘



  

,S = 

℘(S) = 

,

, ,

Ø

, , ,

, , , ,

, , ,

|S| < | (S)|℘



  

S = {a, b, c, d}

℘(S) = {
Ø,

{a}, {b}, {c}, {d},
{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}

{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d},
{a, b, c, d}

}

|S| < | (℘ S)|



  

If S is infinite, what is the
relation between |S| and | (℘ S)|?

Does |S| = | (℘ S)|?



  

If |S| = | (℘ S)|, we can pair up the elements 
of S and the subsets of S without

leaving anything out.

What would that look like?



  

{ 0, 2, 4, ... }

{ 0, 2, 4, ... }

{ 0, 2, 4, ... }

{ 0, 2, 4, ... }

{ x0, x2, x4, ... }

{ x0, x3, x4, ... }

{ x4, ... }

{ x1, x4, ... }

{ 0, 2, 4, ... }

{ 0, 2, 4, ... }

{ “b”, “ab”, ... }

{ x0, x1, x2, x3, x4, x5, ... }

...

{ x0, x5, ... }

x0

x2

x3

x4

x5

x1



  

{ 0, 2, 4, ... }

{ 0, 2, 4, ... }

{ 0, 2, 4, ... }

{ 0, 2, 4, ... }

{ x0, x2, x4, ... }

{ x0, x3, x4, ... }

{ x4, ... }

{ x1, x4, ... }

{ 0, 2, 4, ... }

{ 0, 2, 4, ... }

{ “b”, “ab”, ... }

{ x0, x1, x2, x3, x4, x5, ... }

...

{ x0, x5, ... }

x0

x2

x3

x4

x5

x1

x0 x1 x2 x3 x4 x5 ...



  

{ x0,        x2,         x4,         ...}

{ 0, 2, 4, ... }

{ 0, 2, 4, ... }

{ x0, x3, x4, ... }

{ x4, ... }

{ x1, x4, ... }

{ 0, 2, 4, ... }

{ 0, 2, 4, ... }

{ “b”, “ab”, ... }

{ x0, x1, x2, x3, x4, x5, ... }

...

{ x0, x5, ... }

x0

x2

x3

x4

x5

x1

x0 x1 x2 x3 x4 x5 ...

Y Y YN N N …



  

{ x0,              x3,    x4,       ...}…

{ x4, ... }

{ x1, x4, ... }

{ x0, x1, x2, x3, x4, x5, ... }

...

{ x0, x5, ... }

Y Y YN N N …x0

x2

x3

x4

x5

x1

x0 x1 x2 x3 x4 x5 ...

Y Y Y NN N



  

{ 0, 2, 4, ... }

...

Y Y YN N N …

Y Y Y NN N …

Y NN N N N …

Y Y NN NN …

Y Y NNNN …

Y Y Y Y Y Y …

… … … … … … …

{ 0, 2, 4, ... }{ “b”, “ab”, ... }Y NYN N …N YN

x0

x2

x3

x4

x5

x1

x0 x1 x2 x3 x4 x5 ...



  

{ 0, 2, 4, ... }Y Y YN N N …

Y Y Y NN N …

Y NN N N N …

Y Y NN NN …

Y Y NNNN …

Y Y Y Y Y Y …

… … … … … …

…Y N N N N Y

…...

{ 0, 2, 4, ... }{ “b”, “ab”, ... }Y NYN Y …N YN

Which row in the 
table is paired 
with this set?

Which row in the 
table is paired 
with this set?

x0

x2

x3

x4

x5

x1

x0 x1 x2 x3 x4 x5 ...



  

…

Y Y Y NN N …

Y NN N N N …

Y Y NN NN …

…

Y Y Y Y Y Y …

… … … … … …

…Y N N N N Y

…...

…

Flip all Y's to 
N's and vice-
versa to get a 

new set

Flip all Y's to 
N's and vice-
versa to get a 

new set

N Y Y Y N ...Y

x0

x2

x3

x4

x5

x1

x0 x1 x2 x3 x4 x5 ...

Y NN N YN

Y Y YN N N



  

{ 0, 2, 4, ... }Y Y YN N N …

Y Y Y NN N …

Y NN N N N …

Y Y NN NN …

Y Y NNNN …

Y Y Y Y Y Y …

… … … … … … …

Y N N N Y YN Y Y Y N N ...

...

Y NYN N …N

Y

YN

Which row in the 
table is paired 
with this set?

Which row in the 
table is paired 
with this set?

x0

x2

x3

x4

x5

x1

x0 x1 x2 x3 x4 x5 ...



  

{ 0, 2, 4, ... }Y Y YN N N …

Y Y Y NN N …
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Y Y NN NN …
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Y Y Y Y Y Y …

… … … … … … …

Y N N N Y YN Y Y Y N N ...

...

Y NYN N …N

Y

YN

...

Which row in the 
table is paired 
with this set?

Which row in the 
table is paired 
with this set?

x0

x2

x3

x4

x5

x1

x0 x1 x2 x3 x4 x5 ...



  

{ 0, 2, 4, ... }Y Y YN N N …

Y Y Y NN N …

Y NN N N N …

Y Y NN NN …

Y Y NNNN …

Y Y Y Y Y Y …
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Y N N N Y YN Y Y Y N N ...

...

Y NYN N …N

Y

YN

...

Which row in the 
table is paired 
with this set?

Which row in the 
table is paired 
with this set?

x0

x2

x3

x4

x5

x1

x0 x1 x2 x3 x4 x5 ...



  

{ 0, 2, 4, ... }Y Y YN N N …

Y Y Y NN N …

Y NN N N N …

Y Y NN NN …

Y Y NNNN …

Y Y Y Y Y Y …

… … … … … … …

Y N N N Y YN Y Y Y N N ...

...

Y NYN N …N

Y

YN

...

Which row in the 
table is paired 
with this set?

Which row in the 
table is paired 
with this set?

x0

x2

x3

x4

x5

x1

x0 x1 x2 x3 x4 x5 ...



  

{ 0, 2, 4, ... }Y Y YN N N …

Y Y Y NN N …

Y NN N N N …

Y Y NN NN …

Y Y NNNN …

Y Y Y Y Y Y …

… … … … … … …

Y N N N Y YN Y Y Y N N ...

...

Y NYN N …N

Y

YN

...

Which row in the 
table is paired 
with this set?

Which row in the 
table is paired 
with this set?

x0

x2

x3

x4

x5

x1

x0 x1 x2 x3 x4 x5 ...



  

{ 0, 2, 4, ... }Y Y YN N N …

Y Y Y NN N …

Y NN N N N …

Y Y NN NN …

Y Y NNNN …

Y Y Y Y Y Y …

… … … … … … …

Y N N N Y YN Y Y Y Y N ...

...

Y NYN N …N YN

...

Which row in the 
table is paired 
with this set?

Which row in the 
table is paired 
with this set?

x0

x2

x3

x4

x5

x1

x0 x1 x2 x3 x4 x5 ...



  

{ 0, 2, 4, ... }Y Y YN N N …

Y Y Y NN N …

Y NN N N N …

Y Y NN NN …

Y Y NNNN …

Y Y Y Y Y Y …

… … … … … … …

Y N N N Y YN Y Y Y N N ...

...

Y NYN N …N

Y

YN

...

Which row in the 
table is paired 
with this set?

Which row in the 
table is paired 
with this set?

x0

x2

x3

x4

x5

x1

x0 x1 x2 x3 x4 x5 ...



  
...

{ 0, 2, 4, ... }Y Y YN N N …

Y Y Y NN N …

Y NN N N N …

Y Y NN NN …

Y Y NNNN …

Y Y Y Y Y Y …

… … … … … … …

Y N N N Y YN Y Y Y N N ...

...

Y NYN N …N

Y

YN

Which row in the 
table is paired 
with this set?

Which row in the 
table is paired 
with this set?

x0

x2

x3

x4

x5

x1

x0 x1 x2 x3 x4 x5 ...



  

The Diagonalization Proof

● No matter how we pair up elements of S and 
subsets of S, the complemented diagonal won't 
appear in the table.

● In row n, the nth element must be wrong.
● No matter how we pair up elements of S and 

subsets of S, there is always at least one subset 
left over.

● This result is Cantor's theorem: Every set is 
strictly smaller than its power set:

If S is a set, then |S| < | (℘ S)|.    



  

Infinite Cardinalities

● By Cantor's Theorem:

|ℕ| < | (ℕ)|℘

| (ℕ)| < | ( (ℕ))|℘ ℘ ℘

| ( (ℕ))| < | ( ( (ℕ)))|℘ ℘ ℘ ℘ ℘

| ( ( (ℕ)))| < | ( ( ( (ℕ))))|℘ ℘ ℘ ℘ ℘ ℘ ℘

…
● Not all infinite sets have the same size!

● There is no biggest infinity!

● There are infinitely many infinities!



  

What does this have to do
with computation?



  

“The set of all computer programs”

“The set of all problems to solve”



  

Where We're Going

● A string is a sequence of characters.
● We're going to prove the following results:

● There are at most as many programs as there 
are strings.

● There are at least as many problems as there 
are sets of strings.

● This leads to some incredible results – 
we'll see why in a minute!



  

Where We're Going

A string is a sequence of characters.

We're going to prove the following results:
● There are at most as many programs as there 

are strings.

There are at least as many problems as there 
are sets of strings.

This leads to some incredible results – 
we'll see why in a minute!



  

Strings and Programs

● The source code of a computer program is just a 
(long, structured, well-commented) string of text.

● All programs are strings, but not all strings are 
necessarily programs.

All possible
programs

All possible
strings

|Programs| ≤ |Strings|



  

Strings and Problems

● There is a connection between the number 
of sets of strings and the number of 
problems to solve.

● Let S be any set of strings. This set S gives 
rise to a problem to solve:

Given a string w, determine whether w ∈ S.



  

Strings and Problems

Given a string w, determine whether w ∈ S.

● Suppose that S is the set

S = { "a", "b", "c", … "z" }
● From this set S, we get this problem:

Given a string w, determine whether
w is a single lower-case English letter.



  

Strings and Problems

Given a string w, determine whether w ∈ S.

● Suppose that S is the set

S = { "0", "1", "2", …, "9", "10", "11", ... }
● From this set S, we get this problem:

Given a string w, determine whether
w represents a natural number.



  

Strings and Problems

Given a string w, determine whether w ∈ S.

● Suppose that S is the set

S = { p | p is a legal Java program }
● From this set S, we get this problem:

Given a string w, determine whether
w is a legal Java program.



  

Strings and Problems

● Every set of strings gives rise to a unique 
problem to solve.

● Other problems exist as well.

Problems
formed from

sets of strings

All possible
problems

|Sets of Strings| ≤ |Problems|



  

Where We're Going

● A string is a sequence of characters.
● We're going to prove the following results:

● There are at most as many programs as there 
are strings. ✓

● There are at least as many problems as there 
are sets of strings. ✓

● This leads to some incredible results – 
we'll see why in a minute!



  

Every computer program is a string.

So, the number of programs is at most the 
number of strings.

From Cantor's Theorem, we know that there are 
more sets of strings than strings.

There are at least as many problems
as there are sets of strings.

|Programs| |Strings| |Sets of Strings| |Problems|≤ ≤<



  

|Programs| < |Problems|

There are more problems to
solve than there are programs

to solve them.



  

It Gets Worse

● Using more advanced set theory, we can 
show that there are infinitely more 
problems than solutions.

● In fact, if you pick a totally random 
problem, the probability that you can 
solve it is zero.

● More troubling fact: We've just shown 
that some problems are impossible, but 
we don't know which problems are 
impossible!



  

We need to develop a more nuanced 
understanding of computation.



  

Where We're Going
● What makes a problem impossible to solve 

with computers?
● Is there a deep reason why certain problems can't be 

solved with computers, or is it completely arbitrary?
● How do you know when you're looking at an 

impossible problem?
● Are these real-world problems, or are they highly 

contrived?

● How do we know that we're right?
● How can we back up our pictures with rigorous 

proofs?
● How do we build a mathematical framework for 

studying computation?



  

Next Time

● Mathematical Proof
● What is a mathematical proof?
● How can we prove things with certainty?
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