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What is a Proof?



  

A proof is an argument that
demonstrates why a conclusion is true.



  

A mathematical proof is an argument 
that demonstrates why a mathematical 

statement is true.



  



  



  

Structure of a Mathematical Proof

● Despite what you might think, mathematical 
proofs are not supposed to be jumbles of dense 
symbols.

● Good mathematical proofs read like 
argumentative essays that happen to use math 
to convey their arguments.

● Typically, proofs begin with a set of 
assumptions, combine those assumptions 
together in a series of steps, and ultimately 
arrive at the conclusion.

● They're best explored by example.



  

Two Quick Definitions

● An integer n is even if there is some 
integer k such that n = 2k.
● This means that 0 is even.

● An integer n is odd if there is some 
integer k such that n = 2k + 1.

● We'll assume the following for now:
● Every integer is either even or odd.
● No integer is both even and odd.



  

Our First Direct Proof

Theorem: If n is an even integer, then n2 is even.
Proof: Let n be an even integer.
 

Since n is even, there is some integer k
such that n = 2k.

 

This means that n2 = (2k)2 = 4k2 = 2(2k2).
 

From this, we see that there is an integer
m (namely, 2k2) where n2 = 2m.

 

Therefore, n2 is even. ■
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That wasn't so bad! Let's do another one.



  

Some Helpful Set Theory

● Set equality is defined as follows:

If A and B are sets, then A = B precisely 
when every element of A is an element of 

B and vice-versa.
● In practice, this definition is a bit tricky to 

work with.
● It's often easier to use the following result to 

show that two sets are equal:

For any sets A and B,
if A ⊆ B and B ⊆ A, then A = B.



  

Theorem: For any sets A and B, if A ⊆ B and B ⊆ A, then A = B.
Proof: Let A and B be arbitrary sets where A ⊆ B and B ⊆ A.

Because A ⊆ B, if we take an arbitrary x ∈ A, we know that
x ∈ B. Similarly, because B ⊆ A, if we take an arbitrary
x ∈ B, we see that x ∈ A as well.

 

Therefore, whenever x ∈ A we have x ∈ B, and whenever
x ∈ B we have x ∈ A.

 

Consequently, A = B. ■
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Proving Something Always Holds

● Many statements have the form

For any x, [some-property] holds of x.
● Examples:

For all integers n, if n is even, n2 is even.

For any sets A and B, if A ⊆ B and B ⊆ A, then A = B.

For all sets S, |S| < | (S)|.℘

Everything that drowns me makes me wanna fly.

● How do we prove these statements when there 
are (potentially) infinitely many cases to check?



  

Arbitrary Choices

● To prove that some property holds true for all 
possible x, show that no matter what choice of 
x you make, that property must be true.

● Start the proof by making an arbitrary 
choice of x:
● “Let x be chosen arbitrarily.”
● “Let x be an arbitrary even integer.”
● “Let x be an arbitrary set containing 137.”
● “Consider any x.”

● Demonstrate that the property holds true for 
this choice of x.
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An Incorrect Proof

Theorem: If A and B are sets, then A ⊆ A ∩ B.

Proof: Consider two arbitrary sets, say, A = Ø and
B = ℕ. Since Ø is a subset of every set and
A = Ø, we see that A ⊆ A ∩ B. Since our choices
of A and B were arbitrary, we conclude that if
A and B are any sets, then A ⊆ A ∩ B. ■
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ar·bi·trar·y
adjective /ˈärbiˌtrerē/ 

1. Based on random choice or personal whim, rather than 
any reason or system - “his mealtimes were entirely 
arbitrary”

2. (of power or a ruling body) Unrestrained and autocratic 
in the use of authority - “arbitrary rule by King and 
bishops has been made impossible”

3. (of a constant or other quantity) Of unspecified value

Source: Google
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To prove something is true for all x,
don't choose an x and base the proof

off of your choice.

Instead, leave x unspecified
and show that no matter what x is,
the specified property must hold.



  

Another Incorrect Proof

Theorem: If A and B are sets, then A ⊆ A ∩ B.

Proof: We need to show that if x ∈ A, then
x ∈ A ∩ B as well.

Consider any arbitrary x ∈ A ∩ B. This
means that x ∈ A and x ∈ B.

In particular, we see that x ∈ A, as
required. ■
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If you want to prove that P implies Q, 
assume P and prove Q.

Don't assume Q and then prove P!



  

An Entirely Different Proof

Theorem: There exists a natural number n > 0
such that the sum of all natural
numbers less than n is equal to n.
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type of proof that what we've 
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that every object has some 

property, we want to show that 
some object has a given property.
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Universal vs. Existential Statements

● A universal statement is a statement of the 
form

For all x, [some-property] holds for x.

● We've seen how to prove these statements.
● An existential statement is a statement of 

the form
There is some x where [some-property] holds for x.

● How do you prove an existential statement?



  

Proving an Existential Statement

● We will see several different ways to 
prove an existential statement.

● Simple approach: Just go and find some x 
where the property is true.
● In our case, we need to find a positive 

natural number n such that that sum of all 
smaller natural numbers is equal to n.

● Can we find one?



  

An Entirely Different Proof

Theorem: There exists a natural number n > 0
such that the sum of all natural 
numbers less than n is equal to n.

 

Proof: Take n = 3.
 

There are three natural numbers smaller
than 3: 0, 1, and 2.

 

We have 0 + 1 + 2 = 3.
 

Thus 3 is a natural number greater than
zero equal to the sum of all smaller natural
numbers. ■
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Theorem: There exists a natural number n > 0
such that the sum of all natural 
numbers less than n is equal to n.

 

Proof: Take n = 3.
 

The three natural numbers smaller than
three are 0, 1, and 2.

 

Notice that 0 + 1 + 2 = 3.
 

Therefore, three is a natural number
greater than zero equal to the sum of all
smaller natural numbers. ■



  

Time-Out for Announcements!



  

Piazza

● We now have a Piazza site for CS103.
● Sign in to www.piazza.com and search for the 

course CS103 to sign in.
● Feel free to ask us questions!
● Use the site to find partners for the 

problem sets!
● You can also email the staff list with questions: 

cs103-spr1415-staff@lists.stanford.edu .

http://www.piazza.com/
mailto:cs103-spr1415-staff@lists.stanford.edu


  



  

CS + Social Good Board

● Interested in making a difference at the 
intersection of technology and social 
good? Apply for the CS+SG Board!

● Application online at
https://docs.google.com/a/stanford.edu/forms/d/1HrceGe
5uE5AgeXiZqIiyZGgcVqvik7pjztrjCwYTPfE/viewform?c=0&w=1

● Applications due on April 10.

https://docs.google.com/a/stanford.edu/forms/d/1HrceGe5uE5AgeXiZqIiyZGgcVqvik7pjztrjCwYTPfE/viewform?c=0&w=1
https://docs.google.com/a/stanford.edu/forms/d/1HrceGe5uE5AgeXiZqIiyZGgcVqvik7pjztrjCwYTPfE/viewform?c=0&w=1


  

Back to CS103!



  

Extended Example: XOR



  

Logical Operators

● A bit is a value that is either 0 or 1.
● The set 𝔹 = {0, 1} is the set of all bits.
● A logical operator is an operator that 

takes in some number of bits and produces 
a new bit as output.

● Example: the logical not operator, 
denoted ¬x, flips 0s to 1s and vice-versa:

¬0 = 1                ¬1 = 0     



  

Logical XOR

● The exclusive OR operator (called XOR for 
short) operates on two bits and produces 0 if the 
bits are the same and 1 if they are different.
● Since XOR operates on two values, it is called a

binary operator.

● We denote the XOR of a and b by a ⊕ b.
● Formally, XOR is defined as follows:

0 ⊕ 0 = 0                0 ⊕ 1 = 1   

1 ⊕ 0 = 1                1 ⊕ 1 = 0   



  

Fun with XOR

● The XOR operator has numerous uses 
throughout computer science.
● Applications in cryptography, data structures, 

error-correcting codes, networking, machine 
learning, etc.

● XOR is useful because of four key properties:
● XOR has an identity element.
● XOR is self-inverting.
● XOR is associative.
● XOR is commutative.



  

Identity Elements

● An identity element for a binary operator 
 is some value ★ z such that for any a:

a  ★ z = z  ★ a = a

Example: 0 is an identity element for +:

a + 0 = 0 + a = a

Example: 1 is an identity element for ×:

a × 1 = 1 × a = a
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“for any a” is synonymous 
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“for every possibly choice of a.” 
 It does not mean

“for some specific choice of a.”
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Theorem: 0 is an identity element for ⊕.
Proof: We will prove that for any b ∈ 𝔹 that b ⊕ 0 = b and

that 0 ⊕ b = b.  To do this, consider an arbitrary
b ∈ 𝔹.  We consider two cases:

Case 1: b = 0.  Then we have
 

b ⊕ 0 = 0 ⊕ 0 0 ⊕ b = 0 ⊕ 0
= 0 = 0
= b = b

 
 

Case 2: b = 1.  Then we have
 

b ⊕ 0 = 1 ⊕ 0 0 ⊕ b = 0 ⊕ 1
= 1 = 1
= b = b

 

 In both cases, we find b ⊕ 0 = 0 ⊕ b = b.  Thus 0 is
 an identity element for ⊕. ■
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This is called a proof by cases 
(alternatively, a proof by exhaustion) and 
works by showing that the theorem is true 
regardless of what specific outcome arises.
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Self-Inverting Operators

● A binary operator  with identity ★
element z is called self-inverting when 
for any a, we have

a  ★ a = z
● Is + self-inverting?
● Is – self-inverting?

● Tricky tricky: minus doesn't have an identity 
element, so it can't be self-inverting.



  

XOR is Self-Inverting

Theorem: ⊕ is self-inverting.
Proof: Since ⊕ has identity element 0, we will prove

  for any b ∈ 𝔹 that b ⊕ b = 0.  To do this, 
  consider any b ∈ 𝔹.  We consider two cases:

Case 1: b = 0.  Then b ⊕ b = 0 ⊕ 0 = 0.

Case 2: b = 1.  Then b ⊕ b = 1 ⊕ 1 = 0.

  In both cases we have b ⊕ b = 0, so ⊕ is
  self-inverting. ■
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  self-inverting. ■
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Associative Operators

● A binary operator  is called ★
associative when for any a, b and c, we 
have

a  (★ b  ★ c) = (a  ★ b)  ★ c  
● Is + associative?
● Is – associative?
● Is × associative?



  

Theorem: ⊕ is associative.
Proof: Consider any a, b, c ∈ 𝔹.  We will prove that

a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c.  To do this, we
consider two cases:

 

Case 1: c = 0.  Then we have that
 

   a ⊕ (b ⊕ c) = a ⊕ (b ⊕ 0)
  = a ⊕ b   (since 0 is an identity)

= (a ⊕ b) ⊕ 0 (since 0 is an identity)
= (a ⊕ b) ⊕ c

Case 2: c = 1.  Then we have that

   a ⊕ (b ⊕ c) = a ⊕ (b ⊕ 1)
= ?
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When You Get Stuck

● When writing proofs, you are bound to get 
stuck at some point.

● When this happens, it can mean multiple 
things:
● What you're proving is incorrect.
● You are on the wrong track.
● You're on the right track, but you need to prove an 

additional result to get to your goal.

● Unfortunately, there is no general way to 
determine which case you are in.

● You'll build this intuition through experience.



  

Where We're Stuck

● Right now, we have the expression

a ⊕ (b ⊕ 1) 

and we don't know how to simplify it.
● Let's focus on the (b ⊕ 1) part and see what 

we find:
● 0 ⊕ 1 = 1
● 1 ⊕ 1 = 0

● It seems like b ⊕ 1 = ¬b.  Could we prove it?



  

Relations Between Proofs

● Proofs often build off of one another: large 
results are almost often accomplished by 
building off of previous work.
● Like writing a large program – split the work into 

smaller methods, across different classes, etc. 
instead of putting the whole thing into main.

● A result that is proven specifically as a 
stepping stone toward a larger result is called 
a lemma.

● Our result that b ⊕ 1 = ¬b serves as a lemma 
in our larger proof that ⊕ is associative.



  

Lemma 1: For any b ∈ 𝔹, we have b ⊕ 1 = ¬b.
Proof: Consider any b ∈ 𝔹.  We consider two cases:
 

Case 1: b = 0.  Then
 

b ⊕ 1= 0 ⊕ 1
= 1
= ¬0
= ¬b.

Case 2: b = 1.  Then
 

b ⊕ 1= 1 ⊕ 1
= 0
= ¬1
= ¬b.

In both cases, we find that b ⊕ 1 = ¬b, which is
what we needed to show. ■
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Theorem: ⊕ is associative.
Proof: Consider any a, b, c ∈ 𝔹. We will prove that
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Case 2: c = 1. Then we have that

   a ⊕ (b ⊕ c) = a ⊕ (b ⊕ 1)
= a ⊕ ¬b (using lemma 1)
= ??
= (a ⊕ b) ⊕ 1 (using lemma 1)
= (a ⊕ b) ⊕ c

 

In both cases we have a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c, and
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Commutative Operators

● A binary operator  is called ★
commutative when the following is 
always true:

a  ★ b = b  ★ a  
● Is + commutative?
● Is – commutative?



  

Theorem: ⊕ is commutative.

Proof: Consider any a, b ∈ 𝔹.  We will prove a ⊕ b = b ⊕ a.
To do this, let x = a ⊕ b.  Then

x = a ⊕ b
x ⊕ b = (a ⊕ b) ⊕ b
x ⊕ b = a ⊕ (b ⊕ b) (since ⊕ is associative)
x ⊕ b = a ⊕ 0 (since ⊕ is self-inverting)
x ⊕ b = a (since 0 is an identity of ⊕)
x ⊕ (x ⊕ b) = x ⊕ a
(x ⊕ x) ⊕ b = x ⊕ a (since ⊕ is associative)
0 ⊕ b = x ⊕ a (since ⊕ is self-inverting)
b = x ⊕ a (since 0 is an identity of ⊕)
b ⊕ a = (x ⊕ a) ⊕ a
b ⊕ a = x ⊕ (a ⊕ a) (since ⊕ is associative)
b ⊕ a = x ⊕ 0 (since ⊕ is self-inverting)
b ⊕ a = x (since 0 is an identity of ⊕)

This means that a ⊕ b = x = b ⊕ a.  Therefore, ⊕ is
commutative. ■
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The only properties of  that ⊕

we used here are that it is 
associative, has an identity, and 
is self-inverting.  This same 
proof works for any operator 
with these three properties!

Binary operators that have this 
property give rise to boolean 
groups (but you don't need 
to know that for this class).

The only properties of  that ⊕

we used here are that it is 
associative, has an identity, and 
is self-inverting.  This same 
proof works for any operator 
with these three properties!

Binary operators that have this 
property give rise to boolean 
groups (but you don't need 
to know that for this class).



  

Application: Encryption



  

Bitstrings

● A bitstring is a finite sequence of zero 
or more 0s and 1s.

● Internally, computers represent all data 
as bitstrings.
● For details on how, take CS107 or CS143.



  

Bitstrings and ⊕

● We can generalize the ⊕ operator from working 
on individual bits to working on bitstrings.

● If A and B are bitstrings of length n, then we'll 
define A ⊕ B to be the bitstring of length n 
formed by applying ⊕ to the corresponding bits 
of A and B.

● For example:

110110

011010⊕

101100



  

Encryption

● Suppose that you want to send me a 
secret bitstring M of length n.

● You should be able to read the message, 
but anyone who intercepts the secret 
message should not be able to read it.

● How might we accomplish this?



  

⊕ and Encryption

● In advance, you and I share a randomly-chosen 
bitstring K of length n (called the key) and 
keep it secret.

● To send me message M secretly, you send me 
the string C = M ⊕ K.
● C is called the ciphertext.

● To decrypt the ciphertext C, I compute the 
string C ⊕ K.  This is

 C ⊕ K = (M ⊕ K) ⊕ K

 C ⊕ K = M ⊕ (K ⊕ K)

 C ⊕ K = M



  

An Example

01010000010101010101000001010000010010010100010101010011

11011100101110111100010011010101111001101111011111000010

M

K

C 10001100111011101001010010000101101011111011001010010001

Œî”…©²‘

PUPPIES



  

An Example

11011100101110111100010011010101111001101111011111000010K

C 10001100111011101001010010000101101011111011001010010001

Œî”…©²‘

01010000010101010101000001010000010010010100010101010011

PUPPIES

M



  

An Example

01001100010011110100110001000110010000010100100101001100

10001100111011101001010010000101101011111011001010010001

Œî”…©²‘

11000000101000011101100011000011111011101111101111011101

LOLFAIL

K?

C

M?



  

Some Caveats

● This scheme is insecure if you encrypt 
multiple messages using the same key.
● Good exercise: Figure out why this is!

● This scheme guarantees security if the key 
is random, but it isn't tamperproof.
● Good exercise: Figure out why this is!

● General good advice: never implement 
your own cryptography!

● Take CS255 for more details!



  

Next Time

● Indirect Proofs
● Proof by contradiction.
● Proof by contrapositive.
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