
  

Mathematical Induction
Part Two



  

Let P be some property. The principle of mathematical 
induction states that if

P is true for 0

and

For any k ∈ ℕ, if P is true for k,
then P is true for k + 1

then

P is true for every n ∈ ℕ.

If it starts 
true…

…and it stays 
true…

…then it's 
always true.



  

Theorem: The sum of the first n powers of two is 2n – 1.
 

Proof: Let P(n) be the statement “the sum of the first n powers
of two is 2n – 1.” We will prove, by induction, that P(n) is
true for all n ∈ ℕ, from which the theorem follows.

 

For our base case, we need to show P(0) is true, meaning
that the sum of the first zero powers of two is 20 – 1. Since
the sum of the first zero powers of two is zero and 20 – 1
is zero as well, we see that P(0) is true.

 

For the inductive step, assume that for some k ∈ ℕ that 
P(k) holds, meaning that

 

20 + 21 + … + 2k-1 = 2k – 1. (1)
 

We need to show that P(k + 1) holds, meaning that the sum
of the first k + 1 powers of two is 2k+1 – 1. To see this,
notice that

 

20 + 21 + … + 2k-1 + 2k = (20 + 21 + … + 2k-1) + 2k

= 2k – 1 + 2k (via (1))
= 2(2k) – 1
= 2k+1 – 1.

 

Therefore, P(k + 1) is true, completing the induction. ■



  

Induction in Practice

● Typically, a proof by induction will not 
explicitly state P(n).

● Rather, the proof will describe P(n) implicitly 
and leave it to the reader to fill in the details.

● Provided that there is sufficient detail to 
determine
● what P(n) is;
● that P(0) is true; and that
● whenever P(k) is true, P(k+1) is true,

the proof is usually valid.



  

Theorem: The sum of the first n powers of two is 2n – 1.
 

Proof: By induction.
 

For our base case, we'll prove the theorem is true when
n = 0. The sum of the first zero powers of two is zero, and
20 – 1 = 0, so the theorem is true in this case.

 

For the inductive step, assume the theorem holds when
n = k for some arbitrary k ∈ ℕ. Then

 

20 + 21 + … + 2k-1 + 2k = (20 + 21 + … + 2k-1) + 2k

= 2k – 1 + 2k

= 2(2k) – 1
= 2k+1 – 1.

 

So the theorem is true when n = k+1, completing the
induction. ■



  

Variations on Induction: Starting Later



  

Induction Starting at 0

● To prove that P(n) is true for all natural 
numbers greater than or equal to 0: 
● Show that P(0) is true. 
● Show that for any k ≥ 0, that 

if P(k) is true, then P(k+1) is true.
● Conclude P(n) holds for all natural numbers 

greater than or equal to 0. 



  

Induction Starting at m

● To prove that P(n) is true for all natural 
numbers greater than or equal to m: 
● Show that P(m) is true. 
● Show that for any k ≥ m, that 

if P(k) is true, then P(k+1) is true.
● Conclude P(n) holds for all natural numbers 

greater than or equal to m. 



  

Variations on Induction: Bigger Steps



  

Subdividing a Square



  

For what values of n can a square be 
subdivided into n squares?



  

1   2   3   4   5   6   7   8   9   10   11   12
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The Key Insight



  

The Key Insight

● If we can subdivide a square into n squares, we 
can also subdivide it into n + 3 squares.

● Since we can subdivide a bigger square into 6, 7, 
and 8 squares, we can subdivide a square into n 
squares for any n ≥ 6:

● For multiples of three, start with 6 and keep adding 
three squares until n is reached.

● For numbers congruent to one modulo three, start 
with 7 and keep adding three squares until n is 
reached.

● For numbers congruent to two modulo three, start 
with 8 and keep adding three squares until n is 
reached.



  

Theorem: For any n ≥ 6, it is possible to subdivide a square into n
smaller squares.

Proof: Let P(n) be the statement “a square can be subdivided into
n smaller squares.” We will prove by induction that P(n) holds
for all n ≥ 6, from which the theorem follows.

As our base cases, we prove P(6), P(7), and P(8), that a square 
can be subdivided into 6, 7, and 8 squares. This is shown here:

For the inductive step, assume that for some k ≥ 6 that P(k) is 
true and a square can be subdivided into k squares. We prove 
P(k+3), that a square can be subdivided into k+3 squares. To 
see this, start by obtaining (via the inductive hypothesis) a 
subdivision of a square into k squares. Then, choose any of the 
squares and split it into four equal squares. This removes one of 
the k squares and adds four more, so there will be a net total of 
k+3 squares. Thus P(k+3) holds, completing the induction. ■
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Why This Works

● This induction has three consecutive base cases 
and takes steps of size three.

● Thinking back to our “induction machine” analogy:

P(k) → P(k+3)

P(6) P(8)P(7)



  

Why This Works

● This induction has three consecutive base cases 
and takes steps of size three.

● Thinking back to our “induction machine” analogy:

P(k) → P(k+3)

P(9) P(11)P(10)



  

Generalizing Induction

● When doing a proof by induction:
● Feel free to use multiple base cases.
● Feel free to take steps of sizes other than 

one.

● Just be careful to make sure you cover all 
the numbers you think that you're 
covering!



  

Time-Out for Announcements!



  

Problem Set One

● Problem Set 1 due Friday, April 10 at the 
start of class.
● Stop by office hours with questions!
● Ask questions on Piazza!
● Email the staff list

(cs103-spr1415-staff@lists.stanford.edu) 
with questions!

mailto:cs103-spr1415-staff@lists.stanford.edu


  

Checkpoint Problems

● Problem Set 1 Checkpoints graded; feedback 
available online at Scoryst.
● Please review this feedback before submitting the rest of 

the problems – the point of the checkpoint is to get 
useful feedback!

● When submitting the rest of Problem Set One, be 
sure to submit in the right category. You don't need 
to include the checkpoint question in your 
submission.
● A note – a small number of you (single digits) submitted 

the entire problem set along with the checkpoint. Make 
sure you explicitly resubmit the later problems as your 
PS1 submission, since otherwise it won't get graded!



  

Your Questions



  

“To what extent is there still 'stuff to be 
discovered' in the field of mathematical 

foundations of computing/computer 
theory? What are some examples of 
research in these areas or problems 

students can think about?”

There is definitely a lot left to be discovered! Here are some 
questions we don't know the answers to:
 

1. What's the fastest algorithm to align two DNA strands?
 

2. Exactly how much computing power is required to compute
   optimal delivery routes?
 

3. Are the cryptographic systems we use online secure?

There is definitely a lot left to be discovered! Here are some 
questions we don't know the answers to:
 

1. What's the fastest algorithm to align two DNA strands?
 

2. Exactly how much computing power is required to compute
   optimal delivery routes?
 

3. Are the cryptographic systems we use online secure?



  

“If a proof is possible by one method 
(direct, contradiction, etc.), is it necessarily 

possible by another method?”

Not necessarily!

Certain results can only be proved indirectly; in fact, we can 
prove that you can't prove them otherwise!

Some proofs are called nonconstructive proofs and argue 
that something must exist without saying what it is. Some 
nonconstructive proofs cannot be converted into constructive 
proofs!

Not necessarily!

Certain results can only be proved indirectly; in fact, we can 
prove that you can't prove them otherwise!

Some proofs are called nonconstructive proofs and argue 
that something must exist without saying what it is. Some 
nonconstructive proofs cannot be converted into constructive 
proofs!



  

“What are some of your all-time favorite 
books? Or better yet, what are some books 
that you read as a college student and were 

significantly formative and influential?”

My favorite novel is Slaughterhouse Five by Kurt Vonnegut. For 
nonfiction, I strongly recommend “Guns, Germs, and Steel” by 
Jared Diamond and “Command and Control: Nuclear Weapons, 
the Damascus Accident, and the Illusion of Safety” by Eric 
Schlosser. If you want a good longform read, do a Google 
search for “Scott and Scurvey.”

My favorite novel is Slaughterhouse Five by Kurt Vonnegut. For 
nonfiction, I strongly recommend “Guns, Germs, and Steel” by 
Jared Diamond and “Command and Control: Nuclear Weapons, 
the Damascus Accident, and the Illusion of Safety” by Eric 
Schlosser. If you want a good longform read, do a Google 
search for “Scott and Scurvey.”



  

“Is there a larger classroom for lecture at 
this time? There are still around 20 

students sitting on the floor in the 2nd 
week.”

Working on it. ☺Working on it. ☺



  

Back to CS103!



  

Example: Tournaments



  

Tournaments

● A tournament is a 
contest for n ≥ 0 people.

● Each person plays 
exactly one game against 
each other person, and 
there are no ties.

● The result can be 
visualized in a picture 
like this one, which is 
called a tournament 
graph.



  

Victory Chains

● A victory chain in 
a tournament is a 
way of lining up 
the players so that 
every player beat 
the player that 
comes after them.



  

Victory Chains

● A victory chain in 
a tournament is a 
way of lining up 
the players so that 
every player beat 
the player that 
comes after them.



  

Theorem: Every tournament, regardless of 
the outcome, has a victory chain.



  

Thinking Inductively

● The inductive step in an inductive proof uses the 
fact that the result is true for a smaller number (k) 
to prove that the result is true for a larger number 
(k+1).

● In most inductive proofs, the proof that the result is 
true for k+1 explicitly tries to simplify the k+1 
case into the k case.
● Counterfeit coins: Turn k+1 weighings into k weighings.
● MU puzzle: Turn a sequence of k+1 events into a 

sequence of k events.
● Square subdivision: Use a subdivision into k to get one 

for k+3.



  

Thinking Inductively

● For our victory chain proof, we will 
simplify the problem by turning the 
larger tournament into two smaller 
tournaments.

● We'll inductively argue that, since those 
smaller tournaments each have victory 
chains, the larger tournament must have 
a victory chain.



  



  



  



  



  



  

The Proof, Schematically

People who
lost against

player p

Player p

People who
won against

player p



  

The Idea

● Suppose that every tournament with at most 
k players has a victory chain.

● Take a tournament T with k+1 players.
● Choose any one player p.
● Form the subtournaments T₀ and T₁ of all 

players who beat p and lost to p, 
respectively.

● Get victory chains from T₀ and T₁.
● Splice those chains together through p.



  

The Idea

Suppose that every tournament with at most 
k players has a victory chain.

Take a tournament T with k+1 players.

Choose any one player p.
● Form the subtournaments T₀ and T₁ of all 

players who beat p and lost to p, 
respectively.

● Get victory chains from T₀ and T₁.

Splice those chains together through p.

This is the key idea 
behind an inductive 

proof – we're reducing 
the problem to smaller 

copies of itself.

This is the key idea 
behind an inductive 

proof – we're reducing 
the problem to smaller 

copies of itself.



  

Writing the Proof: A First Attempt



  

We're going to run into trouble in the 
middle of this proof. Don't worry – we'll see 

how to fix it.



  

Theorem: Every tournament has a victory chain.

Proof: Let P(n) be the statement “every tournament with n players has a
victory chain.” We will prove by induction that P(n) is true for all
n ∈ ℕ, from which the theorem follows.

As a base case, we prove P(0), that any tournament with no players 
has a victory chain. In a tournament with no players, a list of all 0 of 
the players vacuously satisfies the claim that every player beat the 
next player in the list. Therefore, P(0) is true.

For the inductive step, assume that for some k ∈ ℕ that P(k) is true. In 
other words, we assume that any tournament with k players has a 
victory chain. We'll prove P(k+1), that any tournament with k+1 
players has a victory chain.

Consider any tournament T with k+1 players. Choose any one player p 
and form two subtournaments, a subtournament T₀ of all the players 
who beat p and a subtournament T₁ of all the players who lost to p. 
Both of these tournaments have between 0 and k players. Therefore, 
by our inductive hypothesis, these two subtournaments have victory 
chains V₀ and V₁. If we then splice together these chains to form the 
chain V₀, p, V₁, then we have a victory chain for T: every player is 
present in the list, and every player beat the player after them. 
Therefore, this arbitrary tournament of k+1 players has a victory 
chain, so P(k+1) is true, completing the induction. ■

At this point, we're stuck. We know that 
tournaments with exactly k players must 
have a victory chain, but we're not 

assuming anything about tournaments with 
0, 1, 2, …, k-1 players. Therefore, we 
can't necessarily say anything about these 

subtournaments.

At this point, we're stuck. We know that 
tournaments with exactly k players must 
have a victory chain, but we're not 

assuming anything about tournaments with 
0, 1, 2, …, k-1 players. Therefore, we 
can't necessarily say anything about these 

subtournaments.



  

Theorem: Every tournament has a victory chain.

Proof: Let P(n) be the statement “every tournament with n players has a
victory chain.” We will prove by induction that P(n) is true for all
n ∈ ℕ, from which the theorem follows.

As a base case, we prove P(0), that any tournament with no players 
has a victory chain. In a tournament with no players, a list of all 0 of 
the players vacuously satisfies the claim that every player beat the 
next player in the list. Therefore, P(0) is true.

For the inductive step, assume that for some k ∈ ℕ that P(k) is true. In 
other words, we assume that any tournament with k players has a 
victory chain. We'll prove P(k+1), that any tournament with k+1 
players has a victory chain.

Consider any tournament T with k+1 players. Choose any one player p 
and form two subtournaments, a subtournament T₀ of all the players 
who beat p and a subtournament T₁ of all the players who lost to p. 
Both of these tournaments have between 0 and k players. Therefore, 
by our inductive hypothesis, these two subtournaments have victory 
chains V₀ and V₁. If we then splice together these chains to form the 
chain V₀, p, V₁, then we have a victory chain for T: every player is 
present in the list, and every player beat the player after them. 
Therefore, this arbitrary tournament of k+1 players has a victory 
chain, so P(k+1) is true, completing the induction. ■

What if we made some additional 
assumptions so that we can say something 

about these smaller tournaments?

What if we made some additional 
assumptions so that we can say something 

about these smaller tournaments?



  

Theorem: Every tournament has a victory chain.

Proof: Let P(n) be the statement “every tournament with n players has a
victory chain.” We will prove by induction that P(n) is true for all
n ∈ ℕ, from which the theorem follows.

As a base case, we prove P(0), that any tournament with no players 
has a victory chain. In a tournament with no players, a list of all 0 of 
the players vacuously satisfies the claim that every player beat the 
next player in the list. Therefore, P(0) is true.

For the inductive step, assume that for some k ∈ ℕ that P(0), P(1), 
P(2), …, and P(k) are all true. In other words, we assume that any 
tournament with at most k players has a victory chain. We'll prove 
P(k+1), that any tournament with k+1 players has a victory chain.

Consider any tournament T with k+1 players. Choose any one player p 
and form two subtournaments, a subtournament T₀ of all the players 
who beat p and a subtournament T₁ of all the players who lost to p. 
Both of these tournaments have between 0 and k players. Therefore, 
by our inductive hypothesis, these two subtournaments have victory 
chains V₀ and V₁. If we then splice together these chains to form the 
chain V₀, p, V₁, then we have a victory chain for T: every player is 
present in the list, and every player beat the player after them. 
Therefore, this arbitrary tournament of k+1 players has a victory 
chain, so P(k+1) is true, completing the induction. ■

We're now assuming that the result is true 
for 0, 1, 2, 3, …, k. Now, we can continue 

to make progress!

We're now assuming that the result is true 
for 0, 1, 2, 3, …, k. Now, we can continue 

to make progress!



  

Theorem: Every tournament has a victory chain.

Proof: Let P(n) be the statement “every tournament with n players has a
victory chain.” We will prove by induction that P(n) is true for all
n ∈ ℕ, from which the theorem follows.

As a base case, we prove P(0), that any tournament with no players 
has a victory chain. In a tournament with no players, a list of all 0 of 
the players vacuously satisfies the claim that every player beat the 
next player in the list. Therefore, P(0) is true.

For the inductive step, assume that for some k ∈ ℕ that P(0), P(1), 
P(2), …, and P(k) are all true. In other words, we assume that any 
tournament with at most k players has a victory chain. We'll prove 
P(k+1), that any tournament with k+1 players has a victory chain.

Consider any tournament T with k+1 players. Choose any one player p 
and form two subtournaments, a subtournament T₀ of all the players 
who beat p and a subtournament T₁ of all the players who lost to p. 
Both of these tournaments have between 0 and k players. Therefore, 
by our inductive hypothesis, these two subtournaments have victory 
chains, call them V₀ and V₁. If we then splice together these chains to 
form the chain V₀, p, V₁, then we have a victory chain for T: every 
player is present, and every player beat the player immediately after 
them. Therefore, this arbitrary tournament of k+1 players has a 
victory chain, so P(k+1) is true, completing the induction. ■



  

What We Just Did

● In a normal inductive step, we assume that 
P(k) is true and prove P(k+1).

● In this type of inductive step, we assume P(0), 
P(1), …, and P(k) are true before we prove 
P(k+1).

● That way, when we found any kind of smaller 
tournament, we knew something about its 
structure.

● This type of proof has a name!



  

Complete Induction

● If the following are true:
● P(0) is true, and
● If P(0), P(1), P(2), …, P(k) are true, then P(k+1) 

is true as well.

then P(n) is true for all n ∈ ℕ.
● This is called the principle of complete 

induction or the principle of strong 
induction.
● (A note: this also works starting from a number 

other than 0; just modify what you're assuming 
appropriately.)



  

That's a lot of assumptions to make!

Why is this legal?



  

Review: Induction as a Machine

P(k) → P(k+1)

P(0)



  

An Observation

P(k) → P(k+1)

P(0) P(1) P(2) P(3) P(4) P(5)



  

Intuiting Complete Induction

P(0), …, P(k)
→

P(k+1)
P(0) P(1)



  

Intuiting Complete Induction

P(0), …, P(k)
→

P(k+1)
P(1)

P(0)

P(2)



  

Intuiting Complete Induction

P(0), …, P(k)
→

P(k+1)

P(0)

P(1)

P(2)

P(3)



  

A Helpful Intuition

● If you see something of the form

“keep repeating X until...”

try proving it by induction.
● Use the inductive hypothesis to “assume away” 

future steps.
● Example: Counterfeit coins.

● Process: “Keep splitting the coins into thirds and 
throwing away coins until only one's left.”

● Proof: “Assume that it works for 3k coins and prove 
that it works for 3k+1 coins.”
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