

Mathematical Logic
Part One

Question: How do we formalize the logic
we've been using in our proofs?

Where We're Going

● Propositional Logic (Today)
● Basic logical connectives.
● Truth tables.
● Logical equivalences.

● First-Order Logic (Monday/Wednesday)
● Reasoning about properties of multiple

objects.

Propositional Logic

A proposition is a statement that is,
by itself, either true or false.

Some Sample Propositions

● Puppies are cuter than kittens.
● Kittens are cuter than puppies.
● Usain Bolt can outrun everyone in this

room.
● CS103 is useful for cocktail parties.
● This is the last entry on this list.

More Propositions

● Got kiss myself
● I'm so pretty
● I'm too hot
● Called a policeman and a fireman
● Made a dragon want to retire, man
● Uptown funk gon' give it to you

Things That Aren't Propositions

Commands
cannot be true

or false.

Commands
cannot be true

or false.

Things That Aren't Propositions

Questions
cannot be true

or false.

Questions
cannot be true

or false.

Things That Aren't Propositions

I am the walrus,
goo goo g'joob

The first half is
a valid

proposition.

The first half is
a valid

proposition.

Jibberish cannot
be true or

false.

Jibberish cannot
be true or

false.

Propositional Logic

● Propositional logic is a mathematical system
for reasoning about propositions and how they
relate to one another.

● Every statement in propositional logic consists
of propositional variables combined via
propositional connectives.
● Each variable represents some proposition, such as

“You liked it” or “You should have put a ring on it.”
● Connectives encode how propositions are related,

such as “If you liked it, then you should have put a
ring on it.”

Propositional Variables

● Each proposition will be represented by a
propositional variable.

● Propositional variables are usually
represented as lower-case letters, such
as p, q, r, s, etc.

● Each variable can take one one of two
values: true or false.

Propositional Connectives

● Logical NOT: ¬p
● Read “not p”
● ¬p is true if and only if p is false.
● Also called logical negation.

● Logical AND: p ∧ q
● Read “p and q.”
● p ∧ q is true if both p and q are true.
● Also called logical conjunction.

● Logical OR: p ∨ q
● Read “p or q.”
● p ∨ q is true if at least one of p or q are true (inclusive OR)
● Also called logical disjunction.

Truth Tables

● A truth table is a table showing the
truth value of a propositional logic
formula as a function of its inputs.

● Useful for several reasons:
● Formally defining what a connective

“means.”
● Deciphering what a complex propositional

formula means.

The Truth Table Tool

Summary of Important Points

● The ∨ operator is an inclusive “or.” It's
true if at least one of the operands is
true.
● Similar to the || operator in C, C++, Java and

the or operator in Python.

● If we need an exclusive “or” operator, we
can build it out of what we already have.

Mathematical Implication

Implication

● The → connective is used to represent
implications.
● Its technical name is the material

conditional operator.

● What is its truth table?

Why This Truth Table?

● The truth values of the → are the way they are
because they're defined that way.

● The intuition:
● We want p → q to mean “whenever p is true, q is true

as well.”
● The only way this doesn't happen is if p is true and q

is false.
● In other words, p → q should be true whenever

¬(p ∧ ¬q) is true.
● What's the truth table for ¬(p ∧ ¬q)?

T
F
T
T

Truth Table for Implication

p q p → q
F
F
T
T

F

F
T

T

The only way for
p q to be false is →

for p to be true and
q to be false.

Otherwise, p → q is by
definition true.

The only way for
p q to be false is →

for p to be true and
q to be false.

Otherwise, p → q is by
definition true.

The Biconditional Operator

The Biconditional Operator

● The biconditional operator ↔ is used to
represent a two-directional implication.

● Specifically, p ↔ q means that p implies q
and q implies p.

● What should its truth table look like?

The Biconditional

● The biconditional connective p ↔ q is
read “p if and only if q.”

● Here's its truth table:

T
F
F
T

p q p ↔ q
F
F
T
T

F

F
T

T

One interpretation of ↔
is to think of it as
equality: the two

propositions must have
equal truth values.

One interpretation of ↔
is to think of it as
equality: the two

propositions must have
equal truth values.

True and False

● There are two more “connectives” to
speak of: true and false.
● The symbol ⊤ is a value that is always true.
● The symbol ⊥ is value that is always false.

● These are often called connectives,
though they don't connect anything.
● (Or rather, they connect zero things.)

Operator Precedence

● How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬

∧

∨

→

↔

● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬

∧

∨

→

↔

● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬

∧

∨

→

↔

● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬

∧

∨

→

↔

● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ (y ∧ z)
● Operator precedence for propositional logic:

¬

∧

∨

→

↔

● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ (y ∧ z)
● Operator precedence for propositional logic:

¬

∧

∨

→

↔

● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → (y ∨ z) → (x ∨ (y ∧ z))
● Operator precedence for propositional logic:

¬

∧

∨

→

↔

● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → (y ∨ z) → (x ∨ (y ∧ z))
● Operator precedence for propositional logic:

¬

∧

∨

→

↔

● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → ((y ∨ z) → (x ∨ (y ∧ z)))
● Operator precedence for propositional logic:

¬

∧

∨

→

↔

● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● How do we parse this statement?

(¬x) → ((y ∨ z) → (x ∨ (y ∧ z)))
● Operator precedence for propositional logic:

¬

∧

∨

→

↔

● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence

● The main points to remember:
● ¬ binds to whatever immediately follows it.
● ∧ and ∨ bind more tightly than →.

● We will commonly write expressions like
p ∧ q → r without adding parentheses.

● For more complex expressions, we'll try to
add parentheses.

● Confused? Just ask!

Time-Out for Announcements!

Problem Set Two

● Problem Set One was due at 12:50PM today.
● Can use up to two late days on this assignment

if you'd like.

● Problem Set Two goes out right now.
● Checkpoint due Monday, April 13 at 12:50PM.
● Remaining problems due Friday, April 17 at

12:50PM.
● Explore induction, puzzles, games, and

tournament structures!

WiCS Casual Dinner

● Stanford WiCS is hosting its first of their
biquarterly CS Casual Dinners next
Wednesday, April 15.
● 6PM – 8PM in the Gates Fifth Floor lounge.
● RSVP using this link.

● Wonderful event – great way to meet other
students, faculty members, industry
professionals, and alums. Highly
recommended!

https://docs.google.com/forms/d/1rkzfb2WW5r0JlA7uwWZNbyiI8UfDbTNJB5yStvhCuDs/viewform?usp=send_form

Your Questions

“What is your favorite class to teach? CS
106A? CS 103? Or another one?”

They're all my
favorite class to

teach! ☺

They're all my
favorite class to

teach! ☺

“How do we know that the principle of
mathematical induction is valid? Isn't the

choice of what makes some logic 'legit' and
other logic not pretty arbitrary? What
would happen if we chose a different

logical system, say, where induction isn't
true?”

Induction is usually given as an axiom – it's legit
because we define it to be legit. I haven't seen
any examples of math that excludes induction, but

if I find something, I'll be sure to tell you!

Induction is usually given as an axiom – it's legit
because we define it to be legit. I haven't seen
any examples of math that excludes induction, but

if I find something, I'll be sure to tell you!

“There are many people who come into
Stanford with extensive experience in

math/cs/etc. How can people who are just
finding their passions now catch up to

these students who were literally the best
in the world of their field during high

school?”

I've got a few
thoughts on this, in no

particular order.

I've got a few
thoughts on this, in no

particular order.

“What was your favorite CS class that you
took during your time here at Stanford?
What was your favorite non-CS class?”

Oh wow, that's hard.

For CS, probably one of CS154, CS161,
or CS227B.

For non-CS, that's a funny story.

Oh wow, that's hard.

For CS, probably one of CS154, CS161,
or CS227B.

For non-CS, that's a funny story.

Back to CS103!

Recap So Far

● A propositional variable is a variable that is
either true or false.

● The propositional connectives are
● Negation: ¬p
● Conjunction: p ∧ q
● Disjunction: p ∨ q
● Implication: p → q
● Biconditional: p ↔ q
● True: ⊤
● False: ⊥

Translating into Propositional Logic

Some Sample Propositions

a: I will get up early this morning

b: There is a lunar eclipse this morning

c: There are no clouds in the sky this morning

d: I will see the lunar eclipse

Some Sample Propositions

“I won't see the lunar
eclipse if I don't get up

early this morning.”

“I won't see the lunar
eclipse if I don't get up

early this morning.”

a: I will get up early this morning

b: There is a lunar eclipse this morning

c: There are no clouds in the sky this morning

d: I will see the lunar eclipse

Some Sample Propositions

“I won't see the lunar
eclipse if I don't get up

early this morning.”

“I won't see the lunar
eclipse if I don't get up

early this morning.”

¬a → ¬d

a: I will get up early this morning

b: There is a lunar eclipse this morning

c: There are no clouds in the sky this morning

d: I will see the lunar eclipse

“p if q”

translates to

q → p

It does not translate to

p → q

Some Sample Propositions

a: I will get up early this morning

b: There is a lunar eclipse this morning

c: There are no clouds in the sky this morning

d: I will see the lunar eclipse

Some Sample Propositions

a: I will get up early this morning

b: There is a lunar eclipse this morning

c: There are no clouds in the sky this morning

d: I will see the lunar eclipse

“If I get up early this
morning, but it's cloudy
outside, I won't see the

lunar eclipse.

“If I get up early this
morning, but it's cloudy
outside, I won't see the

lunar eclipse.

Some Sample Propositions

a: I will get up early this morning

b: There is a lunar eclipse this morning

c: There are no clouds in the sky this morning

d: I will see the lunar eclipse

“If I get up early this
morning, but it's cloudy
outside, I won't see the

lunar eclipse.

“If I get up early this
morning, but it's cloudy
outside, I won't see the

lunar eclipse.

a ∧ ¬c → ¬d

“p, but q”

translates to

p ∧ q

The Takeaway Point

● When translating into or out of
propositional logic, be very careful not to
get tripped up by nuances of the English
language.
● In fact, this is one of the reasons we have a

symbolic notation in the first place!

● Many prepositional phrases lead to
counterintuitive translations; make sure
to double-check yourself!

Propositional Equivalences

Quick Question

What would I have to show you to convince
you that the statement p ∧ q is false?

Quick Question

What would I have to show you to convince
you that the statement p ∨ q is false?

De Morgan's Laws

● Using truth tables, we concluded that

¬(p ∧ q)

is equivalent to

¬p ∨ ¬q
● We also saw that

¬(p ∨ q)

is equivalent to

¬p ∧ ¬q
● These two equivalences are called De Morgan's

Laws.

Logical Equivalence

● Because ¬(p ∧ q) and ¬p ∨ ¬q have the same truth
tables, we say that they're equivalent to one another.

● We denote this by writing

 ¬(p ∧ q) ≡ ¬p ∨ ¬q
● The ≡ symbol is not a connective.

● The statement ¬(p ∧ q) ↔ (¬p ∨ ¬q) is a propositional formula.
If you plug in different values of p and q, it will evaluate to a
truth value. It just happens to evaluate to true every time.

● The statement ¬(p ∧ q) ≡ ¬p ∨ ¬q means “these two
formulas have exactly the same truth table.”

● In other words, the notation φ ≡ ψ means “φ and ψ
always have the same truth values, regardless of how the
variables are assigned.”

An Important Equivalence

● Earlier, we talked about the truth table
for p → q. We chose it so that

 p → q ≡ ¬(p ∧ ¬q)
● Later on, this equivalence will be

incredibly useful:

¬(p → q) ≡ p ∧ ¬q

Another Important Equivalence

● Here's a useful equivalence. Start with

 p → q ≡ ¬(p ∧ ¬q)
● By De Morgan's laws:

 p → q ≡ ¬(p ∧ ¬q)

 p → q≡ ¬p ∨ ¬¬q

 p → q≡ ¬p ∨ q
● Thus p → q ≡ ¬p ∨ q

Another Important Equivalence

● Here's a useful equivalence. Start with

 p → q ≡ ¬(p ∧ ¬q)
● By De Morgan's laws:

 p → q ≡ ¬(p ∧ ¬q)

 p → q≡ ¬p ∨ ¬¬q

 p → q≡ ¬p ∨ q
● Thus p → q ≡ ¬p ∨ q

If p is false, then
¬p q∨ is true. If p is
true, then q has to be
true for the whole

expression to be true.

If p is false, then
¬p q∨ is true. If p is
true, then q has to be
true for the whole

expression to be true.

One Last Equivalence

The Contrapositive

● The contrapositive of the statement

p → q

is the statement

¬q → ¬p
● These are logically equivalent, which is

why proof by contradiction works:

p → q ≡ ¬q → ¬p

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

