
  

Mathematical Logic
Part One



  

Question: How do we formalize the logic
we've been using in our proofs?



  

Where We're Going

● Propositional Logic (Today)
● Basic logical connectives.
● Truth tables.
● Logical equivalences.

● First-Order Logic (Monday/Wednesday)
● Reasoning about properties of multiple 

objects.



  

Propositional Logic



  

A proposition is a statement that is,
by itself, either true or false.



  

Some Sample Propositions

● Puppies are cuter than kittens.
● Kittens are cuter than puppies.
● Usain Bolt can outrun everyone in this 

room.
● CS103 is useful for cocktail parties.
● This is the last entry on this list.



  

More Propositions

● Got kiss myself
● I'm so pretty
● I'm too hot
● Called a policeman and a fireman
● Made a dragon want to retire, man
● Uptown funk gon' give it to you



  

Things That Aren't Propositions

Commands 
cannot be true 

or false.

Commands 
cannot be true 

or false.



  

Things That Aren't Propositions

Questions 
cannot be true 

or false.

Questions 
cannot be true 

or false.



  

Things That Aren't Propositions

I am the walrus,
goo goo g'joob

The first half is 
a valid 

proposition.

The first half is 
a valid 

proposition.

Jibberish cannot 
be true or 

false.

Jibberish cannot 
be true or 

false.



  

Propositional Logic

● Propositional logic is a mathematical system 
for reasoning about propositions and how they 
relate to one another.

● Every statement in propositional logic consists 
of propositional variables combined via 
propositional connectives.
● Each variable represents some proposition, such as 

“You liked it” or “You should have put a ring on it.”
● Connectives encode how propositions are related, 

such as “If you liked it, then you should have put a 
ring on it.”



  

Propositional Variables

● Each proposition will be represented by a 
propositional variable.

● Propositional variables are usually 
represented as lower-case letters, such 
as p, q, r, s, etc.

● Each variable can take one one of two 
values: true or false.



  

Propositional Connectives

● Logical NOT: ¬p
● Read “not p”
● ¬p is true if and only if p is false.
● Also called logical negation.

● Logical AND: p ∧ q
● Read “p and q.”
● p ∧ q is true if both p and q are true.
● Also called logical conjunction.

● Logical OR: p ∨ q
● Read “p or q.”
● p ∨ q is true if at least one of p or q are true (inclusive OR)
● Also called logical disjunction.



  

Truth Tables

● A truth table is a table showing the 
truth value of a propositional logic 
formula as a function of its inputs.

● Useful for several reasons:
● Formally defining what a connective 

“means.”
● Deciphering what a complex propositional 

formula means.



  

The Truth Table Tool



  

Summary of Important Points

● The ∨ operator is an inclusive “or.” It's 
true if at least one of the operands is 
true.
● Similar to the || operator in C, C++, Java and 

the or operator in Python.

● If we need an exclusive “or” operator, we 
can build it out of what we already have.



  

Mathematical Implication



  

Implication

● The → connective is used to represent 
implications.
● Its technical name is the material 

conditional operator.

● What is its truth table?



  

Why This Truth Table?

● The truth values of the → are the way they are 
because they're defined that way.

● The intuition:
● We want p → q to mean “whenever p is true, q is true 

as well.”
● The only way this doesn't happen is if p is true and q 

is false.
● In other words, p → q should be true whenever

¬(p ∧ ¬q) is true.
● What's the truth table for ¬(p ∧ ¬q)?



  

T
F
T
T

Truth Table for Implication

p q p → q
F
F
T
T

F

F
T

T

The only way for 
p   q to be false is →

for p to be true and 
q to be false. 

Otherwise, p  → q is by 
definition true.

The only way for 
p   q to be false is →

for p to be true and 
q to be false. 

Otherwise, p  → q is by 
definition true.



  

The Biconditional Operator



  

The Biconditional Operator

● The biconditional operator ↔ is used to 
represent a two-directional implication.

● Specifically, p ↔ q means that p implies q 
and q implies p.

● What should its truth table look like?



  

The Biconditional

● The biconditional connective p ↔ q is 
read “p if and only if q.”

● Here's its truth table:

T
F
F
T

p q p ↔ q
F
F
T
T

F

F
T

T

One interpretation of  ↔
is to think of it as 
equality: the two 

propositions must have 
equal truth values.

One interpretation of  ↔
is to think of it as 
equality: the two 

propositions must have 
equal truth values.



  

True and False

● There are two more “connectives” to 
speak of: true and false.
● The symbol ⊤ is a value that is always true.
● The symbol ⊥ is value that is always false.

● These are often called connectives, 
though they don't connect anything.
● (Or rather, they connect zero things.)



  

Operator Precedence

● How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   

● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   

● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   

● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   

● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ (y ∧ z)
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   

● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● How do we parse this statement?

(¬x) → y ∨ z → x ∨ (y ∧ z)
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   

● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● How do we parse this statement?

(¬x) → (y ∨ z) → (x ∨ (y ∧ z))
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   

● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● How do we parse this statement?

(¬x) → (y ∨ z) → (x ∨ (y ∧ z))
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   

● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● How do we parse this statement?

(¬x) → ((y ∨ z) → (x ∨ (y ∧ z)))
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   

● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● How do we parse this statement?

(¬x) → ((y ∨ z) → (x ∨ (y ∧ z)))
● Operator precedence for propositional logic:

¬   

∧   

∨   

→   

↔   

● All operators are right-associative.
● We can use parentheses to disambiguate.



  

Operator Precedence

● The main points to remember:
● ¬ binds to whatever immediately follows it.
● ∧ and ∨ bind more tightly than →.

● We will commonly write expressions like 
p ∧ q → r without adding parentheses.

● For more complex expressions, we'll try to 
add parentheses.

● Confused? Just ask!



  

Time-Out for Announcements!



  

Problem Set Two

● Problem Set One was due at 12:50PM today.
● Can use up to two late days on this assignment 

if you'd like.

● Problem Set Two goes out right now.
● Checkpoint due Monday, April 13 at 12:50PM.
● Remaining problems due Friday, April 17 at 

12:50PM.
● Explore induction, puzzles, games, and 

tournament structures!



  

WiCS Casual Dinner

● Stanford WiCS is hosting its first of their 
biquarterly CS Casual Dinners next 
Wednesday, April 15.
● 6PM – 8PM in the Gates Fifth Floor lounge.
● RSVP using this link.

● Wonderful event – great way to meet other 
students, faculty members, industry 
professionals, and alums. Highly 
recommended!

https://docs.google.com/forms/d/1rkzfb2WW5r0JlA7uwWZNbyiI8UfDbTNJB5yStvhCuDs/viewform?usp=send_form


  

Your Questions



  

“What is your favorite class to teach? CS 
106A? CS 103? Or another one?”

They're all my 
favorite class to 

teach! ☺

They're all my 
favorite class to 

teach! ☺



  

“How do we know that the principle of 
mathematical induction is valid? Isn't the 

choice of what makes some logic 'legit' and 
other logic not pretty arbitrary? What 
would happen if we chose a different 

logical system, say, where induction isn't 
true?”

Induction is usually given as an axiom – it's legit 
because we define it to be legit. I haven't seen 
any examples of math that excludes induction, but 

if I find something, I'll be sure to tell you!

Induction is usually given as an axiom – it's legit 
because we define it to be legit. I haven't seen 
any examples of math that excludes induction, but 

if I find something, I'll be sure to tell you!



  

“There are many people who come into 
Stanford with extensive experience in 

math/cs/etc. How can people who are just 
finding their passions now catch up to 

these students who were literally the best 
in the world of their field during high 

school?”

I've got a few 
thoughts on this, in no 

particular order.

I've got a few 
thoughts on this, in no 

particular order.



  

“What was your favorite CS class that you 
took during your time here at Stanford? 
What was your favorite non-CS class?”

Oh wow, that's hard.
 

For CS, probably one of CS154, CS161, 
or CS227B.

 

For non-CS, that's a funny story.

Oh wow, that's hard.
 

For CS, probably one of CS154, CS161, 
or CS227B.

 

For non-CS, that's a funny story.



  

Back to CS103!



  

Recap So Far

● A propositional variable is a variable that is 
either true or false.

● The propositional connectives are
● Negation: ¬p
● Conjunction: p ∧ q
● Disjunction: p ∨ q
● Implication: p → q
● Biconditional: p ↔ q
● True: ⊤
● False: ⊥



  

Translating into Propositional Logic



  

Some Sample Propositions

a: I will get up early this morning

b: There is a lunar eclipse this morning

c: There are no clouds in the sky this morning

d: I will see the lunar eclipse



  

Some Sample Propositions

“I won't see the lunar 
eclipse if I don't get up 

early this morning.”

“I won't see the lunar 
eclipse if I don't get up 

early this morning.”

a: I will get up early this morning

b: There is a lunar eclipse this morning

c: There are no clouds in the sky this morning

d: I will see the lunar eclipse



  

Some Sample Propositions

“I won't see the lunar 
eclipse if I don't get up 

early this morning.”

“I won't see the lunar 
eclipse if I don't get up 

early this morning.”

¬a → ¬d

a: I will get up early this morning

b: There is a lunar eclipse this morning

c: There are no clouds in the sky this morning

d: I will see the lunar eclipse



  

“p if q”

translates to

q → p

It does not translate to

p → q



  

Some Sample Propositions

a: I will get up early this morning

b: There is a lunar eclipse this morning

c: There are no clouds in the sky this morning

d: I will see the lunar eclipse



  

Some Sample Propositions

a: I will get up early this morning

b: There is a lunar eclipse this morning

c: There are no clouds in the sky this morning

d: I will see the lunar eclipse

“If I get up early this 
morning, but it's cloudy 
outside, I won't see the 

lunar eclipse.

“If I get up early this 
morning, but it's cloudy 
outside, I won't see the 

lunar eclipse.



  

Some Sample Propositions

a: I will get up early this morning

b: There is a lunar eclipse this morning

c: There are no clouds in the sky this morning

d: I will see the lunar eclipse

“If I get up early this 
morning, but it's cloudy 
outside, I won't see the 

lunar eclipse.

“If I get up early this 
morning, but it's cloudy 
outside, I won't see the 

lunar eclipse.

a ∧ ¬c → ¬d



  

“p, but q”

translates to

p ∧ q



  

The Takeaway Point

● When translating into or out of 
propositional logic, be very careful not to 
get tripped up by nuances of the English 
language.
● In fact, this is one of the reasons we have a 

symbolic notation in the first place!

● Many prepositional phrases lead to 
counterintuitive translations; make sure 
to double-check yourself!



  

Propositional Equivalences



  

Quick Question

What would I have to show you to convince 
you that the statement p ∧ q is false?



  

Quick Question

What would I have to show you to convince 
you that the statement p ∨ q is false?



  

De Morgan's Laws

● Using truth tables, we concluded that

¬(p ∧ q)

is equivalent to

¬p ∨ ¬q  
● We also saw that

¬(p ∨ q)

is equivalent to

¬p ∧ ¬q  
● These two equivalences are called De Morgan's 

Laws.



  

Logical Equivalence

● Because ¬(p ∧ q) and ¬p ∨ ¬q have the same truth 
tables, we say that they're equivalent to one another.

● We denote this by writing

 ¬(p ∧ q)  ≡  ¬p ∨ ¬q  
● The ≡ symbol is not a connective.

● The statement ¬(p ∧ q) ↔ (¬p ∨ ¬q) is a propositional formula. 
If you plug in different values of p and q, it will evaluate to a 
truth value. It just happens to evaluate to true every time.

● The statement ¬(p ∧ q)  ≡  ¬p ∨ ¬q means “these two 
formulas have exactly the same truth table.”

● In other words, the notation φ ≡ ψ means “φ and ψ 
always have the same truth values, regardless of how the 
variables are assigned.”



  

An Important Equivalence

● Earlier, we talked about the truth table 
for p → q. We chose it so that

    p → q    ≡    ¬(p ∧ ¬q)
● Later on, this equivalence will be 

incredibly useful:

¬(p → q)    ≡    p ∧ ¬q      



  

Another Important Equivalence

● Here's a useful equivalence. Start with

     p → q ≡ ¬(p ∧ ¬q)
● By De Morgan's laws:

     p → q ≡ ¬(p ∧ ¬q)

      p → q≡ ¬p ∨ ¬¬q

      p → q≡ ¬p ∨ q
● Thus p → q ≡ ¬p ∨ q



  

Another Important Equivalence

● Here's a useful equivalence. Start with

     p → q ≡ ¬(p ∧ ¬q)
● By De Morgan's laws:

     p → q ≡ ¬(p ∧ ¬q)

      p → q≡ ¬p ∨ ¬¬q

      p → q≡ ¬p ∨ q
● Thus p → q ≡ ¬p ∨ q

If p is false, then 
¬p   q∨  is true. If p is 
true, then q has to be 
true for the whole 

expression to be true.

If p is false, then 
¬p   q∨  is true. If p is 
true, then q has to be 
true for the whole 

expression to be true.



  

One Last Equivalence



  

The Contrapositive

● The contrapositive of the statement

p → q 

is the statement

¬q → ¬p 
● These are logically equivalent, which is 

why proof by contradiction works:

p → q    ≡    ¬q → ¬p 
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