
  

Mathematical Logic
Part Two



  

Recap from Last Time



  

Recap So Far

● A propositional variable is a variable that is 
either true or false.

● The propositional connectives are
● Negation: ¬p
● Conjunction: p ∧ q
● Disjunction: p ∨ q
● Implication: p → q
● Biconditional: p ↔ q
● True: ⊤
● False: ⊥



  

Logical Equivalence

● Two propositional formulas φ and ψ are 
called equivalent if they have the same 
truth tables.

● We denote this by writing φ ≡ ψ.
● Some examples:

● ¬(p ∧ q) ≡ ¬p ∨ ¬q
● ¬(p ∨ q) ≡ ¬p ∧ ¬q
● ¬p ∨ q ≡ p → q
● p ∧ ¬q ≡ ¬(p → q)



  

New Stuff!



  

Why All This Matters

● Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   

x + y = 16 → x ≥ 8 ∨ y ≥ 8



  

Why All This Matters

● Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   

x < 8 ∧ y < 8 → x + y ≠ 16

“If x < 8 and y < 8, then x + y ≠ 16”



  

Theorem: If x + y = 16, then x ≥ 8 or y ≥ 8.

Proof: By contrapositive. We prove that if x < 8 and y < 8,
then x + y ≠ 16. To see this, note that

 

x + y < 8 + y
         < 8 + 8 
         = 16

 

This means that x + y < 16, so x + y ≠ 16, which is
what we needed to show. ■



  

Why All This Matters

● Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   

x + y = 16 → x ≥ 8 ∨ y ≥ 8



  

Why All This Matters

● Suppose we want to prove the following 
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”   

x + y = 16 ∧ x < 8 ∧ y < 8

“x + y = 16, but x < 8 and y < 8.”



  

Theorem: If x + y = 16, then x ≥ 8 or y ≥ 8.
 
Proof: Assume for the sake of contradiction that

x + y = 16, but x < 8 and y < 8. Then
  

x + y < 8 + y
         < 8 + 8 
         = 16

  

So x + y < 16, contradicting that x + y = 16. We have
reached a contradiction, so our assumption must have
been wrong. Therefore if x + y = 16, then x ≥ 8 or
y ≥ 8. ■



  

Why This Matters

● Propositional logic is a tool for reasoning 
about how various statements affect one 
another.

● To better understand how to prove a result, 
it often helps to translate what you're trying 
to prove into propositional logic first.

● That said, propositional logic isn't 
expressive enough to capture all 
statements. For that, we need something 
more powerful.



  

First-Order Logic



  

What is First-Order Logic?

● First-order logic is a logical system for 
reasoning about properties of objects.

● Augments the logical connectives from 
propositional logic with
● predicates that describe properties of 

objects, and
● functions that map objects to one another,
● quantifiers that allow us to reason about 

multiple objects simultaneously.



  

The Universe of Propositional Logic

TRUE FALSE

p ∧ q → ¬r ∨ ¬s

p
r

q
s



  

Propositional Logic

● In propositional logic, each variable represents a 
proposition, which is either true or false.

● We can directly apply connectives to propositions:
● p → q
● ¬p ∧ q

● The truth of a statement can be determined by 
plugging in the truth values for the input 
propositions and computing the result.

● We can see all possible truth values for a 
statement by checking all possible truth 
assignments to its variables.



  

The Universe of First-Order Logic

Venus

The Morning 
Star

The Evening 
Star

The Sun

The Moon



  

First-Order Logic

● In first-order logic, each variable refers 
to some object in a set called the domain 
of discourse.

● Some objects may have multiple names.
● Some objects may have no name at all.

Venus
The Morning 

Star

The Evening 
Star



  

Propositional vs. First-Order Logic

● Because propositional variables are 
either true or false, we can directly apply 
connectives to them.

p → q                 ¬p ↔ q ∧ r    

● Because first-order variables refer to 
arbitrary objects, it does not make sense 
to apply connectives to them.

Venus → Sun                137 ↔ ¬42

● This is not C!



  

Reasoning about Objects

● To reason about objects, first-order logic uses 
predicates.

● Examples:
● ExtremelyCute(Quokka)
● DeadlockEachOther(House, Senate)

● Predicates can take any number of arguments, but 
each predicate has a fixed number of arguments 
(called its arity).
● The arity and meaning of each predicate are typically 

specified in advance.

● Applying a predicate to arguments produces a 
proposition, which is either true or false.



  

First-Order Sentences

● Sentences in first-order logic can be 
constructed from predicates applied to objects:

LikesToEat(V, M) ∧ Near(V, M) → WillEat(V, M)

Cute(t) → Dikdik(t) ∨ Kitty(t) ∨ Puppy(t)

x < 8 → x < 137

The notation x < 8 is just a shorthand 
for something like LessThan(x, 8).  
Binary predicates in math are often 

written like this, but symbols like < are 
not a part of first-order logic.

The notation x < 8 is just a shorthand 
for something like LessThan(x, 8).  
Binary predicates in math are often 

written like this, but symbols like < are 
not a part of first-order logic.



  

Equality

● First-order logic is equipped with a special 
predicate = that says whether two objects are 
equal to one another.

● Equality is a part of first-order logic, just as → 
and ¬ are.

● Examples:

MorningStar = EveningStar

TomMarvoloRiddle = LordVoldemort
● Equality can only be applied to objects; to see 

if propositions are equal, use ↔.



  

For notational simplicity, define ≠ as

    x ≠ y   ≡   ¬(x = y)



  

Expanding First-Order Logic

(x < 8 ∧ y < 8)  →  (x + y < 16)

Why is this allowed?



  

Functions

● First-order logic allows functions that return objects 
associated with other objects.

● Examples:

x + y

LengthOf(path)

MedianOf(x, y, z)
● As with predicates, functions can take in any number of 

arguments, but each function has a fixed arity.
● As with predicates, the arity and interpretation of functions are 

specified in advance.

● Functions evaluate to objects, not propositions.
● There is no syntactic way to distinguish functions and 

predicates; you'll have to look at how they're used.



  

How would we translate the 
statement

“For any natural number n,
n is even if and only if n2 is even”

into first-order logic?



  

Quantifiers

● The biggest change from propositional 
logic to first-order logic is the use of 
quantifiers.

● A quantifier is a statement that 
expresses that some property is true for 
some or all choices that could be made.

● Useful for statements like “for every 
action, there is an equal and opposite 
reaction.”



  

“For any natural number n,
n is even iff n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2))) 

 ∀ is the universal quantifier 
and says “for any choice of n, 

the following is true.”

 ∀ is the universal quantifier 
and says “for any choice of n, 

the following is true.”



  

The Universal Quantifier

● A statement of the form ∀x. ψ asserts that 
for every choice of x in our domain, ψ is 
true.

● Examples:

∀v. (Puppy(v) → Cute(v))

∀n. (n ∈ ℕ → (Even(n) ↔ ¬Odd(n)))

Tallest(SK) →
∀x. (SK ≠ x → ShorterThan(x, SK))



  

∃ is the existential quantifier 
and says “for some choice of 
m, the following is true.”

∃ is the existential quantifier 
and says “for some choice of 
m, the following is true.”

Some muggles are intelligent.

∃m. (Muggle(m) ∧ Intelligent(m))



  

The Existential Quantifier

● A statement of the form ∃x. ψ asserts 
that for some choice of x in our domain, 
ψ is true.

● Examples:

∃x. (Even(x) ∧ Prime(x))

∃x. (TallerThan(x, me) ∧ LighterThan(x, me))

(∃x. Appreciates(x, me)) → Happy(me)



  

Operator Precedence (Again)

● When writing out a formula in first-order logic, 
the quantifiers ∀ and ∃ have precedence just 
below ¬.

● Thus

∀x. P(x) ∨ R(x) → Q(x)

is interpreted as the (malformed) statement

((∀x. P(x)) ∨ R(x)) → Q(x)

rather than the (intended, valid) statement

∀x. (P(x) ∨ R(x) → Q(x))



  

Time-Out for Announcements!



  

Problem Set Logistics

● Problem Set Two checkpoint was due at 
12:50PM today. We'll try to get it back to you 
with feedback by Wednesday.

● The rest of Problem Set Two is due on Friday.
● Start early!
● Ask questions in office hours, over email, or on 

Piazza!

● The TAs are humming along on Problem Set 
One. They'll have everything graded by 
Wednesday.



  

Problem Set Solutions

● We'll release hardcopies of the problem 
set solutions (and solution sets in 
general) in lecture.

● If you can't make it to lecture or forget to 
pick up a copy, you can pick up the 
solution sets from Gates.

● I'll show you where right now!



  



  



  



  

Your Questions



  

“What is your favorite proof?”

I don't think I have a single 
“favorite” proof, though there are a 
bunch that I really like. My favorite 

from CS103 are the proof of Cantor's 
theorem and some of the impossibility 
results from later on. I'll point them 

out when we get there.

I don't think I have a single 
“favorite” proof, though there are a 
bunch that I really like. My favorite 

from CS103 are the proof of Cantor's 
theorem and some of the impossibility 
results from later on. I'll point them 

out when we get there.



  

“Besides being interesting in its own right 
and good for cocktail parties, how does the 

material we learn in 103 come in handy 
later on?”

Finite automata, regular expressions, and grammars (in 
a few weeks) show up in all sorts of applications and 
are definitely useful to know about. The impossibility 

and hardness results we'll cover are good to know when 
on the job. However, the main benefit is being 

comfortable reasoning mathematically.

Finite automata, regular expressions, and grammars (in 
a few weeks) show up in all sorts of applications and 
are definitely useful to know about. The impossibility 

and hardness results we'll cover are good to know when 
on the job. However, the main benefit is being 

comfortable reasoning mathematically.



  

“Why do you teach instead of working in 
industry?”

“Why didn't you go on to get a PhD in CS 
theory; you seem to love the subject 

matter. Or is it something you might still do 
in the future?”

A few reasons:

1. High impact
2. High job satisfaction
3. Meet amazing people
4. Intellectual interest
5. Flexibility

A few reasons:

1. High impact
2. High job satisfaction
3. Meet amazing people
4. Intellectual interest
5. Flexibility



  

“For applying to tech jobs, oftentimes a 
candidate could preferably include a list of 
projects he or she has done. How does one 

get started on building a profile of side 
projects? What types of projects make a 

well-rounded profile?”

Don't feel obligated to have side projects! Keep 
in mind that companies are looking at a lot of 
signals and this is just one of them.

If you want to do something fun on the side, go 
right ahead! Try to pick something you're actually 
interested in.

Don't feel obligated to have side projects! Keep 
in mind that companies are looking at a lot of 
signals and this is just one of them.

If you want to do something fun on the side, go 
right ahead! Try to pick something you're actually 
interested in.



  

Back to CS103!



  

Translating into First-Order Logic



  

Translating Into Logic

● First-order logic is an excellent tool for 
manipulating definitions and theorems to 
learn more about them.

● Applications:
● Determining the negation of a complex 

statement.
● Figuring out the contrapositive of a tricky 

implication.



  

Translating Into Logic

● Translating statements into first-order 
logic is a lot more difficult than it looks.

● There are a lot of nuances that come up when 
translating into first-order logic.

● We'll cover examples of both good and bad 
translations into logic so that you can learn 
what to watch for.

● We'll also show lots of examples of translations 
so that you can see the process that goes into it.



  

Using the predicates

   - Puppy(p), which states that p is a puppy, and
   - Cute(x), which states that x is cute,

write a sentence in first-order logic that means “all puppies 
are cute.”



  

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

This should work 
for any choice of 
x, including things 
that aren't puppies.

This should work 
for any choice of 
x, including things 
that aren't puppies.



  

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

This logical statement can be made 
false regardless of whether all puppies 

are cute. It's therefore not a 
faithful translation.

This logical statement can be made 
false regardless of whether all puppies 

are cute. It's therefore not a 
faithful translation.



  

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work 
for any choice of 
x, including things 
that aren't puppies.

This should work 
for any choice of 
x, including things 
that aren't puppies.



  

“All P's are Q's”

translates as

∀x. (P(x) → Q(x))



  

Useful Intuition:

Universally-quantified statements are true 
unless there's a counterexample.

∀x. (P(x) → Q(x))

If x is a counterexample, it 
must have property P but 
not have property Q.

If x is a counterexample, it 
must have property P but 
not have property Q.



  

Using the predicates

   - Blobfish(b), which states that b is a blobfish, and
   - Cute(x), which states that x is cute,

write a sentence in first-order logic that means “some 
blobfish is cute.”



  

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

What happens if

1. The English statement is false, but
2. x refers to a puppy?

What happens if

1. The English statement is false, but
2. x refers to a puppy?



  

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

Although the English statement is false, 
this logical statement is true. It's 
therefore not a correct translation.

Although the English statement is false, 
this logical statement is true. It's 
therefore not a correct translation.



  

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

What happens if

1. The English statement is false, but
2. x refers to a puppy?

What happens if

1. The English statement is false, but
2. x refers to a puppy?



  

“Some P is a Q”

translates as

∃x. (P(x) ∧ Q(x))



  

Useful Intuition:

Existentially-quantified statements are 
false unless there's a positive example.

∃x. (P(x) ∧ Q(x))

If x is an example, it must 
have property P on top of 

property Q.

If x is an example, it must 
have property P on top of 

property Q.



  

Good Pairings

● The ∀ quantifier usually is paired with →.
● The ∃ quantifier usually is paired with ∧.
● In the case of ∀, the → connective prevents 

the statement from being false when speaking 
about some object you don't care about.

● In the case of ∃, the ∧ connective prevents the 
statement from being true when speaking 
about some object you don't care about.



  

Using the predicates

   - Tall(t), which states that t is tall;
   - Tree(t), which states that t is a tree; and
   - Sequoia(s), which states that s is a sequoia,

write a sentence in first-order logic that means “there's a tall 
tree that's a sequoia.”



  

Checking a Translation

There's a tall tree that's a sequoia.

∃t. (Tree(t) ∧ (Tall(t) → Sequoia(t)))

What if we pick t to 
be a short tree?

What if we pick t to 
be a short tree?



  

Checking a Translation

There's a tall tree that's a sequoia.

∃t. (Tree(t) ∧ (Tall(t) → Sequoia(t)))

This statement can 
be true even if no 
tall sequoias exist.

This statement can 
be true even if no 
tall sequoias exist.



  

Checking a Translation

There's a tall tree that's a sequoia.

∃t. (Tree(t) ∧ Tall(t) ∧ Sequoia(t))

Do you see why this 
statement doesn't 
have this problem?

Do you see why this 
statement doesn't 
have this problem?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

