

Mathematical Logic
Part Two

Recap from Last Time

Recap So Far

● A propositional variable is a variable that is
either true or false.

● The propositional connectives are
● Negation: ¬p
● Conjunction: p ∧ q
● Disjunction: p ∨ q
● Implication: p → q
● Biconditional: p ↔ q
● True: ⊤
● False: ⊥

Logical Equivalence

● Two propositional formulas φ and ψ are
called equivalent if they have the same
truth tables.

● We denote this by writing φ ≡ ψ.
● Some examples:

● ¬(p ∧ q) ≡ ¬p ∨ ¬q
● ¬(p ∨ q) ≡ ¬p ∧ ¬q
● ¬p ∨ q ≡ p → q
● p ∧ ¬q ≡ ¬(p → q)

New Stuff!

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x + y = 16 → x ≥ 8 ∨ y ≥ 8

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ y < 8 → x + y ≠ 16

“If x < 8 and y < 8, then x + y ≠ 16”

Theorem: If x + y = 16, then x ≥ 8 or y ≥ 8.

Proof: By contrapositive. We prove that if x < 8 and y < 8,
then x + y ≠ 16. To see this, note that

x + y < 8 + y
 < 8 + 8
 = 16

This means that x + y < 16, so x + y ≠ 16, which is
what we needed to show. ■

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x + y = 16 → x ≥ 8 ∨ y ≥ 8

Why All This Matters

● Suppose we want to prove the following
statement:

“If x + y = 16, then x ≥ 8 or y ≥ 8”

x + y = 16 ∧ x < 8 ∧ y < 8

“x + y = 16, but x < 8 and y < 8.”

Theorem: If x + y = 16, then x ≥ 8 or y ≥ 8.

Proof: Assume for the sake of contradiction that

x + y = 16, but x < 8 and y < 8. Then

x + y < 8 + y
 < 8 + 8
 = 16

So x + y < 16, contradicting that x + y = 16. We have
reached a contradiction, so our assumption must have
been wrong. Therefore if x + y = 16, then x ≥ 8 or
y ≥ 8. ■

Why This Matters

● Propositional logic is a tool for reasoning
about how various statements affect one
another.

● To better understand how to prove a result,
it often helps to translate what you're trying
to prove into propositional logic first.

● That said, propositional logic isn't
expressive enough to capture all
statements. For that, we need something
more powerful.

First-Order Logic

What is First-Order Logic?

● First-order logic is a logical system for
reasoning about properties of objects.

● Augments the logical connectives from
propositional logic with
● predicates that describe properties of

objects, and
● functions that map objects to one another,
● quantifiers that allow us to reason about

multiple objects simultaneously.

The Universe of Propositional Logic

TRUE FALSE

p ∧ q → ¬r ∨ ¬s

p
r

q
s

Propositional Logic

● In propositional logic, each variable represents a
proposition, which is either true or false.

● We can directly apply connectives to propositions:
● p → q
● ¬p ∧ q

● The truth of a statement can be determined by
plugging in the truth values for the input
propositions and computing the result.

● We can see all possible truth values for a
statement by checking all possible truth
assignments to its variables.

The Universe of First-Order Logic

Venus

The Morning
Star

The Evening
Star

The Sun

The Moon

First-Order Logic

● In first-order logic, each variable refers
to some object in a set called the domain
of discourse.

● Some objects may have multiple names.
● Some objects may have no name at all.

Venus
The Morning

Star

The Evening
Star

Propositional vs. First-Order Logic

● Because propositional variables are
either true or false, we can directly apply
connectives to them.

p → q ¬p ↔ q ∧ r

● Because first-order variables refer to
arbitrary objects, it does not make sense
to apply connectives to them.

Venus → Sun 137 ↔ ¬42

● This is not C!

Reasoning about Objects

● To reason about objects, first-order logic uses
predicates.

● Examples:
● ExtremelyCute(Quokka)
● DeadlockEachOther(House, Senate)

● Predicates can take any number of arguments, but
each predicate has a fixed number of arguments
(called its arity).
● The arity and meaning of each predicate are typically

specified in advance.

● Applying a predicate to arguments produces a
proposition, which is either true or false.

First-Order Sentences

● Sentences in first-order logic can be
constructed from predicates applied to objects:

LikesToEat(V, M) ∧ Near(V, M) → WillEat(V, M)

Cute(t) → Dikdik(t) ∨ Kitty(t) ∨ Puppy(t)

x < 8 → x < 137

The notation x < 8 is just a shorthand
for something like LessThan(x, 8).
Binary predicates in math are often

written like this, but symbols like < are
not a part of first-order logic.

The notation x < 8 is just a shorthand
for something like LessThan(x, 8).
Binary predicates in math are often

written like this, but symbols like < are
not a part of first-order logic.

Equality

● First-order logic is equipped with a special
predicate = that says whether two objects are
equal to one another.

● Equality is a part of first-order logic, just as →
and ¬ are.

● Examples:

MorningStar = EveningStar

TomMarvoloRiddle = LordVoldemort
● Equality can only be applied to objects; to see

if propositions are equal, use ↔.

For notational simplicity, define ≠ as

 x ≠ y ≡ ¬(x = y)

Expanding First-Order Logic

(x < 8 ∧ y < 8) → (x + y < 16)

Why is this allowed?

Functions

● First-order logic allows functions that return objects
associated with other objects.

● Examples:

x + y

LengthOf(path)

MedianOf(x, y, z)
● As with predicates, functions can take in any number of

arguments, but each function has a fixed arity.
● As with predicates, the arity and interpretation of functions are

specified in advance.

● Functions evaluate to objects, not propositions.
● There is no syntactic way to distinguish functions and

predicates; you'll have to look at how they're used.

How would we translate the
statement

“For any natural number n,
n is even if and only if n2 is even”

into first-order logic?

Quantifiers

● The biggest change from propositional
logic to first-order logic is the use of
quantifiers.

● A quantifier is a statement that
expresses that some property is true for
some or all choices that could be made.

● Useful for statements like “for every
action, there is an equal and opposite
reaction.”

“For any natural number n,
n is even iff n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2)))

 ∀ is the universal quantifier
and says “for any choice of n,

the following is true.”

 ∀ is the universal quantifier
and says “for any choice of n,

the following is true.”

The Universal Quantifier

● A statement of the form ∀x. ψ asserts that
for every choice of x in our domain, ψ is
true.

● Examples:

∀v. (Puppy(v) → Cute(v))

∀n. (n ∈ ℕ → (Even(n) ↔ ¬Odd(n)))

Tallest(SK) →
∀x. (SK ≠ x → ShorterThan(x, SK))

∃ is the existential quantifier
and says “for some choice of
m, the following is true.”

∃ is the existential quantifier
and says “for some choice of
m, the following is true.”

Some muggles are intelligent.

∃m. (Muggle(m) ∧ Intelligent(m))

The Existential Quantifier

● A statement of the form ∃x. ψ asserts
that for some choice of x in our domain,
ψ is true.

● Examples:

∃x. (Even(x) ∧ Prime(x))

∃x. (TallerThan(x, me) ∧ LighterThan(x, me))

(∃x. Appreciates(x, me)) → Happy(me)

Operator Precedence (Again)

● When writing out a formula in first-order logic,
the quantifiers ∀ and ∃ have precedence just
below ¬.

● Thus

∀x. P(x) ∨ R(x) → Q(x)

is interpreted as the (malformed) statement

((∀x. P(x)) ∨ R(x)) → Q(x)

rather than the (intended, valid) statement

∀x. (P(x) ∨ R(x) → Q(x))

Time-Out for Announcements!

Problem Set Logistics

● Problem Set Two checkpoint was due at
12:50PM today. We'll try to get it back to you
with feedback by Wednesday.

● The rest of Problem Set Two is due on Friday.
● Start early!
● Ask questions in office hours, over email, or on

Piazza!

● The TAs are humming along on Problem Set
One. They'll have everything graded by
Wednesday.

Problem Set Solutions

● We'll release hardcopies of the problem
set solutions (and solution sets in
general) in lecture.

● If you can't make it to lecture or forget to
pick up a copy, you can pick up the
solution sets from Gates.

● I'll show you where right now!

Your Questions

“What is your favorite proof?”

I don't think I have a single
“favorite” proof, though there are a
bunch that I really like. My favorite

from CS103 are the proof of Cantor's
theorem and some of the impossibility
results from later on. I'll point them

out when we get there.

I don't think I have a single
“favorite” proof, though there are a
bunch that I really like. My favorite

from CS103 are the proof of Cantor's
theorem and some of the impossibility
results from later on. I'll point them

out when we get there.

“Besides being interesting in its own right
and good for cocktail parties, how does the

material we learn in 103 come in handy
later on?”

Finite automata, regular expressions, and grammars (in
a few weeks) show up in all sorts of applications and
are definitely useful to know about. The impossibility

and hardness results we'll cover are good to know when
on the job. However, the main benefit is being

comfortable reasoning mathematically.

Finite automata, regular expressions, and grammars (in
a few weeks) show up in all sorts of applications and
are definitely useful to know about. The impossibility

and hardness results we'll cover are good to know when
on the job. However, the main benefit is being

comfortable reasoning mathematically.

“Why do you teach instead of working in
industry?”

“Why didn't you go on to get a PhD in CS
theory; you seem to love the subject

matter. Or is it something you might still do
in the future?”

A few reasons:

1. High impact
2. High job satisfaction
3. Meet amazing people
4. Intellectual interest
5. Flexibility

A few reasons:

1. High impact
2. High job satisfaction
3. Meet amazing people
4. Intellectual interest
5. Flexibility

“For applying to tech jobs, oftentimes a
candidate could preferably include a list of
projects he or she has done. How does one

get started on building a profile of side
projects? What types of projects make a

well-rounded profile?”

Don't feel obligated to have side projects! Keep
in mind that companies are looking at a lot of
signals and this is just one of them.

If you want to do something fun on the side, go
right ahead! Try to pick something you're actually
interested in.

Don't feel obligated to have side projects! Keep
in mind that companies are looking at a lot of
signals and this is just one of them.

If you want to do something fun on the side, go
right ahead! Try to pick something you're actually
interested in.

Back to CS103!

Translating into First-Order Logic

Translating Into Logic

● First-order logic is an excellent tool for
manipulating definitions and theorems to
learn more about them.

● Applications:
● Determining the negation of a complex

statement.
● Figuring out the contrapositive of a tricky

implication.

Translating Into Logic

● Translating statements into first-order
logic is a lot more difficult than it looks.

● There are a lot of nuances that come up when
translating into first-order logic.

● We'll cover examples of both good and bad
translations into logic so that you can learn
what to watch for.

● We'll also show lots of examples of translations
so that you can see the process that goes into it.

Using the predicates

 - Puppy(p), which states that p is a puppy, and
 - Cute(x), which states that x is cute,

write a sentence in first-order logic that means “all puppies
are cute.”

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

An Incorrect Translation

All puppies are cute!

∀x. (Puppy(x) ∧ Cute(x))

This logical statement can be made
false regardless of whether all puppies

are cute. It's therefore not a
faithful translation.

This logical statement can be made
false regardless of whether all puppies

are cute. It's therefore not a
faithful translation.

A Better Translation

All puppies are cute!

∀x. (Puppy(x) → Cute(x))

This should work
for any choice of
x, including things
that aren't puppies.

This should work
for any choice of
x, including things
that aren't puppies.

“All P's are Q's”

translates as

∀x. (P(x) → Q(x))

Useful Intuition:

Universally-quantified statements are true
unless there's a counterexample.

∀x. (P(x) → Q(x))

If x is a counterexample, it
must have property P but
not have property Q.

If x is a counterexample, it
must have property P but
not have property Q.

Using the predicates

 - Blobfish(b), which states that b is a blobfish, and
 - Cute(x), which states that x is cute,

write a sentence in first-order logic that means “some
blobfish is cute.”

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

What happens if

1. The English statement is false, but
2. x refers to a puppy?

What happens if

1. The English statement is false, but
2. x refers to a puppy?

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) → Cute(x))

Although the English statement is false,
this logical statement is true. It's
therefore not a correct translation.

Although the English statement is false,
this logical statement is true. It's
therefore not a correct translation.

An Incorrect Translation

Some blobfish is cute.

∃x. (Blobfish(x) ∧ Cute(x))

What happens if

1. The English statement is false, but
2. x refers to a puppy?

What happens if

1. The English statement is false, but
2. x refers to a puppy?

“Some P is a Q”

translates as

∃x. (P(x) ∧ Q(x))

Useful Intuition:

Existentially-quantified statements are
false unless there's a positive example.

∃x. (P(x) ∧ Q(x))

If x is an example, it must
have property P on top of

property Q.

If x is an example, it must
have property P on top of

property Q.

Good Pairings

● The ∀ quantifier usually is paired with →.
● The ∃ quantifier usually is paired with ∧.
● In the case of ∀, the → connective prevents

the statement from being false when speaking
about some object you don't care about.

● In the case of ∃, the ∧ connective prevents the
statement from being true when speaking
about some object you don't care about.

Using the predicates

 - Tall(t), which states that t is tall;
 - Tree(t), which states that t is a tree; and
 - Sequoia(s), which states that s is a sequoia,

write a sentence in first-order logic that means “there's a tall
tree that's a sequoia.”

Checking a Translation

There's a tall tree that's a sequoia.

∃t. (Tree(t) ∧ (Tall(t) → Sequoia(t)))

What if we pick t to
be a short tree?

What if we pick t to
be a short tree?

Checking a Translation

There's a tall tree that's a sequoia.

∃t. (Tree(t) ∧ (Tall(t) → Sequoia(t)))

This statement can
be true even if no
tall sequoias exist.

This statement can
be true even if no
tall sequoias exist.

Checking a Translation

There's a tall tree that's a sequoia.

∃t. (Tree(t) ∧ Tall(t) ∧ Sequoia(t))

Do you see why this
statement doesn't
have this problem?

Do you see why this
statement doesn't
have this problem?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

