
  

Mathematical Logic
Part Three



  

Outline for Today

● Recap from Last Time
● More First-Order Translations
● First-Order Negations



  

Recap from Last Time



  

The Universal Quantifier

● A statement of the form ∀x. ψ asserts that 
for every choice of x, the statement ψ is 
true.

● Examples:

∀v. (Puppy(v) → Cute(v))

∀n. (n ∈ ℕ → (Even(n) ↔ ¬Odd(n)))

Tallest(SK) →
∀x. (SK ≠ x → ShorterThan(x, SK))

● Note the use of the → connective.



  

The Existential Quantifier

● A statement of the form ∃x. ψ asserts 
that for some choice of x, the statement 
ψ is true.

● Examples:

∃x. (Even(x) ∧ Prime(x))

∃x. (TallerThan(x, me) ∧ LighterThan(x, me))

(∃x. Appreciates(x, me)) → Happy(me)

● Note the use of the ∧ connective.



  

Useful Intuition:

Universally-quantified statements are true 
unless there's a counterexample.

∀x. (P(x) → Q(x))

If x is a counterexample, it 
must have property P but 
not have property Q.

If x is a counterexample, it 
must have property P but 
not have property Q.



  

Useful Intuition:

Existentially-quantified statements are 
false unless there's a positive example.

∃x. (P(x) ∧ Q(x))

If x is an example, it must 
have property P on top of 

property Q.

If x is an example, it must 
have property P on top of 

property Q.



  

Good Pairings

● The ∀ quantifier usually is paired with →.
● The ∃ quantifier usually is paired with ∧.
● In the case of ∀, the → connective prevents 

the statement from being false when speaking 
about some object you don't care about.

● In the case of ∃, the ∧ connective prevents the 
statement from being true when speaking 
about some object you don't care about.



  

New Stuff!



  

Using the predicates

   - Person(p), which states that p is a person, and
   - Loves(x, y), which states that x loves y,

write a sentence in first-order logic that means “everybody 
loves someone else.”



  

Everybody loves someone else 
 
 
 
 



  

Every person loves some other person 
 
 
 
 



  

Every person p loves some other person 
 
 
 
 



  

∀p. (Person(p) → 
p loves some other person  

 
 
) 



  

∀p. (Person(p) → 
there is some other person that p loves 

 
 
) 



  

∀p. (Person(p) → 
there is a person other than p that p loves 

 
 
) 



  

∀p. (Person(p) → 
there is a person q, other than p, where p loves q 

 
 
) 



  

∀p. (Person(p) → 
there is a person q, other than p, where 
p loves q 

) 



  

∀p. (Person(p) → 
∃q. (Person(q) ∧ other than p, where

p loves q
) 

)



  

∀p. (Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧

p loves q
) 

)



  

∀p. (Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
) 

)



  

Using the predicates

   - Person(p), which states that p is a person, and
   - Loves(x, y), which states that x loves y,

write a sentence in first-order logic that means “there is 
someone that everyone else loves.”



  

There is a person that everyone else loves 
 
 
 
 



  

There is a person p where everyone else loves p 
 
 
 
 



  

∃p. (Person(p) ∧  
everyone else loves p   

 
 
)



  

∃p. (Person(p) ∧  
everyone other person q loves p   

 
 
)



  

∃p. (Person(p) ∧  
everyone person q who isn't p loves p   

 
 
)



  

∃p. (Person(p) ∧ 
∀q. (Person(q) ∧ q ≠ p →

q loves p  
)

)



  

∃p. (Person(p) ∧ 
∀q. (Person(q) ∧ q ≠ p →

Loves(q, p)
)

)



  

Combining Quantifiers

● Most interesting statements in first-order 
logic require a combination of 
quantifiers.

● Example: “Everyone loves someone else.”

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))
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For every person,
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quantifiers.
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Combining Quantifiers

● Most interesting statements in first-order 
logic require a combination of 
quantifiers.

● Example: “Everyone loves someone else.”

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

For every person,
there is some person

who isn't them
that they love.



  

Combining Quantifiers

● Most interesting statements in first-order 
logic require a combination of 
quantifiers.

● Example: “There is someone everyone 
else loves.”



  

Combining Quantifiers

● Most interesting statements in first-order 
logic require a combination of 
quantifiers.

● Example: “There is someone everyone 
else loves.”

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))



  

Combining Quantifiers

● Most interesting statements in first-order 
logic require a combination of 
quantifiers.

● Example: “There is someone everyone 
else loves.”

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person



  

Combining Quantifiers

● Most interesting statements in first-order 
logic require a combination of 
quantifiers.

● Example: “There is someone everyone 
else loves.”

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone



  

Combining Quantifiers

● Most interesting statements in first-order 
logic require a combination of 
quantifiers.

● Example: “There is someone everyone 
else loves.”

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone

who isn't them



  

Combining Quantifiers

● Most interesting statements in first-order 
logic require a combination of 
quantifiers.

● Example: “There is someone everyone 
else loves.”

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone

who isn't them
loves.



  

For Comparison

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone

who isn't them
loves.

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

For every person,
there is some person

who isn't them
that they love.



  

Everyone Loves Someone Else



  

There is Someone Everyone Else Loves



  

There is Someone Everyone Else Loves

This person 
does not 

love anyone 
else.

This person 
does not 

love anyone 
else.



  

Everyone Loves Someone Else



  

Everyone Loves Someone Else

No one here 
is universally 

loved.

No one here 
is universally 

loved.



  

Everyone Loves Someone Else and
There is Someone Everyone Else Loves



  

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone

who isn't them
loves.

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

For every person,
there is some person

who isn't them
that they love.

∧



  

Quantifier Ordering

● The statement

 ∀x. ∃y. P(x, y)  

means “for any choice x, there's some y 
where P(x, y) is true.”

● The choice of y can be different every 
time and can depend on x.



  

Quantifier Ordering

● The statement

 ∃x. ∀y. P(x, y)  

means “there is some x where for any 
choice of y, we get that P(x, y) is true.”

● Since the inner part has to work for any 
choice of y, this places a lot of 
constraints on what x can be.



  

Order matters when mixing existential 
and universal quantifiers!



  

Using the predicates

   - Set(S), which states that S is a set, and
   - x ∈ y, which states that x is an element of y,

write a sentence in first-order logic that means “the empty 
set exists.”



  

Using the predicates

   - Set(S), which states that S is a set, and
   - x ∈ y, which states that x is an element of y,

write a sentence in first-order logic that means “the empty 
set exists.”

First-order logic doesn't have set 
operators or symbols “built in.” If we 
only have the predicates given above, 

how might we describe this?

First-order logic doesn't have set 
operators or symbols “built in.” If we 
only have the predicates given above, 

how might we describe this?



  

The empty set exists. 
 
 



  

There is some set S that is empty. 
 
 



  

∃S. (Set(S) ∧
S is empty. 

)



  

∃S. (Set(S) ∧
S does not contain any elements. 

)



  

∃S. (Set(S) ∧
for every x, x is not an element of S. 

)



  

∃S. (Set(S) ∧
∀x. ¬(x ∈ S)

)



  

∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))



  

Using the predicates

   - Tournament(T), which states that T is a tournament;
   - p ∈ T, which states that p is a player in tournament T; and
   - Beat(p1, p2), which states that p1 beat p2,

write a sentence in first-order logic that means “every 
tournament has a tournament winner.”



  

Every tournament has a tournament winner 

 
 
 
 
 
 
 
 



  

Every tournament T has a tournament winner 

 
 
 
 
 
 
 
 



  

∀T. (Tournament(T) →
T has a tournament winner 

 
 
 
 
 
 
 
)



  

∀T. (Tournament(T) →
some player in T is a tournament winner 

 
 
 
 
 
 
 
)



  

∀T. (Tournament(T) →
some player w in T is a tournament winner 

 
 
 
 
 
 
 
)



  

∀T. (Tournament(T) →
∃w. (w ∈ T ∧

w is a tournament winner 
 
 
 
 
 

)
)



  

∀T. (Tournament(T) →
∃w. (w ∈ T ∧

for each other player p, either w beat p or w
beat someone who beat p 

 

 

)
)



  

∀T. (Tournament(T) →
∃w. (w ∈ T ∧

for each other player p, 
either w beat p or 
w beat someone who beat p   

 

)
)



  

∀T. (Tournament(T) →
∃w. (w ∈ T ∧

∀p. (p ∈ T ∧ p ≠ w → 
either w beat p or
w beat someone who beat p 

 
 

)
)

)



  

∀T. (Tournament(T) →
∃w. (w ∈ T ∧

∀p. (p ∈ T ∧ p ≠ w → 
Beat(w, p) ∨
w beat someone who beat p 

 
 

)
)

)



  

∀T. (Tournament(T) →
∃w. (w ∈ T ∧

∀p. (p ∈ T ∧ p ≠ w → 
Beat(w, p) ∨
w beat some player q who beat p 

 
 

)
)

)



  

∀T. (Tournament(T) →
∃w. (w ∈ T ∧

∀p. (p ∈ T ∧ p ≠ w → 
Beat(w, p) ∨
∃q. (q ∈ T ∧

Beat(w, q) ∧ Beat(q, p)
)

)
)

)



  

Time-Out for Announcements!



  

PS1 Graded

● Problem Set One has been graded; feedback and 
grades available online via Scoryst.

● What you should do now:
● Review all of the feedback on the problem set and 

make sure you understand it.
● If you don't understand a deduction, stop by office 

hours, email the staff list, or ask on Piazza.
● Incorporate that feedback when writing up your proofs 

for Problem Set Two.

● Regrade policy will be announced over email.



  



  

Reminder: Casual CS Dinner

● WiCS is holding its first Casual CS 
Dinner of the quarter tonight from
6PM – 8PM on the fifth floor of Gates.

● Fantastic event; everyone is welcome and 
I highly recommend it.



  

Latin@ Coder Summit

● First ever Latin@ Coder 
Summit on May 2nd.

● Want to attend? RSVP using 
this link.

● Want to volunteer at the event? 
Click here.

● Have general questions? Contact 
Estefania Ortiz at 
eaortiz@stanford.edu.

https://www.eventbrite.com/e/latin-coder-summit-tickets-16104218150
https://docs.google.com/a/stanford.edu/forms/d/1FaN3G3LrOAuOPahxUKq18rKLGw-N9N_nlHUW8B3A6Pg/viewform
mailto:eaortiz@stanford.edu


  

● WiCS' annual hackathon, HackOverflow, is coming 
up on April 25.
● Co-hosted with DiversityBase, Stanford Robotics Club, 

and Stanford ACM.

● Geared toward beginners, but everyone is welcome!
● Click here to RSVP.

http://hackoverflow.typeform.com/to/zNSIMK


  

Your Questions



  

“Any thoughts on the new CS+X majors?”

They look awesome! And wonderful! 
I'm so excited to see what comes 

out of this program!

They look awesome! And wonderful! 
I'm so excited to see what comes 

out of this program!



  

“What do you say to students choosing 
between CS and Symsys?”

They're both great programs, and it really 
depends on what you want to study. Symsys 
gives more breadth but less depth, while CS 

gives more depth and less breadth. You might 
also want to look at CS+X, minors, and coterms 

for more options!

They're both great programs, and it really 
depends on what you want to study. Symsys 
gives more breadth but less depth, while CS 

gives more depth and less breadth. You might 
also want to look at CS+X, minors, and coterms 

for more options!



  

“How does one go about finding an advisor 
in CS?”

Come talk to professors and lecturers – we don't bite!

The lecturers and intro professors know a lot about the 
curriculum and can give good advice about internships and 
CURIS. Research professors know a lot about their research 

areas and can help get you started in research. You can always 
switch advisers to get the best of all worlds!

Come talk to professors and lecturers – we don't bite!

The lecturers and intro professors know a lot about the 
curriculum and can give good advice about internships and 
CURIS. Research professors know a lot about their research 

areas and can help get you started in research. You can always 
switch advisers to get the best of all worlds!



  

Back to CS103!



  

Mechanics: Negating Statements



  

Negating Quantifiers

● We spent much of last Friday's lecture 
discussing how to negate propositional 
constructs.

● How do we negate quantifiers?



  

An Extremely Important Table

For any choice of x,
P(x)

For some choice of x,
¬P(x)

When is this true? When is this false?

For some choice of x,
P(x)

For any choice of x,
¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For any choice of x,
P(x)

For some choice of x,
¬P(x)

When is this true? When is this false?

For some choice of x,
P(x)

For any choice of x,
¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x)

For any choice of x,
¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x)

For any choice of x,
¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x)

For any choice of x,
¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x) ∀x. P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

An Extremely Important Table
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Negating First-Order Statements

● Use the equivalences

¬∀x. φ   ≡   ∃x. ¬φ

¬∃x. φ   ≡   ∀x. ¬φ

to negate quantifiers.
● Mechanically:

● Push the negation across the quantifier.
● Change the quantifier from ∀ to ∃ or vice-versa.

● Use techniques from propositional logic to 
negate connectives.



  

Taking a Negation

∀x. ∃y. Loves(x, y)
(“Everyone loves someone.”)

¬∀x. ∃y. Loves(x, y)
∃x. ¬∃y. Loves(x, y)
∃x. ∀y. ¬Loves(x, y)

(“There's someone who doesn't love anyone.”)



  

Two Useful Equivalences

● The following equivalences are useful when 
negating statements in first-order logic:

¬(p ∧ q)     ≡     p → ¬q

¬(p → q)     ≡     p ∧ ¬q
● These identities are useful when negating 

statements involving quantifiers.
● ∧ is used in existentially-quantified statements.
● → is used in universally-quantified statements.

● When pushing negations across quantifiers, we 
strongly recommend using the above equivalences 
to keep → with ∀ and ∧ with ∃.



  

Negating Quantifiers

● What is the negation of the following statement, which 
says “there is a cute puppy”?

∃x. (Puppy(x) ∧ Cute(x))
● We can obtain it as follows:

¬∃x. (Puppy(x) ∧ Cute(x))

∀x. ¬(Puppy(x) ∧ Cute(x))

∀x. (Puppy(x) → ¬Cute(x))
● This says “every puppy is not cute.”
● Do you see why this is the negation of the original 

statement from both an intuitive and formal 
perspective?



  

∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))
(“There is a set that doesn't contain anything”)

¬∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))
∀S. ¬(Set(S) ∧ ∀x. ¬(x ∈ S))
∀S. (Set(S) → ¬∀x. ¬(x ∈ S))
∀S. (Set(S) → ∃x. ¬¬(x ∈ S))

∀S. (Set(S) → ∃x. x ∈ S)

(“Every set contains at least one element”)



  

These two statements are not negations of 
one another. Can you explain why?

∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))
(“There is a set that doesn't contain anything”)

∀S. (Set(S) ∧ ∃x. (x ∈ S))
(“Everything is a set that contains something”)



  

These two statements are not negations of 
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∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))
(“There is a set that doesn't contain anything”)

∀S. (Set(S) ∧ ∃x. (x ∈ S))
(“Everything is a set that contains something”)
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(“Everything is a set that contains something”)



  

These two statements are not negations of 
one another. Can you explain why?

∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))
(“There is a set that doesn't contain anything”)

∀S. (Set(S) ∧ ∃x. (x ∈ S))
(“Everything is a set that contains something”)

Remember:  usually ∀

goes with , not → ∧

Remember:  usually ∀

goes with , not → ∧



  

Next Time

● Graphs
● How do we model relationships between 

objects?
● How do we study the properties of those 

relationships?
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