

Mathematical Logic
Part Three

Outline for Today

● Recap from Last Time
● More First-Order Translations
● First-Order Negations

Recap from Last Time

The Universal Quantifier

● A statement of the form ∀x. ψ asserts that
for every choice of x, the statement ψ is
true.

● Examples:

∀v. (Puppy(v) → Cute(v))

∀n. (n ∈ ℕ → (Even(n) ↔ ¬Odd(n)))

Tallest(SK) →
∀x. (SK ≠ x → ShorterThan(x, SK))

● Note the use of the → connective.

The Existential Quantifier

● A statement of the form ∃x. ψ asserts
that for some choice of x, the statement
ψ is true.

● Examples:

∃x. (Even(x) ∧ Prime(x))

∃x. (TallerThan(x, me) ∧ LighterThan(x, me))

(∃x. Appreciates(x, me)) → Happy(me)

● Note the use of the ∧ connective.

Useful Intuition:

Universally-quantified statements are true
unless there's a counterexample.

∀x. (P(x) → Q(x))

If x is a counterexample, it
must have property P but
not have property Q.

If x is a counterexample, it
must have property P but
not have property Q.

Useful Intuition:

Existentially-quantified statements are
false unless there's a positive example.

∃x. (P(x) ∧ Q(x))

If x is an example, it must
have property P on top of

property Q.

If x is an example, it must
have property P on top of

property Q.

Good Pairings

● The ∀ quantifier usually is paired with →.
● The ∃ quantifier usually is paired with ∧.
● In the case of ∀, the → connective prevents

the statement from being false when speaking
about some object you don't care about.

● In the case of ∃, the ∧ connective prevents the
statement from being true when speaking
about some object you don't care about.

New Stuff!

Using the predicates

 - Person(p), which states that p is a person, and
 - Loves(x, y), which states that x loves y,

write a sentence in first-order logic that means “everybody
loves someone else.”

Everybody loves someone else

Every person loves some other person

Every person p loves some other person

∀p. (Person(p) →
p loves some other person

)

∀p. (Person(p) →
there is some other person that p loves

)

∀p. (Person(p) →
there is a person other than p that p loves

)

∀p. (Person(p) →
there is a person q, other than p, where p loves q

)

∀p. (Person(p) →
there is a person q, other than p, where
p loves q

)

∀p. (Person(p) →
∃q. (Person(q) ∧ other than p, where

p loves q
)

)

∀p. (Person(p) →
∃q. (Person(q) ∧ p ≠ q ∧

p loves q
)

)

∀p. (Person(p) →
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
)

)

Using the predicates

 - Person(p), which states that p is a person, and
 - Loves(x, y), which states that x loves y,

write a sentence in first-order logic that means “there is
someone that everyone else loves.”

There is a person that everyone else loves

There is a person p where everyone else loves p

∃p. (Person(p) ∧
everyone else loves p

)

∃p. (Person(p) ∧
everyone other person q loves p

)

∃p. (Person(p) ∧
everyone person q who isn't p loves p

)

∃p. (Person(p) ∧
∀q. (Person(q) ∧ q ≠ p →

q loves p
)

)

∃p. (Person(p) ∧
∀q. (Person(q) ∧ q ≠ p →

Loves(q, p)
)

)

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “Everyone loves someone else.”

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “Everyone loves someone else.”

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

For every person,

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “Everyone loves someone else.”

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

For every person,
there is some person

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “Everyone loves someone else.”

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

For every person,
there is some person

who isn't them

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “Everyone loves someone else.”

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

For every person,
there is some person

who isn't them
that they love.

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “There is someone everyone
else loves.”

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “There is someone everyone
else loves.”

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “There is someone everyone
else loves.”

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “There is someone everyone
else loves.”

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “There is someone everyone
else loves.”

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone

who isn't them

Combining Quantifiers

● Most interesting statements in first-order
logic require a combination of
quantifiers.

● Example: “There is someone everyone
else loves.”

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone

who isn't them
loves.

For Comparison

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone

who isn't them
loves.

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

For every person,
there is some person

who isn't them
that they love.

Everyone Loves Someone Else

There is Someone Everyone Else Loves

There is Someone Everyone Else Loves

This person
does not

love anyone
else.

This person
does not

love anyone
else.

Everyone Loves Someone Else

Everyone Loves Someone Else

No one here
is universally

loved.

No one here
is universally

loved.

Everyone Loves Someone Else and
There is Someone Everyone Else Loves

∃p. (Person(p) ∧ ∀q. (Person(q) ∧ p ≠ q → Loves(q, p)))

There is some person
who everyone

who isn't them
loves.

∀p. (Person(p) → ∃q. (Person(q) ∧ p ≠ q ∧ Loves(p, q)))

For every person,
there is some person

who isn't them
that they love.

∧

Quantifier Ordering

● The statement

 ∀x. ∃y. P(x, y)

means “for any choice x, there's some y
where P(x, y) is true.”

● The choice of y can be different every
time and can depend on x.

Quantifier Ordering

● The statement

 ∃x. ∀y. P(x, y)

means “there is some x where for any
choice of y, we get that P(x, y) is true.”

● Since the inner part has to work for any
choice of y, this places a lot of
constraints on what x can be.

Order matters when mixing existential
and universal quantifiers!

Using the predicates

 - Set(S), which states that S is a set, and
 - x ∈ y, which states that x is an element of y,

write a sentence in first-order logic that means “the empty
set exists.”

Using the predicates

 - Set(S), which states that S is a set, and
 - x ∈ y, which states that x is an element of y,

write a sentence in first-order logic that means “the empty
set exists.”

First-order logic doesn't have set
operators or symbols “built in.” If we
only have the predicates given above,

how might we describe this?

First-order logic doesn't have set
operators or symbols “built in.” If we
only have the predicates given above,

how might we describe this?

The empty set exists.

There is some set S that is empty.

∃S. (Set(S) ∧
S is empty.

)

∃S. (Set(S) ∧
S does not contain any elements.

)

∃S. (Set(S) ∧
for every x, x is not an element of S.

)

∃S. (Set(S) ∧
∀x. ¬(x ∈ S)

)

∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))

Using the predicates

 - Tournament(T), which states that T is a tournament;
 - p ∈ T, which states that p is a player in tournament T; and
 - Beat(p1, p2), which states that p1 beat p2,

write a sentence in first-order logic that means “every
tournament has a tournament winner.”

Every tournament has a tournament winner

Every tournament T has a tournament winner

∀T. (Tournament(T) →
T has a tournament winner

)

∀T. (Tournament(T) →
some player in T is a tournament winner

)

∀T. (Tournament(T) →
some player w in T is a tournament winner

)

∀T. (Tournament(T) →
∃w. (w ∈ T ∧

w is a tournament winner

)
)

∀T. (Tournament(T) →
∃w. (w ∈ T ∧

for each other player p, either w beat p or w
beat someone who beat p

)
)

∀T. (Tournament(T) →
∃w. (w ∈ T ∧

for each other player p,
either w beat p or
w beat someone who beat p

)
)

∀T. (Tournament(T) →
∃w. (w ∈ T ∧

∀p. (p ∈ T ∧ p ≠ w →
either w beat p or
w beat someone who beat p

)
)

)

∀T. (Tournament(T) →
∃w. (w ∈ T ∧

∀p. (p ∈ T ∧ p ≠ w →
Beat(w, p) ∨
w beat someone who beat p

)
)

)

∀T. (Tournament(T) →
∃w. (w ∈ T ∧

∀p. (p ∈ T ∧ p ≠ w →
Beat(w, p) ∨
w beat some player q who beat p

)
)

)

∀T. (Tournament(T) →
∃w. (w ∈ T ∧

∀p. (p ∈ T ∧ p ≠ w →
Beat(w, p) ∨
∃q. (q ∈ T ∧

Beat(w, q) ∧ Beat(q, p)
)

)
)

)

Time-Out for Announcements!

PS1 Graded

● Problem Set One has been graded; feedback and
grades available online via Scoryst.

● What you should do now:
● Review all of the feedback on the problem set and

make sure you understand it.
● If you don't understand a deduction, stop by office

hours, email the staff list, or ask on Piazza.
● Incorporate that feedback when writing up your proofs

for Problem Set Two.

● Regrade policy will be announced over email.

Reminder: Casual CS Dinner

● WiCS is holding its first Casual CS
Dinner of the quarter tonight from
6PM – 8PM on the fifth floor of Gates.

● Fantastic event; everyone is welcome and
I highly recommend it.

Latin@ Coder Summit

● First ever Latin@ Coder
Summit on May 2nd.

● Want to attend? RSVP using
this link.

● Want to volunteer at the event?
Click here.

● Have general questions? Contact
Estefania Ortiz at
eaortiz@stanford.edu.

https://www.eventbrite.com/e/latin-coder-summit-tickets-16104218150
https://docs.google.com/a/stanford.edu/forms/d/1FaN3G3LrOAuOPahxUKq18rKLGw-N9N_nlHUW8B3A6Pg/viewform
mailto:eaortiz@stanford.edu

● WiCS' annual hackathon, HackOverflow, is coming
up on April 25.
● Co-hosted with DiversityBase, Stanford Robotics Club,

and Stanford ACM.

● Geared toward beginners, but everyone is welcome!
● Click here to RSVP.

http://hackoverflow.typeform.com/to/zNSIMK

Your Questions

“Any thoughts on the new CS+X majors?”

They look awesome! And wonderful!
I'm so excited to see what comes

out of this program!

They look awesome! And wonderful!
I'm so excited to see what comes

out of this program!

“What do you say to students choosing
between CS and Symsys?”

They're both great programs, and it really
depends on what you want to study. Symsys
gives more breadth but less depth, while CS

gives more depth and less breadth. You might
also want to look at CS+X, minors, and coterms

for more options!

They're both great programs, and it really
depends on what you want to study. Symsys
gives more breadth but less depth, while CS

gives more depth and less breadth. You might
also want to look at CS+X, minors, and coterms

for more options!

“How does one go about finding an advisor
in CS?”

Come talk to professors and lecturers – we don't bite!

The lecturers and intro professors know a lot about the
curriculum and can give good advice about internships and
CURIS. Research professors know a lot about their research

areas and can help get you started in research. You can always
switch advisers to get the best of all worlds!

Come talk to professors and lecturers – we don't bite!

The lecturers and intro professors know a lot about the
curriculum and can give good advice about internships and
CURIS. Research professors know a lot about their research

areas and can help get you started in research. You can always
switch advisers to get the best of all worlds!

Back to CS103!

Mechanics: Negating Statements

Negating Quantifiers

● We spent much of last Friday's lecture
discussing how to negate propositional
constructs.

● How do we negate quantifiers?

An Extremely Important Table

For any choice of x,
P(x)

For some choice of x,
¬P(x)

When is this true? When is this false?

For some choice of x,
P(x)

For any choice of x,
¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x)

For some choice of x,
¬P(x)

When is this true? When is this false?

For some choice of x,
P(x)

For any choice of x,
¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x)

For any choice of x,
¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x)

For any choice of x,
¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x)

For any choice of x,
¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x)

For some choice of x,
P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x)

For any choice of x,
P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x) ∀x. P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

An Extremely Important Table

For any choice of x,
P(x) ∃x. ¬P(x)

When is this true? When is this false?

For some choice of x,
P(x) ∀x. ¬P(x)

For any choice of x,
¬P(x) ∃x. P(x)

For some choice of x,
¬P(x) ∀x. P(x)

∀x. P(x)

∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)

Negating First-Order Statements

● Use the equivalences

¬∀x. φ ≡ ∃x. ¬φ

¬∃x. φ ≡ ∀x. ¬φ

to negate quantifiers.
● Mechanically:

● Push the negation across the quantifier.
● Change the quantifier from ∀ to ∃ or vice-versa.

● Use techniques from propositional logic to
negate connectives.

Taking a Negation

∀x. ∃y. Loves(x, y)
(“Everyone loves someone.”)

¬∀x. ∃y. Loves(x, y)
∃x. ¬∃y. Loves(x, y)
∃x. ∀y. ¬Loves(x, y)

(“There's someone who doesn't love anyone.”)

Two Useful Equivalences

● The following equivalences are useful when
negating statements in first-order logic:

¬(p ∧ q) ≡ p → ¬q

¬(p → q) ≡ p ∧ ¬q
● These identities are useful when negating

statements involving quantifiers.
● ∧ is used in existentially-quantified statements.
● → is used in universally-quantified statements.

● When pushing negations across quantifiers, we
strongly recommend using the above equivalences
to keep → with ∀ and ∧ with ∃.

Negating Quantifiers

● What is the negation of the following statement, which
says “there is a cute puppy”?

∃x. (Puppy(x) ∧ Cute(x))
● We can obtain it as follows:

¬∃x. (Puppy(x) ∧ Cute(x))

∀x. ¬(Puppy(x) ∧ Cute(x))

∀x. (Puppy(x) → ¬Cute(x))
● This says “every puppy is not cute.”
● Do you see why this is the negation of the original

statement from both an intuitive and formal
perspective?

∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))
(“There is a set that doesn't contain anything”)

¬∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))
∀S. ¬(Set(S) ∧ ∀x. ¬(x ∈ S))
∀S. (Set(S) → ¬∀x. ¬(x ∈ S))
∀S. (Set(S) → ∃x. ¬¬(x ∈ S))

∀S. (Set(S) → ∃x. x ∈ S)

(“Every set contains at least one element”)

These two statements are not negations of
one another. Can you explain why?

∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))
(“There is a set that doesn't contain anything”)

∀S. (Set(S) ∧ ∃x. (x ∈ S))
(“Everything is a set that contains something”)

These two statements are not negations of
one another. Can you explain why?

∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))
(“There is a set that doesn't contain anything”)

∀S. (Set(S) ∧ ∃x. (x ∈ S))
(“Everything is a set that contains something”)

These two statements are not negations of
one another. Can you explain why?

∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))
(“There is a set that doesn't contain anything”)

∀S. (Set(S) ∧ ∃x. (x ∈ S))
(“Everything is a set that contains something”)

These two statements are not negations of
one another. Can you explain why?

∃S. (Set(S) ∧ ∀x. ¬(x ∈ S))
(“There is a set that doesn't contain anything”)

∀S. (Set(S) ∧ ∃x. (x ∈ S))
(“Everything is a set that contains something”)

Remember: usually ∀

goes with , not → ∧

Remember: usually ∀

goes with , not → ∧

Next Time

● Graphs
● How do we model relationships between

objects?
● How do we study the properties of those

relationships?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109

