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Outline for Today

● Final Thoughts on FOL
● Motivating Graphs
● Defining Graphs
● Undirected Connectivity
● Planar Graphs
● Graph Coloring
● An Overarching Question

● How exactly do you “do” math?



  

Final Thoughts on First-Order Logic



  

Quantifying Over Sets

● The notation

∀x ∈ S. P(x)

means “for any element x of set S, P(x) holds.”
● This is not technically a part of first-order 

logic; it is a shorthand for

∀x. (x ∈ S → P(x))
● How might we encode this concept?

∃x ∈ S. P(x)

Answer: ∃x. (x ∈ S ∧ P(x)). Note the use of 
 instead of  ∧ →

here.

Note the use of 
 instead of  ∧ →

here.



  

Quantifying Over Sets

● The syntax

∀x ∈ S. φ

∃x ∈ S. φ

is allowed for quantifying over sets.
● In CS103, please do not use variants of this 

syntax.
● Please don't do things like this:

∀x with P(x). Q(x)   

∀y such that P(y) ∧ Q(y). R(y).   



  

Graphs



  

Mathematical Structures

● Just as there are common data structures 
in programming, there are common 
mathematical structures in discrete math.

● So far, we've seen simple structures like 
sets and natural numbers, but there are 
many other important structures out 
there.

● Over the next few weeks, we'll explore 
several of them.



  

Chemical Bonds

http://4.bp.blogspot.com/-xCtBJ8lKHqA/Tjm0BONWBRI/AAAAAAAAAK4/-
mHrbAUOHHg/s1600/Ethanol2.gif



  

http://strangemaps.files.wordpress.com/2007/02/fullinterstatemap-web.jpg



  

http://www.toothpastefordinner.com/



  

http://www.prospectmagazine.co.uk/wp-content/uploads/2009/09/163_taylor2.jpg



  

Me too!



  



  

What's in Common

● Each of these structures consists of
● Individual objects and
● Links between those objects.

● Goal: find a general framework for 
describing these objects and their 
properties.



  

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes (or 
vertices) connected by edges (or arcs)

Nodes



  

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes (or 
vertices) connected by edges (or arcs)

Edges



  

Some graphs are directed.



  

CAT SAT RAT

RANMAN

MAT

CAN

Some graphs are undirected.



  

Formalizing Graphs

● How might we define a graph 
mathematically?

● Need to specify
● What the nodes in the graph are, and
● What the edges are in the graph.

● The nodes can be pretty much anything.
● What about the edges?



  

Ordered and Unordered Pairs

● An unordered pair is a set {a, b} of two 
elements (remember that sets are 
unordered).
● {0, 1} = {1, 0}

● An ordered pair (a, b) is a pair of 
elements in a specific order.
● (0, 1) ≠ (1, 0).
● Two ordered pairs are equal iff each of their 

components are equal.



  

Formalizing Graphs

● Formally, a graph is an ordered pair G = (V, E), 
where

● V is a set of nodes.
● E is a set of edges.

● G is defined as an ordered pair so it's clear which 
set is the nodes and which is the edges.

● V can be any set whatsoever.

● E is one of two types of sets:
● A set of unordered pairs of elements from V.
● A set of ordered pairs of elements from V.



  

Undirected Connectivity



  

Navigating a Graph

PT

VC

PCIP CC

LT

CI

VEC

CDC SC

FC

From   

To   

PT → VC → PC → CC → SC → CDC



  

Navigating a Graph
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To   

PT → VC → VEC → SC → CDC



  

Navigating a Graph

PT

VC

PCIP CC

LT

CI

VEC

CDC SC

FC

From   

To   

PT → CI → FC → CDC



  

A path from v₁ to vₙ is a sequence of nodes
v₁, v₂, …, vₙ where (vₖ, vₖ₊₁) ∈ E for all 

natural numbers in the range 1 ≤ k ≤ n – 1.

The length of a path is the number 
of edges it contains, which is one less
than the number of nodes in the path.



  

A path from v₁ to vₙ is a sequence of nodes
v₁, v₂, …, vₙ where {vₖ, vₖ₊₁} ∈ E for all 

natural numbers in the range 1 ≤ k ≤ n – 1.

The length of a path is the number 
of edges it contains, which is one less
than the number of nodes in the path.



  

Navigating a Graph

PT

VC

PCIP CC

LT

CI

VEC

CDC SC

FC

PC → CC → VEC → VC → PC



  

Navigating a Graph

PT

VC

PCIP CC

LT

CI

VEC

CDC SC

FC

From   

To   

PT → VC → PC → CC → VEC → VC → IP



  

A cycle in a graph is a
path from a node to itself.

The length of a cycle is the
number of edges in that cycle.



  

A simple path in a graph is a path that 
does not revisit any nodes or edges.

A simple cycle in a graph is a cycle that 
does not revisit any nodes or edges (except 

the start/end node).

Usually, the empty path starting and 
ending at a node and containing no edges 

is considered a simple path, but not a 
simple cycle.



  

Navigating a Graph

PT

VC

PCIP CC

LT

CI

VEC

CDC SC

FC

From   

To   



  

In an undirected graph, two nodes u and v 
are called connected if there is a path 

from u to v.



  

Properties of Connectivity

● Theorem: For any graph G = (V, E), the following 
properties hold for the connectivity relation:

∀v ∈ V. Connected(v, v)

∀u ∈ V. ∀v ∈ V. (
Connected(u, v) → Connected(v, u)

)

∀u ∈ V. ∀v ∈ V. ∀w ∈ V. (
Connected(u, v) ∧ Connected(v, w) →
Connected(u, w)

)

● Can prove by thinking about the paths that are 
implied by each.



  

Connected Components



  



  



  

An Initial Definition

● Attempted Definition #1: A piece of an 
undirected graph G = (V, E) is a set
C ⊆ V where

∀u ∈ C. ∀v ∈ C. Connected(u, v)
● Intuition: a piece of a graph is a set of 

nodes that are all connected to one 
another.

 ⚠ This definition has some problems; ⚠ 
please don't use it as a reference. 



  



  



  

An Updated Definition

● Attempted Definition #2: A piece of an 
undirected graph G = (V, E) is a set C ⊆ V 
where
● ∀u ∈ C. ∀v ∈ C. Connected(u, v)
● ∀u ∈ C. ∀v ∈ V – C. ¬Connected(u, v)

● Intuition: a piece of a graph is a set of nodes 
that are all connected to one another that 
doesn't “miss” any nodes.

 ⚠ This definition has some problems; ⚠ 
please don't use it as a reference. 



  



  

A Final Definition

● Definition: A connected component of 
an undirected graph G = (V, E) is a 
nonempty set C ⊆ V where
● ∀u ∈ C. ∀v ∈ C. Connected(u, v)
● ∀u ∈ C. ∀v ∈ V – C. ¬Connected(u, v)

● Intuition: a connected component is a 
nonempty set of nodes that are all 
connected to one another that includes 
as many nodes as possible.



  

Time-Out for Announcements!



  

Problem Set Three

● Problem Set Two was due at 12:50PM today.
● Problem Set Three goes out today.

● Checkpoint problem due at the start of class on 
Monday.

● Remaining problems due at the start of class on 
Friday.

● Explore propositional logic, first-order logic, 
and graph theory!

● Start this problem set early!



  



  

Your Questions



  

“When picking classes, applying to 
internships, etc., I often find myself torn 

between trying something completely new or 
deepening my expertise in some topic/field 

with which I'm already familiar. As a student, 
should I prioritize breadth or depth?”

My advice would be to think about 
things in the long term. You want 
enough breadth to have a sense of 
what's out there, but at some point 
you need to commit to something.

My advice would be to think about 
things in the long term. You want 
enough breadth to have a sense of 
what's out there, but at some point 
you need to commit to something.



  

“What track did you choose in the CS major 
when you were at Stanford? Can you tell us a 

little about each one/how to choose one?”
 

“What goes on in the different CS fields? How 
can a potential CS major or beginning 

programmer learn about all those 
specializations without taking a class in each 
one? The intro series deals with Systems a 

lot, but is that a big part of CS overall?”

I don't think I can fully answer 
these questions in the time we have, 

but I can try!

I don't think I can fully answer 
these questions in the time we have, 

but I can try!



  

Back to CS103!



  

Manipulating our Definition



  

Proving the Obvious

● Theorem: If G = (V, E) is a graph, then every 
node v ∈ V belongs to exactly one connected 
component.

● How exactly would we prove a statement like 
this one?

● Use an existence and uniqueness proof:
● Prove there is at least one object of that type.
● Prove there is at most one object of that type.

● These are usually separate proofs.



  

Proving the Obvious

● There are two parts to this theorem, but 
due to time constraints we'll just prove this 
one:

Every node belongs to at least one 
connected component.

● This is trickier to prove than it might 
initially seem. We need to make sure to 
adhere to the definition we've set up for 
ourselves.



  

Proving Existence

● Given an arbitrary graph G = (V, E) and an 
arbitrary node v ∈ V, we need to show that 
there exists some connected component C 
where v ∈ C.

● The key part of this is the existential statement

There exists a connected component C
such that v ∈ C. 

● The challenge: how can we find the connected 
component that v belongs to given that v is an 
arbitrary node in an arbitrary graph?



  

v



  

The Conjecture

● Conjecture: Let G = (V, E) be an 
undirected graph.  Then for any node 
v ∈ V, the set { x ∈ V | v is connected to x 
in G } is a connected component and it 
contains v.

● If we can prove this, we have shown 
existence: at least one connected 
component contains v.



  

The Tricky Part

● We need to show for any v ∈ V that the set
C = { x ∈ V | v is connected to x in G } is a 
connected component and that it contains v.

● Therefore, we need to show
● C ⊆ V,
● v ∈ C,
● C ≠ Ø,
● ∀s ∈ C. ∀t ∈ C. Connected(s, t), and
● ∀s ∈ C. ∀t ∈ V – C. ¬Connected(s, t).



  

Lemma 1: Let G = (V, E) be an undirected graph. 
For any node v ∈ V, the set C = {x ∈ V | v is
connected to x in G } contains v.

Proof: By our earlier theorem, we know that any
node v in a graph G is connected to itself.
Therefore, by definition of C, we see that v ∈ C. ■



  

Lemma 2: Let G = (V, E) be an undirected graph and v ∈ V be an
arbitrary node in G. Let C = { x ∈ V | v and x are connected in G}.
Then for any s, t ∈ C, the nodes s and t are connected in G.

 

Proof: Choose any arbitrary s, t ∈ C. By definition of C, we know
that v and s are connected and that v and t are connected in G.
From our earlier theorem, since v and s are connected in G, we
know that s and v are connected in G. By that same theorem,
since s and v are connected in G and v and t are connected in G,
we know that s and t are connected in G, which is what we
needed to show. ■

v

s

t
 



  

Lemma 2: Let G = (V, E) be an undirected graph and v ∈ V be an
arbitrary node in G. Let C = { x ∈ V | v and x are connected in G}.
Then for any s ∈ C and t ∈ V – C, the nodes s and t are not
connected in G.

  

Proof: Consider any s ∈ C and t ∈ V – C. Assume for the sake of
contradiction that s is connected to t in G. Since s ∈ C, we know
that v and s are connected in G. Also, since t ∈ V – C, we know
that v and t are not connected in G. Since v and s are connected
in G and s and t are connected in G, by our earlier theorem we
know that v and t are connected in G. This contradicts our initial
assumption that v and t are not connected in G.

  

We've reached a contradiction, so our assumption must have been
wrong. Therefore, if s ∈ C and t ∈ V – C, we see that s and t are
not connected in G. ■

v

s t
 



  

Theorem: Let G = (V, E) be an undirected graph. Then every
node v ∈ V belongs to some connected component of G.

Proof: Take any v ∈ V and let C = { x ∈ V | v and x are
connected in G }. We need to show that C ⊆ V, that C ≠ Ø,
that any two nodes in C are connected, and that no node in
C is connected to any node outside of C.

First, note that every element of C is a node in V, so C ⊆ V. 
Next, note by Lemma 1 that v ∈ C, meaning that C ≠ Ø. 
From Lemma 2, we know that any two nodes in C are 
connected, and from lemma 3 we know that no node in C 
is connected to any node outside of C. Therefore, by 
definition, C is a connected component. Since we also 
know that v ∈ C, we've shown that there is at least one 
connected component containing v, as required. ■



  

Why All This Matters

● I chose the example of connected 
components to
● describe how to come up with a precise 

definition for intuitive terms;
● see how to manipulate a definition once 

we've come up with one; and
● explore multipart proofs with several 

different lemmas.



  

Planar Graphs
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This graph is called the 
utility graph. There is no 
way to draw it in the plane 

without edges crossing.

This graph is called the 
utility graph. There is no 
way to draw it in the plane 

without edges crossing.



  

A graph is called a planar graph if there is 
some way to draw it in a 2D plane without 

any of the edges crossing.



  



  



  



  



  

Graph Coloring



  

Graph Coloring



  

● An undirected graph G = (V, E) with no self-
loops (edges from a node to itself) is called
k-colorable if the nodes in V can be assigned 
one of k different colors such that no two nodes 
of the same color are joined by an edge.

● The minimum number of colors needed to color 
a graph is called that graph's chromatic 
number.
● The chromatic number of a graph G is usually 

denoted χ(G), from the Greek χρώμα (“color”).

Graph Coloring



  

Theorem (Four-Color Theorem): Every 
planar graph is 4-colorable.



  

● 1850s: Four-Color Conjecture posed.

● 1879: Kempe proves the Four-Color Theorem.

● 1890: Heawood finds a flaw in Kempe's proof.

● 1976: Appel and Haken design a computer program that 
proves the Four-Color Theorem. The program checked 1,936 
specific cases that are “minimal counterexamples;” any 
counterexample to the theorem must contain one of the 
1,936 specific cases.

● 1980s: Doubts rise about the validity of the proof due to 
errors in the software.

● 1989: Appel and Haken revise their proof and show it is 
indeed correct. They publish a book including a 400-page 
appendix of all the cases to check.

● 1996: Roberts, Sanders, Seymour, and Thomas reduce the 
number of cases to check down to 633.

● 2005: Werner and Gonthier repeat the proof using an 
established automatic theorem prover (Coq), improving 
confidence in the truth of the theorem.
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