

Unequal Cardinalities

Outline for Today

● Unequal Cardinalities
● Revisiting our first lecture with our new

techniques!

● Cantor's Diagonal Argument
● How do we formalize that pictorial proof

from our first lecture?

● The Pigeonhole Principle
● Proving results just by counting!

Recap from Last Time

Terminology

● A function f is a mapping from one set A to another
set B such that every element of A is associated with a
single element of B.

● For each a ∈ A, there is some b ∈ B with f(a) = b.
● Evaluating the same function on the same inputs always

produces the same output: if f(a) = b₀ and f(a) = b₁, then
b₀ = b₁.

● If f is a function from A to B, we say that f is a
mapping from A to B.

● We call A the domain of f.
● We call B the codomain of f.

● We write f : A → B to indicate that f has domain A and
codomain B.

Injective Functions

● A function f : A → B is called injective (or one-to-one) if
each element of the codomain has at most one element of
the domain that maps to it.

● A function with this property is called an injection.
● Formally, f : A → B is an injection if this statement is true:

∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) → a₁ = a₂)

(“If the outputs are the same, the inputs are the same”)

● Equivalently:

∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ → f(a₁) ≠ f(a₂))

(“If the inputs are different, the outputs are different”)

Surjective Functions

● A function f : A → B is called surjective (or
onto) if each element of the codomain is
“covered” by at least one element of the
domain.
● A function with this property is called a

surjection.
● Formally, f : A → B is a surjection if this

statement is true:

∀b ∈ B. ∃a ∈ A. f(a) = b

(“For every possible output, there's at least one
possible input that produces it”)

Bijections

● A function that associates each element
of the codomain with a unique element of
the domain is called bijective.
● Such a function is a bijection.

● Formally, a bijection is a function that is
both injective and surjective.

Comparing Cardinalities

● The relationships between set cardinalities are
defined in terms of functions between those
sets.

● |S| = |T| is defined using bijections.

|S| = |T| if there exists a bijection f : S → T

, , ,

, ,,

Ranking Cardinalities

● We define |S| ≤ |T| as follows:

|S| ≤ |T| if there is an injection f : S → T

Ranking Cardinalities

● We define |S| ≤ |T| as follows:

|S| ≤ |T| if there is an injection f : S → T

Theorem (Cantor-Bernstein-Schroeder): If S and
T are sets where |S| ≤ |T| and |T| ≤ |S|, then |S| = |T|.

New Stuff!

Unequal Cardinalities

● Recall: |A| = |B| if the following statement
is true:

There exists a bijection f : A → B
● What does it mean for |A| ≠ |B|?

No function f : A → B is a bijection.
● Need to show that, out of all the

(potentially infinitely many) functions from
A to B, not one of them is a bijection.

Comparing Cardinalities

● Formally, we define < on cardinalities as

|S| < |T| iff |S| ≤ |T| and |S| ≠ |T|

● In other words:
● There is an injection from S to T.
● There is no bijection between S and T.

Comparing Cardinalities

● Formally, we define < on cardinalities as

|S| < |T| iff |S| ≤ |T| and |S| ≠ |T|

● In other words:
● There is an injection from S to T.
● There is no bijection between S and T.

● Theorem: For any sets S and T, exactly one of the
following is true:

|S| < |T| |S| = |T| |S| > |T|

Cantor's Theorem Revisited

Cantor's Theorem

● Cantor's Theorem is the following:

If S is a set, then |S| < | (℘ S)|
● This is how we concluded that there are

more problems to solve than programs to
solve them.

● We informally sketched a proof of this in
the first lecture.

● Let's now formally prove Cantor's
Theorem.

The Key Step

● We need to show the following:

If S is a set, then |S| ≠ | (℘ S)|.
● To do this, we need to prove this

statement:

For any set S, no function
f : S → (℘ S) is a bijection.

● Let's review the graphical intuition for
this proof.

{ 0, 2, 4, ... }

{ 0, 2, 4, ... }

{ 0, 2, 4, ... }

{ 0, 2, 4, ... }

{ x0, x2, x4, ... }

{ x0, x3, x4, ... }

{ x4, ... }

{ x1, x4, ... }

{ 0, 2, 4, ... }

{ 0, 2, 4, ... }

{ “b”, “ab”, ... }

{ x0, x1, x2, x3, x4, x5, ... }

...

{ x0, x5, ... }

x0

x2

x3

x4

x5

x1

{ 0, 2, 4, ... }

{ 0, 2, 4, ... }

{ 0, 2, 4, ... }

{ 0, 2, 4, ... }

{ x0, x2, x4, ... }

{ x0, x3, x4, ... }

{ x4, ... }

{ x1, x4, ... }

{ 0, 2, 4, ... }

{ 0, 2, 4, ... }

{ “b”, “ab”, ... }

{ x0, x1, x2, x3, x4, x5, ... }

...

{ x0, x5, ... }

x0

x2

x3

x4

x5

x1

x0 x1 x2 x3 x4 x5 ...

{ 0, 2, 4, ... }

...

Y Y YN N N …

Y Y Y NN N …

Y NN N N N …

Y Y NN NN …

Y Y NNNN …

Y Y Y Y Y Y …

… … … … … … …

{ 0, 2, 4, ... }{ “b”, “ab”, ... }Y NYN N …N YN

x0

x2

x3

x4

x5

x1

x0 x1 x2 x3 x4 x5 ...

…

Y Y Y NN N …

Y NN N N N …

Y Y NN NN …

…

Y Y Y Y Y Y …

… … … … … …

…Y N N N N Y

…...

…

Flip all Y's to
N's and vice-
versa to get a

new set

Flip all Y's to
N's and vice-
versa to get a

new set

N Y Y Y N ...Y

x0

x2

x3

x4

x5

x1

x0 x1 x2 x3 x4 x5 ...

Y NN N YN

Y Y YN N N

...

{ 0, 2, 4, ... }Y Y YN N N …

Y Y Y NN N …

Y NN N N N …

Y Y NN NN …

Y Y NNNN …

Y Y Y Y Y Y …

… … … … … … …

Y N N N Y YN Y Y Y N N ...

...

Y NYN N …N

Y

YN
What set is this?What set is this?

x0

x2

x3

x4

x5

x1

x0 x1 x2 x3 x4 x5 ...

...

{ 0, 2, 4, ... }Y Y YN N N …

Y Y Y NN N …

Y NN N N N …

Y Y NN NN …

Y Y NNNN …

Y Y Y Y Y Y …

… … … … … … …

Y N N N Y YN Y Y Y N N ...

...

Y NYN N …N

Y

YN
What set is this?What set is this?

x0

x2

x3

x4

x5

x1

x0 x1 x2 x3 x4 x5 ...

The Diagonal Set

● Let f : S → (℘ S) be an arbitrary function from S to (℘ S).
● Define the set D as follows:

D = { x ∈ S | x ∉ f(x) }

(“The set of all elements in S that aren't
an element of the set they map to.”)

● (A note on the notation: x ∉ f(x) means “the element x is
not in the set f(x),” not “the element x is not mapped to
by f(x).”)

● This is a formalization of the set we found in the
previous picture.

● Using this choice of D, can we formally prove that no
function f : S → (℘ S) is a bijection?

Theorem: If S is a set, then |S| ≠ | (℘ S)|.

Proof: Let S be an arbitrary set. We will prove that |S| ≠ | (℘ S)| by
showing that there are no bijections from S to (℘ S).

Suppose for the sake of contradiction that there is a bijective
function f : S → (℘ S). Starting with f, we define the set

 D = { x ∈ S | x ∉ f(x) }. (1)

Since every element of D is also an element of S, we know that
D ⊆ S, so D ∈ (℘ S). Therefore, since f is surjective, we know that
there is some x ∈ S such that f(x) = D.

We can now ask under what conditions this element x happens
to be an element of D. By definition of D, we know that

x ∈ D iff x ∉ f(x). (2)

By assumption, f(x) = D. Combined with (2), this tells us

 x ∈ D iff x ∉ D. (3)

This is impossible. We have reached a contradiction, so our
assumption must have been wrong. Therefore, there are no
bijections between S and (℘ S), and therefore |S| ≠ | (℘ S)|, as
required. ■

The Diagonal Argument

● This proof is tricky. It's one of the hardest
proofs we're going to encounter over the
course of this quarter.

● To help you wrap your head around how it
works, we're going to ask you a few small
questions about it on Problem Set Four.

● Don't panic if you don't get it immediately;
you'll get a really good understanding of how
it works if you play around with it.

Concluding the Proof

● We've just shown that |S| ≠ | (℘ S)| for any set S.

● To prove |S| < | (℘ S)|, we need to show that
|S| ≤ | (℘ S)| by finding an injection from S to

(℘ S).

● Take f : S → (℘ S) defined as

f(x) = {x}
● Good exercise: prove this function is injective.

Why All This Matters

● Proof by diagonalization is a powerful
technique for showing two sets cannot
have the same size.

● Can also be adapted for other purposes:
● Finding specific problems that cannot be

solved by computers.
● Proving Gödel's Incompleteness Theorem.
● Finding problems requiring some amount of

computational resource to solve.

● We will return to this later in the quarter.

Time-Out for Announcements!

Edward Snowden Talk

● Edward Snowden (yes, that Edward Snowden)
is the 2015 Symbolic Systems Distinguished
Speaker.

● He'll be chatting over video with Prof. Ken
Taylor and Prof. John Perry, and everything
will be live-streamed into Cubberly
Auditorium.

● Talk is May 15 at 12:00 noon.
● Interested? Click here to RSVP!

http://goo.gl/gqmMZd

Problem Set Grading

● Problem Set Two is graded and will be
returned electronically by the end of
class.

● Problem Set Three checkpoints also are
graded and will be returned
electronically by the end of class.

● Have questions! Please ask!

Midterm Logistics

● First midterm exam is next Thursday, April 30
from 7PM – 10PM, location TBA.

● Covers material up through and including graphs,
with a focus on topics covered in PS1 – PS3.

● Closed-book, closed-computer.
● You can bring one double-sided 8.5” × 11” sheet of

notes with you when you take the exam.
● Need to take the exam at an alternate time? We're

holding an alternate exam at 4PM on Thursday,
April 30.
● Please email us immediately if you need to take the

exam at an alternate time.

Practice Midterm

● We will be holding a practice midterm exam
next Monday, April 27 from 7PM – 10PM,
location TBA.

● Completely optional, but highly recommended.
● You don't want the actual midterm to be the first

time you've had to solve proof-based math
questions under time pressure!

● TAs will be available to answer your questions.
● Can't make the practice exam? We'll release it

online as well.

Extra Practice Problems

● We'll be releasing sets of extra practice
problems this week and early next week
you can use to prepare for the exam.

● Need even more practice? Check out the
CS103A website or read over the course
notes.

● Feel free to stop by office hours with
questions on these topics.

General Exam Thoughts

Your Questions

… next time

Back to CS103!

Changing Gears: The Pigeonhole Principle

The pigeonhole principle is the following:

If m objects are placed into n bins,
where m > n, then some bin contains

at least two objects.

(We sketched a proof in Lecture #02)

Why This Matters

● The pigeonhole principle can be used to
show results must be true because they are
“too big to fail.”

● Given a large enough number of objects
with a bounded number of properties,
eventually at least two of them will share a
property.

● Can be used to prove some surprising
results.

Using the Pigeonhole Principle

● To use the pigeonhole principle:
● Find the m objects to distribute.
● Find the n < m buckets into which to distribute

them.
● Conclude by the pigeonhole principle that there

must be two objects in some bucket.

● The details of how to proceed from there
are specific to the particular proof you're
doing.

Theorem: Suppose that every point in the real plane
is colored either red or blue. Then for any distance
d > 0, there are two points exactly distance d from
one another that are the same color.

Proof: Consider any equilateral triangle whose side
lengths are d. Put this triangle anywhere in the
plane. Because the triangle has three vertices and
each point in the plane is only one of two different
colors, by the pigeonhole principle at least two of
the vertices must have the same color. These
vertices are at distance d from each other, as
required. ■

A Surprising Application

Thought: There are two colors here, so if we
start picking points, we'll be dropping them
into one of two buckets (red or blue).

How many points do we need to pick to
guarantee that we get two of the same

color?

Thought: There are two colors here, so if we
start picking points, we'll be dropping them
into one of two buckets (red or blue).

How many points do we need to pick to
guarantee that we get two of the same

color?

Theorem: Suppose that every point in the real plane
is colored either red or blue. Then for any distance
d > 0, there are two points exactly distance d from
one another that are the same color.

Proof: Consider any equilateral triangle whose side
lengths are d. Put this triangle anywhere in the
plane. Because the triangle has three vertices and
each point in the plane is only one of two different
colors, by the pigeonhole principle at least two of
the vertices must have the same color. These
vertices are at distance d from each other, as
required. ■

A Surprising Application

d

 d

d

Any pair of these points
is at distance d from one
another. Since two must
be the same color, there
is a pair of points of the
same color at distance d!

Any pair of these points
is at distance d from one
another. Since two must
be the same color, there
is a pair of points of the
same color at distance d!

A Surprising Application

Theorem: Suppose that every point in the real plane
is colored either red or blue. Then for any distance
d > 0, there are two points exactly distance d from
one another that are the same color.

Proof: Consider any equilateral triangle whose side
lengths are d. Put this triangle anywhere in the
plane. Because the triangle has three vertices and
each point in the plane is only one of two different
colors, by the pigeonhole principle at least two of
the vertices must have the same color. These
vertices are at distance d from each other, as
required. ■

The Hadwiger-Nelson Problem

● No matter how you color the points of the plane, there
will always be two points at distance 1 that are the
same color.

● Relation to graph coloring:

● Every point in the real plane is a node.

● There's an edge between two points that are at distance
exactly one.

● Question: What is the chromatic number of this
graph? (That is, how many colors do you need to
ensure no points at distance one are the same color?)

● This is the Hadwiger-Nelson problem. It's known
that the number is between 4 and 7, but no one knows
for sure!

The Limits of Data Compression

Bitstrings

● A bitstring is a finite sequence of 0s and
1s.

● Examples:
● 11011100
● 010101010101
● 0000
● ε (the empty string)

● There are 2n bitstrings of length n.

Data Compression

● Inside a computer, all data are represented as
sequences of 0s and 1s (bitstrings)

● To transfer data (across a network, on DVDs, on a flash
drive, etc.), it is useful to reduce the number of 0s and
1s before transferring it.

● Most real-world data can be compressed by exploiting
redundancies.
● Text repeats common patterns (“the”, “and”, etc.)
● Bitmap images use similar colors throughout the image.

● Idea: Replace each bitstring with a shorter bitstring
that contains all the original information.
● This is called lossless data compression.

101010101010101010101010101010

1111010

1111010

101010101010101010101010101010

 Compress

 Decompress

 Transmit

Lossless Data Compression

● In order to losslessly compress data, we need two
functions:

● A compression function C, and
● A decompression function D.

● These functions must be inverses of one another:
D(C(x)) = x.

● Otherwise, we can't uniquely encode or decode
some bitstring.

● Claim: if D(C(x)) = x for all x, then C must be
injective.

A Perfect Compression Function

● Ideally, the compressed version of a bitstring
would always be shorter than the original
bitstring.

● Question: Can we find a lossless compression
algorithm that always compresses a string
into a shorter string?

● To handle the issue of the empty string (which
can't get any shorter), let's assume we only
care about strings of length at least 10.

A Counting Argument

● Let �n be the set of bitstrings of length n, and �<n be
the set of bitstrings of length less than n.

● How many bitstrings of length n are there?

● Answer: 2n

● How many bitstrings of length less than n are there?

● Answer: 20 + 21 + … + 2n – 1 = 2n – 1

● By the pigeonhole principle, no function from �n to �<n
can be injective – at least two elements must collide!

● Since a perfect compression function would have to be
an injection from �n to �<n, there is no perfect
compression function!

Why this Result is Interesting

● Our result says that no matter how hard we try,
it is impossible to compress every string into a
shorter string.

● No matter how clever you are, you cannot write
a lossless compression algorithm that always
makes strings shorter.

● In practice, only highly redundant data can be
compressed.

● The fields of information theory and
Kolmogorov complexity explore the limits of
compression; if you're interested, go explore!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

