
  

Unequal Cardinalities



  

Outline for Today

● Unequal Cardinalities
● Revisiting our first lecture with our new 

techniques!

● Cantor's Diagonal Argument
● How do we formalize that pictorial proof 

from our first lecture?

● The Pigeonhole Principle
● Proving results just by counting!



  

Recap from Last Time



  

Terminology

● A function f is a mapping from one set A to another 
set B such that every element of A is associated with a 
single element of B.

● For each a ∈ A, there is some b ∈ B with f(a) = b.
● Evaluating the same function on the same inputs always 

produces the same output: if f(a) = b₀ and f(a) = b₁, then 
b₀ = b₁.

● If f is a function from A to B, we say that f is a 
mapping from A to B.

● We call A the domain of f.
● We call B the codomain of f.

● We write f : A → B to indicate that f has domain A and 
codomain B.



  

Injective Functions

● A function f : A → B is called injective (or one-to-one) if 
each element of the codomain has at most one element of 
the domain that maps to it.

● A function with this property is called an injection.
● Formally, f : A → B is an injection if this statement is true:

∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) → a₁ = a₂)

(“If the outputs are the same, the inputs are the same”)

● Equivalently:

∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ → f(a₁) ≠ f(a₂))

(“If the inputs are different, the outputs are different”)



  

Surjective Functions

● A function f : A → B is called surjective (or 
onto) if each element of the codomain is 
“covered” by at least one element of the 
domain.
● A function with this property is called a 

surjection.
● Formally, f : A → B is a surjection if this 

statement is true:

∀b ∈ B. ∃a ∈ A. f(a) = b

(“For every possible output, there's at least one 
possible input that produces it”)



  

Bijections

● A function that associates each element 
of the codomain with a unique element of 
the domain is called bijective.
● Such a function is a bijection.

● Formally, a bijection is a function that is 
both injective and surjective.



  

Comparing Cardinalities

● The relationships between set cardinalities are 
defined in terms of functions between those 
sets.

● |S| = |T| is defined using bijections.

|S| = |T| if there exists a bijection f : S → T   

, , ,

, ,,



  

Ranking Cardinalities

● We define |S| ≤ |T| as follows:

|S| ≤ |T| if there is an injection f : S → T



  

Ranking Cardinalities

● We define |S| ≤ |T| as follows:

|S| ≤ |T| if there is an injection f : S → T



  

Theorem (Cantor-Bernstein-Schroeder): If S and 
T are sets where |S| ≤ |T| and |T| ≤ |S|, then |S| = |T|.



  

New Stuff!



  

Unequal Cardinalities

● Recall: |A| = |B| if the following statement 
is true:

There exists a bijection f : A → B   
● What does it mean for |A| ≠ |B|?

No function f : A → B is a bijection. 
● Need to show that, out of all the 

(potentially infinitely many) functions from 
A to B, not one of them is a bijection.



  

Comparing Cardinalities

● Formally, we define < on cardinalities as

|S| < |T| iff |S| ≤ |T| and |S| ≠ |T| 

● In other words:
● There is an injection from S to T.
● There is no bijection between S and T.



  

Comparing Cardinalities

● Formally, we define < on cardinalities as

|S| < |T| iff |S| ≤ |T| and |S| ≠ |T| 

● In other words:
● There is an injection from S to T.
● There is no bijection between S and T.

● Theorem: For any sets S and T, exactly one of the 
following is true:

|S| < |T|      |S| = |T|      |S| > |T|   



  

Cantor's Theorem Revisited



  

Cantor's Theorem

● Cantor's Theorem is the following:

If S is a set, then |S| < | (℘ S)|    
● This is how we concluded that there are 

more problems to solve than programs to 
solve them.

● We informally sketched a proof of this in 
the first lecture.

● Let's now formally prove Cantor's 
Theorem.



  

The Key Step

● We need to show the following:

If S is a set, then |S| ≠ | (℘ S)|.   
● To do this, we need to prove this 

statement:

For any set S, no function
f : S → (℘ S) is a bijection.

● Let's review the graphical intuition for 
this proof.
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The Diagonal Set

● Let f : S → (℘ S) be an arbitrary function from S to (℘ S).
● Define the set D as follows:

D = { x ∈ S | x ∉ f(x) }

(“The set of all elements in S that aren't
an element of the set they map to.”)

● (A note on the notation: x ∉ f(x) means “the element x is 
not in the set f(x),” not “the element x is not mapped to 
by f(x).”)

● This is a formalization of the set we found in the 
previous picture.

● Using this choice of D, can we formally prove that no 
function f : S → (℘ S) is a bijection?



  

Theorem: If S is a set, then |S| ≠ | (℘ S)|.
  

Proof: Let S be an arbitrary set. We will prove that |S| ≠ | (℘ S)| by
showing that there are no bijections from S to (℘ S).

  

Suppose for the sake of contradiction that there is a bijective
function f : S → (℘ S). Starting with f, we define the set

  

    D = { x ∈ S | x ∉ f(x) }. (1)
  

Since every element of D is also an element of S, we know that
D ⊆ S, so D ∈ (℘ S). Therefore, since f is surjective, we know that
there is some x ∈ S such that f(x) = D.

  

We can now ask under what conditions this element x happens
to be an element of D. By definition of D, we know that

  

x ∈ D iff x ∉ f(x). (2)
  

By assumption, f(x) = D. Combined with (2), this tells us
  

  x ∈ D iff x ∉ D.  (3)
  

This is impossible. We have reached a contradiction, so our
assumption must have been wrong. Therefore, there are no
bijections between S and (℘ S), and therefore |S| ≠ | (℘ S)|, as
required. ■



  

The Diagonal Argument

● This proof is tricky. It's one of the hardest 
proofs we're going to encounter over the 
course of this quarter.

● To help you wrap your head around how it 
works, we're going to ask you a few small 
questions about it on Problem Set Four.

● Don't panic if you don't get it immediately; 
you'll get a really good understanding of how 
it works if you play around with it.



  

Concluding the Proof

● We've just shown that |S| ≠ | (℘ S)| for any set S.

● To prove |S| < | (℘ S)|, we need to show that
|S| ≤ | (℘ S)| by finding an injection from S to 

(℘ S).

● Take f : S → (℘ S) defined as

f(x) = {x} 
● Good exercise: prove this function is injective.



  

Why All This Matters

● Proof by diagonalization is a powerful 
technique for showing two sets cannot 
have the same size.

● Can also be adapted for other purposes:
● Finding specific problems that cannot be 

solved by computers.
● Proving Gödel's Incompleteness Theorem.
● Finding problems requiring some amount of 

computational resource to solve.

● We will return to this later in the quarter.



  

Time-Out for Announcements!



  

Edward Snowden Talk

● Edward Snowden (yes, that Edward Snowden) 
is the 2015 Symbolic Systems Distinguished 
Speaker.

● He'll be chatting over video with Prof. Ken 
Taylor and Prof. John Perry, and everything 
will be live-streamed into Cubberly 
Auditorium.

● Talk is May 15 at 12:00 noon.
● Interested? Click here to RSVP!

http://goo.gl/gqmMZd


  

Problem Set Grading

● Problem Set Two is graded and will be 
returned electronically by the end of 
class.

● Problem Set Three checkpoints also are 
graded and will be returned 
electronically by the end of class.

● Have questions! Please ask!



  

Midterm Logistics

● First midterm exam is next Thursday, April 30 
from 7PM – 10PM, location TBA.

● Covers material up through and including graphs, 
with a focus on topics covered in PS1 – PS3.

● Closed-book, closed-computer.
● You can bring one double-sided 8.5” × 11” sheet of 

notes with you when you take the exam.
● Need to take the exam at an alternate time? We're 

holding an alternate exam at 4PM on Thursday, 
April 30.
● Please email us immediately if you need to take the 

exam at an alternate time.



  

Practice Midterm

● We will be holding a practice midterm exam 
next Monday, April 27 from 7PM – 10PM, 
location TBA.

● Completely optional, but highly recommended.
● You don't want the actual midterm to be the first 

time you've had to solve proof-based math 
questions under time pressure!

● TAs will be available to answer your questions.
● Can't make the practice exam? We'll release it 

online as well.



  

Extra Practice Problems

● We'll be releasing sets of extra practice 
problems this week and early next week 
you can use to prepare for the exam.

● Need even more practice? Check out the 
CS103A website or read over the course 
notes.

● Feel free to stop by office hours with 
questions on these topics.



  

General Exam Thoughts



  

Your Questions

… next time



  

Back to CS103!



  

Changing Gears: The Pigeonhole Principle



  

The pigeonhole principle is the following:

If m objects are placed into n bins,
where m > n, then some bin contains

at least two objects.

(We sketched a proof in Lecture #02)



  

Why This Matters

● The pigeonhole principle can be used to 
show results must be true because they are 
“too big to fail.”

● Given a large enough number of objects 
with a bounded number of properties, 
eventually at least two of them will share a 
property.

● Can be used to prove some surprising 
results.



  

Using the Pigeonhole Principle

● To use the pigeonhole principle:
● Find the m objects to distribute.
● Find the n < m buckets into which to distribute 

them.
● Conclude by the pigeonhole principle that there 

must be two objects in some bucket.

● The details of how to proceed from there 
are specific to the particular proof you're 
doing.



  

Theorem: Suppose that every point in the real plane
is colored either red or blue. Then for any distance
d > 0, there are two points exactly distance d from
one another that are the same color.

Proof: Consider any equilateral triangle whose side
lengths are d. Put this triangle anywhere in the
plane. Because the triangle has three vertices and
each point in the plane is only one of two different
colors, by the pigeonhole principle at least two of
the vertices must have the same color. These
vertices are at distance d from each other, as
required. ■

A Surprising Application

Thought: There are two colors here, so if we 
start picking points, we'll be dropping them 
into one of two buckets (red or blue).

How many points do we need to pick to 
guarantee that we get two of the same 

color?

Thought: There are two colors here, so if we 
start picking points, we'll be dropping them 
into one of two buckets (red or blue).

How many points do we need to pick to 
guarantee that we get two of the same 

color?



  

Theorem: Suppose that every point in the real plane
is colored either red or blue. Then for any distance
d > 0, there are two points exactly distance d from
one another that are the same color.

Proof: Consider any equilateral triangle whose side
lengths are d. Put this triangle anywhere in the
plane. Because the triangle has three vertices and
each point in the plane is only one of two different
colors, by the pigeonhole principle at least two of
the vertices must have the same color. These
vertices are at distance d from each other, as
required. ■

A Surprising Application

d    
  

   d

d

Any pair of these points 
is at distance d from one 
another.  Since two must 
be the same color, there 
is a pair of points of the 
same color at distance d!

Any pair of these points 
is at distance d from one 
another.  Since two must 
be the same color, there 
is a pair of points of the 
same color at distance d!



  

A Surprising Application

Theorem: Suppose that every point in the real plane
is colored either red or blue. Then for any distance
d > 0, there are two points exactly distance d from
one another that are the same color.

Proof: Consider any equilateral triangle whose side
lengths are d. Put this triangle anywhere in the
plane. Because the triangle has three vertices and
each point in the plane is only one of two different
colors, by the pigeonhole principle at least two of
the vertices must have the same color. These
vertices are at distance d from each other, as
required. ■



  

The Hadwiger-Nelson Problem

● No matter how you color the points of the plane, there 
will always be two points at distance 1 that are the 
same color.

● Relation to graph coloring:

● Every point in the real plane is a node.

● There's an edge between two points that are at distance 
exactly one.

● Question: What is the chromatic number of this 
graph? (That is, how many colors do you need to 
ensure no points at distance one are the same color?)

● This is the Hadwiger-Nelson problem. It's known 
that the number is between 4 and 7, but no one knows 
for sure!



  

The Limits of Data Compression



  

Bitstrings

● A bitstring is a finite sequence of 0s and 
1s.

● Examples:
● 11011100
● 010101010101
● 0000
● ε (the empty string)

● There are 2n bitstrings of length n.



  

Data Compression

● Inside a computer, all data are represented as 
sequences of 0s and 1s (bitstrings)

● To transfer data (across a network, on DVDs, on a flash 
drive, etc.), it is useful to reduce the number of 0s and 
1s before transferring it.

● Most real-world data can be compressed by exploiting 
redundancies.
● Text repeats common patterns (“the”, “and”, etc.)
● Bitmap images use similar colors throughout the image.

● Idea: Replace each bitstring with a shorter bitstring 
that contains all the original information.
● This is called lossless data compression.



  

101010101010101010101010101010

1111010

1111010

101010101010101010101010101010

                              Compress

                              Decompress

                              Transmit



  

Lossless Data Compression

● In order to losslessly compress data, we need two 
functions:

● A compression function C, and
● A decompression function D.

● These functions must be inverses of one another: 
D(C(x)) = x.

● Otherwise, we can't uniquely encode or decode 
some bitstring.

● Claim: if D(C(x)) = x for all x, then C must be 
injective.



  

A Perfect Compression Function

● Ideally, the compressed version of a bitstring 
would always be shorter than the original 
bitstring.

● Question: Can we find a lossless compression 
algorithm that always compresses a string 
into a shorter string?

● To handle the issue of the empty string (which 
can't get any shorter), let's assume we only 
care about strings of length at least 10.



  

A Counting Argument

● Let �n be the set of bitstrings of length n, and �<n be 
the set of bitstrings of length less than n.

● How many bitstrings of length n are there?

● Answer: 2n

● How many bitstrings of length less than n are there?

● Answer: 20 + 21 + … + 2n – 1 = 2n – 1

● By the pigeonhole principle, no function from �n to �<n 
can be injective – at least two elements must collide!

● Since a perfect compression function would have to be 
an injection from �n to �<n, there is no perfect 
compression function!



  

Why this Result is Interesting

● Our result says that no matter how hard we try, 
it is impossible to compress every string into a 
shorter string.

● No matter how clever you are, you cannot write 
a lossless compression algorithm that always 
makes strings shorter.

● In practice, only highly redundant data can be 
compressed.

● The fields of information theory and 
Kolmogorov complexity explore the limits of 
compression; if you're interested, go explore!
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