

Finite Automata
Part Two

Recap from Last Time

Strings

● An alphabet is a finite set of symbols called
characters.

● Typically, we use the symbol Σ to refer to an alphabet.

● A string over an alphabet Σ is a finite sequence of
characters drawn from Σ.

● Example: If Σ = {a, b}, some valid strings over Σ include

a

aabaaabbabaaabaaaabbb

abbababba

● The empty string contains no characters and is
denoted ε.

Languages

● A formal language is a set of strings.
● We say that L is a language over Σ if it is

a set of strings over Σ.
● Example: The language of palindromes

over Σ = {a, b, c} is the set

{ε, a, b, c, aa, bb, cc, aaa, aba, aca, bab, … }

● The set of all strings composed from letters
in Σ is denoted Σ*.

● Formally: L is a language over Σ iff L ⊆ Σ*.

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

0 1 0 1 1 00 1 0 1 1 0

A Simple Finite Automaton

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

1 0 1 0 0 0

The language of an automaton is the
set of strings that it accepts.

If D is an automaton, we denote the
language of D as ℒ(D).

ℒ(D) = { w ∈ Σ* | D accepts w }

DFAs

● A DFA is a
● Deterministic
● Finite
● Automaton

● DFAs are the simplest type of automaton
that we will see in this course.

DFAs, Informally

● A DFA is defined relative to some
alphabet Σ.

● For each state in the DFA, there must be
exactly one transition defined for each
symbol in Σ.
● This is the “deterministic” part of DFA.

● There is a unique start state.
● There are zero or more accepting states.

Designing DFAs

● At each point in its execution, the DFA
can only remember what state it is in.

● DFA Design Tip: Build each state to
correspond to some piece of information
you need to remember.
● Each state acts as a “memento” of what

you're supposed to do next.
● Only finitely many different states ≈ only

finitely many different things the machine
can remember.

Recognizing Languages with DFAs

L = { w ∈ {0, 1}* | w contains 00 as a substring }

q0

start
q1 q2

0 0

1

1

 Σ

Recognizing Languages with DFAs

L = { w ∈ {0, 1}*| every other character of w, starting
 with the first character, is 0 }

q0

start
q1

q2

0

1
Σ

 Σ

q0 q1

New Stuff!

Tabular DFAs

start
q0q0

1

q1 q2 q3

0 1 0

1

0

 Σ

*q0

q1

q2

q3

0 1

q0q1

q2q3

q3 q3

q0q3

The star indicates
that this is an
accepting state.

The star indicates
that this is an
accepting state.

Code‽ In a Theory Course‽
int kTransitionTable[kNumStates][kNumSymbols] = {
 {0, 0, 1, 3, 7, 1, …},
 …
};
bool kAcceptTable[kNumStates] = {
 false,
 true,
 true,
 …
};
bool SimulateDFA(string input) {
 int state = 0;
 for (char ch: input)
 state = kTransitionTable[state][ch];
 return kAcceptTable[state];
}

The Regular Languages

A language L is called a regular language
if there exists a DFA D such that (ℒ D) = L.

The Complement of a Language

● Given a language L ⊆ Σ*, the complement
of that language (denoted L) is the
language of all strings in Σ* not in L.

● Formally:

L = { w | w ∈ Σ* ∧ w ∉ L }

The Complement of a Language

● Given a language L ⊆ Σ*, the complement
of that language (denoted L) is the
language of all strings in Σ* not in L.

● Formally:

L = Σ* - L

L L

Σ*

Complementing Regular Languages

● Recall: A regular language is a
language accepted by some DFA.

● Question: If L is a regular language, is L
a regular language?

● If the answer is “yes,” then there must be
some way to construct a DFA for L.

● If the answer is “no,” then some
language L can be accepted by a DFA,
but L cannot be accepted by any DFA.

Complementing Regular Languages

L = { w ∈ {0, 1}* | w contains 00 as a substring }

q0

start
q1 q2

0 0

1

1

 Σ

L = { w ∈ {0, 1}* | w does not contain 00 as a substring }

q0

start
q1 q2

0 0

1

1

 Σ

More Elaborate DFAs
L = { w | w is a C-style comment }

q1

start
q2

* q3

*
q4

/q0
/

q5

 a, / *
a

a, *

/, a

Σ

Σ

More Elaborate DFAs
L = { w | w is not a C-style comment }

q1

start
q2

* q3

*
q4

/q0
/

q5

 a, / *
a

a, *

/, a

Σ

Σ

q5

q0 q1 q2 q3

Closure Properties

● Theorem: If L is a regular language, then L
is also a regular language.

● As a result, we say that the regular languages
are closed under complementation.

All languages

Regular languages

L

L

Time-Out For Announcements!

A Point of Clarification

Theorem: If is the universal set, then |)| ≤ | � ℘(� |�

Proof: The universal set contains all objects. �
Therefore,) ∈ . Consequently, |)| ≤ |. ■℘(� � ℘(� |�

Theorem: If is the universal set, then |)| ≤ | � ℘(� |�

Proof: The universal set contains all objects. �
Therefore,) ∈ . Consequently, |)| ≤ |.℘(� � ℘(� |� ■

Does this
reasoning work?

Does this
reasoning work?

Theorem: If is the universal set, then |)| ≤ | � ℘(� |�

Proof: The universal set contains all objects. �
Therefore, every element of) is an element of℘(�

. Accordingly,) ⊆ , so |)| ≤ |. ■� ℘(� � ℘(� |�

Remember that ∈ and ⊆
are different concepts!

Midterm Logistics

● Midterm is this Thursday from 7PM – 10PM.
Locations divvied up by last (family) name:
● Aba – Mes: Go to Annenberg Auditorium.
● Mex – Zoc: Go to Cubberly Auditorium.

● Closed-book, closed-computer, open one
double-sided 8.5” × 11” sheet of notes.

● Covers material up through and including
graphs (Lectures 00 – 08) and material from
PS1 – PS3.

Your Questions

“You seem to really LOVE cute animals, in
your opinion, what is the cutest animal in
this world? And what is your opinion on
quantum computing? Will it provide a

completely different view on computability
problems we are learning in this course?”

I don't think there's a single cutest animal in the
world, though I'm willing to be proven wrong. ☺

As for quantum computing – it will have little to do
with computability, probably, but a lot to do with
complexity. We're still working out the details!

I don't think there's a single cutest animal in the
world, though I'm willing to be proven wrong. ☺

As for quantum computing – it will have little to do
with computability, probably, but a lot to do with
complexity. We're still working out the details!

“We hear about a lot of different "forefront"
CS topics in the popular media: IoT, The

Singularity, quantum computing, etc...What
are you most excited about, and what is the

most misrepresented?”

I'm probably not the right person to ask this to.
I'm most excited about technology being used to
create jobs in the developing world and help lift
more people into the middle class. I generally am
pretty skeptical about “the singularity,” but that's

just me.

I'm probably not the right person to ask this to.
I'm most excited about technology being used to
create jobs in the developing world and help lift
more people into the middle class. I generally am
pretty skeptical about “the singularity,” but that's

just me.

Back to CS103!

NFAs

NFAs

● An NFA is a
● Nondeterministic
● Finite
● Automaton

● Structurally similar to a DFA, but
represents a fundamental shift in how
we'll think about computation.

(Non)determinism

● A model of computation is deterministic if
at every point in the computation, there is
exactly one choice that can make.

● The machine accepts if that series of choices
leads to an accepting state.

● A model of computation is nondeterministic
if the computing machine may have multiple
decisions that it can make at one point.

● The machine accepts if any series of choices
leads to an accepting state.

A Simple NFA

q0 q1 q2

start 1 1 q2

 0, 1

q3

0 0, 1

 0, 1

q0 has two transitions
defined on 1!

q0 has two transitions
defined on 1!

q0q0 q1 q2q2

A More Complex NFA

q1 q2

start 1 1 q2

 0, 1

If a NFA needs to make a
transition when no transition

exists, the automaton dies and
that particular path rejects.

If a NFA needs to make a
transition when no transition

exists, the automaton dies and
that particular path rejects.

q0 q1

q4 q5

q2

q0q3

q0

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

start
q1

q4 q5

q2

q0

a

ε

a

b

b, ε b

a

ε

q3

ε-Transitions

● NFAs have a special type of transition called
the ε-transition.

● An NFA may follow any number of ε-transitions
at any time without consuming any input.

● NFAs are not required to follow ε-transitions.
It's simply another option at the machine's
disposal.

Intuiting Nondeterminism

● Nondeterministic machines are a serious
departure from physical computers.

● How can we build up an intuition for
them?

● Three approaches:
● Tree computation
● Perfect guessing
● Massive parallelism

Tree Computation

q0

start
q1 q2

q3

0 1

1

q4
0

 1

q5
0

0, 1

q5

q2

0 1 0 1 0

q0

q1

q2q4

q4 q5

q4

q4 q5

Nondeterminism as a Tree

● At each decision point, the automaton
clones itself for each possible decision.

● The series of choices forms a directed,
rooted tree.

● At the end, if any active accepting states
remain, we accept.

Perfect Guessing

● We can view nondeterministic machines
as having Magic Superpowers that
enable them to guess the correct choice
of moves to make.
● If there is at least one choice that leads to an

accepting state, the machine will guess it.
● If there are no choices, the machine guesses

any one of the wrong answers.

● No known physical analog for this style of
computation – this is totally new!

Massive Parallelism

● An NFA can be thought of as a DFA that
can be in many states at once.

● Each symbol read causes a transition on
every active state into each potential
state that could be visited.

● Nondeterministic machines can be
thought of as machines that can try any
number of options in parallel.

So What?

● We will turn to these three intuitions for
nondeterminism more later in the quarter.

● Nondeterministic machines may not be feasible,
but they give a great basis for interesting
questions:
● Can any problem that can be solved by a

nondeterministic machine be solved by a
deterministic machine?

● Can any problem that can be solved by a
nondeterministic machine be solved efficiently by a
deterministic machine?

● The answers vary from automaton to automaton.

Designing NFAs

Designing NFAs

● When designing NFAs, embrace the
nondeterminism!

● Good model: Guess-and-check:
● Is there some information that you'd really like to have?

Have the machine nondeterministically guess that
information.

● Then, have the machine deterministically check that the
choice was correct.

● The guess phase corresponds to trying lots of
different options.

● The check phase corresponds to filtering out bad
guesses or wrong options.

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }

0

1 0

1

0 1

start Σ

Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }
a, b

a, c

b, c

start

ε

ε

ε

Next Time

● NFAs and DFAs
● Are NFAs more powerful than DFAs?

● Closure Properties of Regular
Languages
● More ways of transforming regular

languages.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

