
  

Finite Automata
Part Two



  

Recap from Last Time



  

Strings

● An alphabet is a finite set of symbols called 
characters.

● Typically, we use the symbol Σ to refer to an alphabet.

● A string over an alphabet Σ is a finite sequence of 
characters drawn from Σ.

● Example: If Σ = {a, b}, some valid strings over Σ include

a  

aabaaabbabaaabaaaabbb  

abbababba  

● The empty string contains no characters and is 
denoted ε.



  

Languages

● A formal language is a set of strings.
● We say that L is a language over Σ if it is 

a set of strings over Σ.
● Example: The language of palindromes 

over Σ = {a, b, c} is the set

{ε, a, b, c, aa, bb, cc, aaa, aba, aca, bab, … }

● The set of all strings composed from letters 
in Σ is denoted Σ*.

● Formally: L is a language over Σ iff L ⊆ Σ*.

 



  

A Simple Finite Automaton
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The language of an automaton is the 
set of strings that it accepts.

If D is an automaton, we denote the 
language of D as ℒ(D).

ℒ(D) = { w ∈ Σ* | D accepts w }



  

DFAs

● A DFA is a
● Deterministic
● Finite
● Automaton

● DFAs are the simplest type of automaton 
that we will see in this course.



  

DFAs, Informally

● A DFA is defined relative to some 
alphabet Σ.

● For each state in the DFA, there must be 
exactly one transition defined for each 
symbol in Σ.
● This is the “deterministic” part of DFA.

● There is a unique start state.
● There are zero or more accepting states.



  

Designing DFAs

● At each point in its execution, the DFA 
can only remember what state it is in.

● DFA Design Tip: Build each state to 
correspond to some piece of information 
you need to remember.
● Each state acts as a “memento” of what 

you're supposed to do next.
● Only finitely many different states ≈ only 

finitely many different things the machine 
can remember.



  

Recognizing Languages with DFAs

L = { w ∈ {0, 1}* | w contains 00 as a substring }
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Recognizing Languages with DFAs

L = { w ∈ {0, 1}*| every other character of w, starting
                     with the first character, is 0 }
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New Stuff!



  

Tabular DFAs
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Code‽  In a Theory Course‽
int kTransitionTable[kNumStates][kNumSymbols] = { 
     {0, 0, 1, 3, 7, 1, …}, 
      …
};
bool kAcceptTable[kNumStates] = {
    false,
    true,
    true,
    …
};
bool SimulateDFA(string input) {
    int state = 0;
    for (char ch: input)
        state = kTransitionTable[state][ch];
    return kAcceptTable[state];
}



  

The Regular Languages



  

A language L is called a regular language 
if there exists a DFA D such that (ℒ D) = L.



  

The Complement of a Language

● Given a language L ⊆ Σ*, the complement 
of that language (denoted L) is the 
language of all strings in Σ* not in L.

● Formally:

L = { w | w ∈ Σ* ∧ w ∉ L }



  

The Complement of a Language

● Given a language L ⊆ Σ*, the complement 
of that language (denoted L) is the 
language of all strings in Σ* not in L.

● Formally:

L = Σ* - L

L L

Σ*



  

Complementing Regular Languages

● Recall: A regular language is a 
language accepted by some DFA.

● Question: If L is a regular language, is L 
a regular language?

● If the answer is “yes,” then there must be 
some way to construct a DFA for L.

● If the answer is “no,” then some 
language L can be accepted by a DFA, 
but L cannot be accepted by any DFA.



  

Complementing Regular Languages

L = { w ∈ {0, 1}* | w contains 00 as a substring }
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More Elaborate DFAs
L = { w | w is a C-style comment  }
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More Elaborate DFAs
L = { w | w is not a C-style comment  }
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Closure Properties

● Theorem: If L is a regular language, then L 
is also a regular language.

● As a result, we say that the regular languages 
are closed under complementation.

All languages

Regular languages

L

 

L



  

Time-Out For Announcements!



  

A Point of Clarification



  

Theorem: If  is the universal set, then | )| ≤ | � ℘(� |�

Proof: The universal set  contains all objects. �
Therefore, ) ∈ . Consequently, | )| ≤ |. ■℘(�  � ℘(� |�



  

Theorem: If  is the universal set, then | )| ≤ | � ℘(� |�

Proof: The universal set  contains all objects. �
Therefore, ) ∈ . Consequently, | )| ≤ |.℘(�  � ℘(� |�  ■

Does this 
reasoning work?

Does this 
reasoning work?



  

Theorem: If  is the universal set, then | )| ≤ | � ℘(� |�

Proof: The universal set  contains all objects. �
Therefore, every element of ) is an element of℘(�

. Accordingly, ) ⊆ , so | )| ≤ |. ■� ℘(�  � ℘(� |�



  

Remember that ∈ and ⊆
are different concepts!



  

Midterm Logistics

● Midterm is this Thursday from 7PM – 10PM. 
Locations divvied up by last (family) name:
● Aba – Mes: Go to Annenberg Auditorium.
● Mex – Zoc: Go to Cubberly Auditorium.

● Closed-book, closed-computer, open one 
double-sided 8.5” × 11” sheet of notes.

● Covers material up through and including 
graphs (Lectures 00 – 08) and material from 
PS1 – PS3.



  

Your Questions



  

“You seem to really LOVE cute animals, in 
your opinion, what is the cutest animal in 
this world? And what is your opinion on 
quantum computing? Will it provide a 

completely different view on computability 
problems we are learning in this course?”

I don't think there's a single cutest animal in the 
world, though I'm willing to be proven wrong. ☺

As for quantum computing – it will have little to do 
with computability, probably, but a lot to do with 
complexity. We're still working out the details!

I don't think there's a single cutest animal in the 
world, though I'm willing to be proven wrong. ☺

As for quantum computing – it will have little to do 
with computability, probably, but a lot to do with 
complexity. We're still working out the details!



  

“We hear about a lot of different "forefront" 
CS topics in the popular media: IoT, The 

Singularity, quantum computing, etc...What 
are you most excited about, and what is the 

most misrepresented?”

I'm probably not the right person to ask this to. 
I'm most excited about technology being used to 
create jobs in the developing world and help lift 
more people into the middle class. I generally am 
pretty skeptical about “the singularity,” but that's 

just me.

I'm probably not the right person to ask this to. 
I'm most excited about technology being used to 
create jobs in the developing world and help lift 
more people into the middle class. I generally am 
pretty skeptical about “the singularity,” but that's 

just me.



  

Back to CS103!



  

NFAs



  

NFAs

● An NFA is a
● Nondeterministic
● Finite
● Automaton

● Structurally similar to a DFA, but 
represents a fundamental shift in how 
we'll think about computation.



  

(Non)determinism

● A model of computation is deterministic if 
at every point in the computation, there is 
exactly one choice that can make.

● The machine accepts if that series of choices 
leads to an accepting state.

● A model of computation is nondeterministic 
if the computing machine may have multiple 
decisions that it can make at one point.

● The machine accepts if any series of choices 
leads to an accepting state.



  

A Simple NFA
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q0 has two transitions 
defined on 1!



  

q0q0 q1 q2q2

A More Complex NFA
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transition when no transition 

exists, the automaton dies and 
that particular path rejects.

If a NFA needs to make a 
transition when no transition 

exists, the automaton dies and 
that particular path rejects.
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ε-Transitions

● NFAs have a special type of transition called 
the ε-transition.

● An NFA may follow any number of ε-transitions 
at any time without consuming any input.

● NFAs are not required to follow ε-transitions. 
It's simply another option at the machine's 
disposal.



  

Intuiting Nondeterminism

● Nondeterministic machines are a serious 
departure from physical computers.

● How can we build up an intuition for 
them?

● Three approaches:
● Tree computation
● Perfect guessing
● Massive parallelism



  

Tree Computation
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Nondeterminism as a Tree

● At each decision point, the automaton 
clones itself for each possible decision.

● The series of choices forms a directed, 
rooted tree.

● At the end, if any active accepting states 
remain, we accept.



  

Perfect Guessing

● We can view nondeterministic machines 
as having Magic Superpowers that 
enable them to guess the correct choice 
of moves to make.
● If there is at least one choice that leads to an 

accepting state, the machine will guess it.
● If there are no choices, the machine guesses 

any one of the wrong answers.

● No known physical analog for this style of 
computation – this is totally new!



  

Massive Parallelism

● An NFA can be thought of as a DFA that 
can be in many states at once.

● Each symbol read causes a transition on 
every active state into each potential 
state that could be visited.

● Nondeterministic machines can be 
thought of as machines that can try any 
number of options in parallel.



  

So What?

● We will turn to these three intuitions for 
nondeterminism more later in the quarter.

● Nondeterministic machines may not be feasible, 
but they give a great basis for interesting 
questions:
● Can any problem that can be solved by a 

nondeterministic machine be solved by a 
deterministic machine?

● Can any problem that can be solved by a 
nondeterministic machine be solved efficiently by a 
deterministic machine?

● The answers vary from automaton to automaton.



  

Designing NFAs



  

Designing NFAs

● When designing NFAs, embrace the 
nondeterminism!

● Good model: Guess-and-check:
● Is there some information that you'd really like to have? 

Have the machine nondeterministically guess that 
information.

● Then, have the machine deterministically check that the 
choice was correct.

● The guess phase corresponds to trying lots of 
different options.

● The check phase corresponds to filtering out bad 
guesses or wrong options.



  

Guess-and-Check

L = { w ∈ {0, 1}* | w ends in 010 or 101 }
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Guess-and-Check

L = { w ∈ {a, b, c}* | at least one of a, b, or c is not in w }
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Next Time

● NFAs and DFAs
● Are NFAs more powerful than DFAs?

● Closure Properties of Regular 
Languages
● More ways of transforming regular 

languages.
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