Regular Expressions

Recap from Last Time

Regular Languages

- A language L is a **regular language** if there is a DFA D such that $\mathcal{L}(D) = L$.
- *Theorem:* The following are equivalent:
 - *L* is a regular language.
 - There is a DFA for *L*.
 - There is an NFA for *L*.

Language Concatenation

- If $w \in \Sigma^*$ and $x \in \Sigma^*$, then wx is the *concatenation* of w and x.
- If L_1 and L_2 are languages over Σ , the concatenation of L_1 and L_2 is the language L_1L_2 defined as

 $L_1L_2 = \{ wx \mid w \in L_1 \text{ and } x \in L_2 \}$

Language Exponentiation

- If L is a language over Σ , the language L^n is the concatenation of n copies of L with itself.
 - Special case: $L^0 = \{\epsilon\}$.
- The *Kleene closure* of a language L, denoted L^* , is defined as

$$L^* = \{ w \mid \exists n \in \mathbb{N}. \ w \in L^n \}$$

• Intuitively, all strings that can be formed by concatenating any number of strings in L with one another.

Closure Properties

- Theorem: If L_1 and L_2 are regular languages over an alphabet Σ , then so are the following languages:
 - \overline{L}_1
 - $L_1 \cup L_2$
 - $L_1 \cap L_2$
 - L_1L_2
 - *L*₁*
- These properties are called closure properties of the regular languages.

Another View of Regular Languages

Rethinking Regular Languages

- We currently have several tools for showing a language is regular.
 - Construct a DFA for it.
 - Construct an NFA for it.
 - Apply closure properties to existing languages.
- We have not spoken much of this last idea.

Constructing Regular Languages

- Idea: Build up all regular languages as follows:
 - Start with a small set of simple languages we already know to be regular.
 - Using closure properties, combine these simple languages together to form more elaborate languages.
- A bottom-up approach to the regular languages.

Regular Expressions

- **Regular expressions** are a way of describing a language via a string representation.
- Used extensively in software systems for string processing and as the basis for tools like grep and flex.
- Conceptually: regular languages are strings describing how to assemble a larger language out of smaller pieces.

Atomic Regular Expressions

- The regular expressions begin with three simple building blocks.
- The symbol \emptyset is a regular expression that represents the empty language \emptyset .
- The symbol ϵ is a regular expression that represents the language $\{\epsilon\}$
 - This is not the same as Ø!
 - This is not the same as ε !
- For any $a \in \Sigma$, the symbol a is a regular expression for the language $\{a\}$

Compound Regular Expressions

- If R_1 and R_2 are regular expressions, R_1R_2 is a regular expression for the *concatenation* of the languages of R_1 and R_2 .
- If R_1 and R_2 are regular expressions, $R_1 \mid R_2$ is a regular expression for the *union* of the languages of R_1 and R_2 .
- If R is a regular expression, R^* is a regular expression for the *Kleene closure* of the language of R.
- If R is a regular expression, (R) is a regular expression with the same meaning as R.

Operator Precedence

Regular expression operator precedence:

$$(R)$$
 R^*
 R_1R_2
 $R_1 \mid R_2$

• So ab*c|d is parsed as ((a(b*))c)|d

Regular Expression Examples

- The regular expression trick|treat represents the regular language { trick, treat }
- The regular expression booo* represents the regular language { boo, booo, boooo, ... }
- The regular expression candy! (candy!) *
 represents the regular language { candy!,
 candy!candy!, candy!candy!candy!, ... }

Regular Expressions, Formally

- The *language of a regular expression* is the language described by that regular expression.
- Formally:
 - $\mathcal{L}(\varepsilon) = \{\varepsilon\}$
 - $\mathcal{L}(\emptyset) = \emptyset$
 - $\mathcal{L}(\mathbf{a}) = \{\mathbf{a}\}$
 - $\mathscr{L}(R_1R_2) = \mathscr{L}(R_1) \mathscr{L}(R_2)$
 - $\mathscr{L}(R_1 \mid R_2) = \mathscr{L}(R_1) \cup \mathscr{L}(R_2)$
 - $\mathscr{L}(R^*) = \mathscr{L}(R)^*$
 - $\mathscr{L}((R)) = \mathscr{L}(R)$

Worthwhile activity: Apply this recursive definition to

a(b|c)((d))

and see what you get.

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains } 00 \text{ as a substring } \}$

```
(0 | 1)*00(0 | 1)*
```

 $\begin{matrix} 11011100101 \\ 0000 \\ 11111011110011111 \end{matrix}$

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains } 00 \text{ as a substring } \}$

 $\Sigma * 00\Sigma *$

 $\begin{matrix} 11011100101 \\ 0000 \\ 11111011110011111 \end{matrix}$

```
Let \Sigma = \{0, 1\}
Let L = \{ w \in \Sigma^* \mid |w| = 4 \}
```

The length of a string w is denoted | w|

```
• Let \Sigma = \{0, 1\}
```

• Let
$$L = \{ w \in \Sigma^* \mid |w| = 4 \}$$

ΣΣΣΣ

```
• Let \Sigma = \{0, 1\}
```

• Let
$$L = \{ w \in \Sigma^* \mid |w| = 4 \}$$

 Σ^4

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains at most one } 0 \}$

$$1*(0 | \epsilon)1*$$

```
11110111
111111
0111
0
```

- Let $\Sigma = \{0, 1\}$
- Let $L = \{ w \in \Sigma^* \mid w \text{ contains at most one } 0 \}$

```
1*0?1*
```

```
11110111
111111
0111
0
```

- Let $\Sigma = \{ a, .., e \}$, where a represents "some letter."
- Regular expression for email addresses:

```
aa*(.aa*)*@aa*.aa*(.aa*)*
```

cs103@cs.stanford.edu first.middle.last@mail.site.org barack.obama@whitehouse.gov

- Let $\Sigma = \{ a, .., e \}$, where a represents "some letter."
- Regular expression for email addresses:

$$a^+$$
 (. a^+)* @ $a^+.a^+$ (. a^+)*

cs103@cs.stanford.edu first.middle.last@mail.site.org barack.obama@whitehouse.gov

- Let $\Sigma = \{ a, .., e \}$, where a represents "some letter."
- Regular expression for email addresses:

$$a^{+}(.a^{+})*@a^{+}(.a^{+})^{+}$$

cs103@cs.stanford.edu first.middle.last@mail.site.org barack.obama@whitehouse.gov

$$a^{+}(.a^{+})*@a^{+}(.a^{+})^{+}$$
@, .

 q_{2}
@, .

 q_{3}
 q_{4}
 q_{5}
 q_{6}
 q_{6}
 q_{6}
 q_{6}
 q_{7}
 q_{8}
 q_{1}
 q_{2}
 q_{3}
 q_{4}
 q_{5}
 q_{6}
 q_{6}

Shorthand Summary

- R^n is shorthand for $RR \dots R$ (n times).
 - Edge case: define $R^0 = \varepsilon$.
- Σ is shorthand for "any character in Σ ."
- R? is shorthand for $(R \mid \varepsilon)$, meaning "zero or one copies of R."
- R^+ is shorthand for RR^* , meaning "one or more copies of R."

Time-Out for Announcements!

Problem Set Five

- Problem Set Four was due at the start of class today.
 - Need more time? Turn it in by Tuesday at 12:50 with one late day or Wednesday at 12:50 with two.
- Problem Set Five goes out today. It's due next Monday at the start of class.
 - Play around with DFAs, NFAs, regular expressions, and properties of regular languages!
 - We have online tools for developing finite automata and regular expressions; we hope you find them useful!

Your Questions

"Why don't you use a Mac? Also, what are your thoughts on Disney making more Star Wars films?"

I only really use my laptop for email, word processing, slides, and development, so I didn't think it was worth shelling out the extra to get a Mac.

Also, I have absolutely no opinion on the new Star Wars movies.

"Why is there such a huge emphasis on women in CS or women in STEM in general? If the university is 50/50 at large, some departments would inevitably have more or fewer men or women. I have never understood this besides *en fait* assuming discrimination"

- 1. Random distributions alone would not account for the gender skew in CS.
- 2. The world as a whole benefits when everyone gets a fair shot at creating technology.
- 3. The assumption that technology is a meritocracy doesn't hold up to experimental evidence.
- 4. There are definite gender/racial/socioeconomic biases in the tech industry and in CS as a whole.

"sup"

Not much! I learned a really cool theorem and put it as the extra credit problem on the problem set! And I recently found an enchilada recipe that I (vegetarian) and my relatives (dairy allergy) can both enjoy! And I'm thinking deep thoughts about what I want to do with my life. You?

Back to CS103!

The Power of Regular Expressions

Theorem: If R is a regular expression, then $\mathcal{L}(R)$ is regular.

Proof idea: Show how to convert a regular expression into an NFA.

A Marvelous Construction

- The following theorem proves the language of any regular expression is regular:
- *Theorem:* For any regular expression *R*, there is an NFA *N* such that
 - $\mathscr{L}(R) = \mathscr{L}(N)$
 - N has exactly one accepting state.
 - N has no transitions into its start state.
 - *N* has no transitions out of its accepting state.

A Marvelous Construction

The following theorem any regular expression

Theorem: For any reguis an NFA N such that

$$\mathscr{L}(R) = \mathscr{L}(N)$$

These are stronger requirements than are necessary for a normal NFA. We enforce these rules to simplify the construction.

- N has exactly one accepting state.
- N has no transitions into its start state.
- *N* has no transitions out of its accepting state.

Base Cases

Automaton for ε

Automaton for Ø

Automaton for single character a

Construction for R_1R_2

Construction for $R_1 \mid R_2$

Construction for R^*

Why This Matters

- Many software tools work by matching regular expressions against text.
- One possible algorithm for doing so:
 - Convert the regular expression to an NFA.
 - (Optionally) Convert the NFA to a DFA using the subset construction.
 - Run the text through the finite automaton and look for matches.
- This is actually used in practice! The compiled matching automata run extremely quickly.

The Power of Regular Expressions

Theorem: If L is a regular language, then there is a regular expression for L.

This is not obvious!

Proof idea: Show how to convert an arbitrary NFA into a regular expression.

Key idea: Label transitions with arbitrary regular expressions.

Key idea: If we can convert any NFA into something that looks like this, we can easily read off the regular expression.

Could we eliminate this state from the NFA?

Note: We're using concatenation and Kleene closure in order to skip this state.

Note: We're using union to combine these transitions together.

The Construction at a Glance

- Start with an NFA for the language *L*.
- Add a new start state $q_{\rm s}$ and accept state $q_{\rm f}$ to the NFA.
 - Add ϵ -transitions from each original accepting state to q_f , then mark them as not accepting.
- Repeatedly remove states other than $q_{\rm s}$ and $q_{\rm f}$ from the NFA by "shortcutting" them until only two states remain: $q_{\rm s}$ and $q_{\rm f}$.
- The transition from q_s to q_f is then a regular expression for the NFA.

Eliminating a State

- To eliminate a state q from the automaton, do the following for each pair of states q_0 and q_1 , where there's a transition from q_0 into q and a transition from q into q_1 :
 - Let R_{in} be the regex on the transition from q_0 to q.
 - Let R_{out} be the regex on the transition from q to q_1 .
 - If there is a regular expression R_{stay} on a transition from q to itself, add a new transition from q_0 to q_1 labeled $R_{in}(R_{stay})*R_{out}$.
 - If there isn't, add a new transition from q_0 to q_1 labeled $R_{in}R_{out}$.
- If a pair of states has multiple transitions between them labeled $R_1, R_2, ..., R_k$, replace them with a single transition labeled $R_1 \mid R_2 \mid ... \mid R_k$.

Our Transformations

Theorem: The following are all equivalent:

- \cdot L is a regular language.
- · There is a DFA D such that $\mathcal{L}(D) = L$.
- · There is an NFA N such that $\mathcal{L}(N) = L$.
- · There is a regular expression R such that $\mathcal{L}(R) = L$.

Why This Matters

- The equivalence of regular expressions and finite automata has practical relevance.
 - Tools like grep and flex that use regular expressions capture all the power available via DFAs and NFAs.
- This also is hugely theoretically significant: the regular languages can be assembled "from scratch" using a small number of operations!

Next Time

- Applications of Regular Languages
 - Answering "so what?"
- Intuiting Regular Languages
 - What makes a language regular?
- The Myhill-Nerode Theorem
 - The limits of regular languages.