

Regular Expressions

Recap from Last Time

Regular Languages

● A language L is a regular language if
there is a DFA D such that (ℒ D) = L.

● Theorem: The following are equivalent:
● L is a regular language.
● There is a DFA for L.
● There is an NFA for L.

Language Concatenation

● If w ∈ Σ* and x ∈ Σ*, then wx is the
concatenation of w and x.

● If L₁ and L₂ are languages over Σ, the
concatenation of L₁ and L₂ is the
language L₁L₂ defined as

L₁L₂ = { wx | w ∈ L₁ and x ∈ L₂ }

Language Exponentiation

● If L is a language over Σ, the language Ln is the
concatenation of n copies of L with itself.
● Special case: L0 = {ε}.

● The Kleene closure of a language L, denoted
L*, is defined as

L* = { w | ∃n ∈ . ℕ w ∈ Ln }
● Intuitively, all strings that can be formed by

concatenating any number of strings in L with
one another.

Closure Properties

● Theorem: If L₁ and L₂ are regular
languages over an alphabet Σ, then so are
the following languages:
● L₁
● L₁ ∪ L₂
● L₁ ∩ L₂
● L₁L₂
● L₁*

● These properties are called closure
properties of the regular languages.

Another View of Regular Languages

Rethinking Regular Languages

● We currently have several tools for
showing a language is regular.
● Construct a DFA for it.
● Construct an NFA for it.
● Apply closure properties to existing

languages.

● We have not spoken much of this last
idea.

Constructing Regular Languages

● Idea: Build up all regular languages as
follows:
● Start with a small set of simple languages we

already know to be regular.
● Using closure properties, combine these

simple languages together to form more
elaborate languages.

● A bottom-up approach to the regular
languages.

Regular Expressions

● Regular expressions are a way of
describing a language via a string
representation.

● Used extensively in software systems for
string processing and as the basis for
tools like grep and flex.

● Conceptually: regular languages are
strings describing how to assemble a
larger language out of smaller pieces.

Atomic Regular Expressions

● The regular expressions begin with three
simple building blocks.

● The symbol Ø is a regular expression that
represents the empty language Ø.

● The symbol ε is a regular expression that
represents the language {ε}
● This is not the same as Ø!
● This is not the same as ε!

● For any a ∈ Σ, the symbol a is a regular
expression for the language {a}

Compound Regular Expressions

● If R1 and R2 are regular expressions, R1R2 is a
regular expression for the concatenation of the
languages of R1 and R2.

● If R1 and R2 are regular expressions, R1 | R2 is
a regular expression for the union of the
languages of R1 and R2.

● If R is a regular expression, R* is a regular
expression for the Kleene closure of the
language of R.

● If R is a regular expression, (R) is a regular
expression with the same meaning as R.

Operator Precedence

● Regular expression operator precedence:

(R)

R*

R1R2

R1 | R2

● So ab*c|d is parsed as ((a(b*))c)|d

Regular Expression Examples

● The regular expression trick|treat
represents the regular language { trick,
treat }

● The regular expression booo* represents
the regular language { boo, booo, boooo,
… }

● The regular expression candy!(candy!)*
represents the regular language { candy!,
candy!candy!, candy!candy!candy!, … }

Regular Expressions, Formally

● The language of a regular expression is the
language described by that regular expression.

● Formally:
● ℒ(ε) = {ε}
● ℒ(Ø) = Ø
● ℒ(a) = {a}

● ℒ(R1R2) = (ℒ R1) (ℒ R2)

● ℒ(R1 | R2) = (ℒ R1) ∪ (ℒ R2)

● ℒ(R*) = (ℒ R)*
● ℒ((R)) = (ℒ R)

Worthwhile activity: Apply
this recursive definition to

a(b|c)((d))

and see what you get.

Worthwhile activity: Apply
this recursive definition to

a(b|c)((d))

and see what you get.

Regular Expressions are Awesome

● Let Σ = {0, 1}

● Let L = { w ∈ Σ* | w contains 00 as a
substring }

(0 | 1)*00(0 | 1)*

11011100101
0000

11111011110011111

Regular Expressions are Awesome

● Let Σ = {0, 1}

● Let L = { w ∈ Σ* | w contains 00 as a
substring }

Σ*00Σ*

11011100101
0000

11111011110011111

Regular Expressions are Awesome

Let Σ = {0, 1}

Let L = { w ∈ Σ* | |w| = 4 }

The length of
a string w is
denoted |w|

The length of
a string w is
denoted |w|

Regular Expressions are Awesome

● Let Σ = {0, 1}

● Let L = { w ∈ Σ* | |w| = 4 }

0000
1010
1111
1000

ΣΣΣΣ

Regular Expressions are Awesome

● Let Σ = {0, 1}

● Let L = { w ∈ Σ* | |w| = 4 }

0000
1010
1111
1000

Σ4

Regular Expressions are Awesome

● Let Σ = {0, 1}

● Let L = { w ∈ Σ* | w contains at most one 0 }

1*(0 | ε)1*

11110111
111111

0111
0

Regular Expressions are Awesome

● Let Σ = {0, 1}

● Let L = { w ∈ Σ* | w contains at most one 0 }

1*0?1*

11110111
111111

0111
0

Regular Expressions are Awesome

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Regular expression for email addresses:

aa*(.aa*)* aa*.aa*@ (.aa*)*

cs103@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov

Regular Expressions are Awesome

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Regular expression for email addresses:

a+ (.a+)* a+.a+@ (.a+)*

cs103@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov

Regular Expressions are Awesome

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Regular expression for email addresses:

cs103@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov

a+(.a+)*@a+(.a+)+

Regular Expressions are Awesome

a+(.a+)*@a+(.a+)+

q1

start
q3

@

q2

. a

q0
a

 a a

q5
. q6

q7

. a

 a

a

q8

@, .

., @ @ @, .
 @

@, .

q0q4
q0

a

@, .

a, @, .

Shorthand Summary

● Rn is shorthand for RR … R (n times).
● Edge case: define R0 = ε.

● Σ is shorthand for “any character in Σ.”
● R? is shorthand for (R | ε), meaning “zero

or one copies of R.”
● R⁺ is shorthand for RR*, meaning “one or

more copies of R.”

Time-Out for Announcements!

Problem Set Five

● Problem Set Four was due at the start of class
today.
● Need more time? Turn it in by Tuesday at 12:50

with one late day or Wednesday at 12:50 with two.

● Problem Set Five goes out today. It's due next
Monday at the start of class.
● Play around with DFAs, NFAs, regular expressions,

and properties of regular languages!
● We have online tools for developing finite

automata and regular expressions; we hope you
find them useful!

Your Questions

“Why don't you use a Mac? Also, what are
your thoughts on Disney making more Star

Wars films?”

I only really use my laptop for email, word
processing, slides, and development, so I
didn't think it was worth shelling out the
extra to get a Mac.

Also, I have absolutely no opinion on the
new Star Wars movies.

I only really use my laptop for email, word
processing, slides, and development, so I
didn't think it was worth shelling out the
extra to get a Mac.

Also, I have absolutely no opinion on the
new Star Wars movies.

“Why is there such a huge emphasis on
women in CS or women in STEM in

general? If the university is 50/50 at large,
some departments would inevitably have

more or fewer men or women. I have never
understood this besides en fait assuming

discrimination”

1. Random distributions alone would not account for the gender skew in CS.
2. The world as a whole benefits when everyone gets a fair shot at creating
 technology.
3. The assumption that technology is a meritocracy doesn't hold up to
 experimental evidence.
4. There are definite gender/racial/socioeconomic biases in the tech
 industry and in CS as a whole.

1. Random distributions alone would not account for the gender skew in CS.
2. The world as a whole benefits when everyone gets a fair shot at creating
 technology.
3. The assumption that technology is a meritocracy doesn't hold up to
 experimental evidence.
4. There are definite gender/racial/socioeconomic biases in the tech
 industry and in CS as a whole.

“sup”

Not much! I learned a really cool theorem and put it as the extra
credit problem on the problem set! And I recently found an

enchilada recipe that I (vegetarian) and my relatives (dairy allergy)
can both enjoy! And I'm thinking deep thoughts about what I want

to do with my life. You?

Not much! I learned a really cool theorem and put it as the extra
credit problem on the problem set! And I recently found an

enchilada recipe that I (vegetarian) and my relatives (dairy allergy)
can both enjoy! And I'm thinking deep thoughts about what I want

to do with my life. You?

Back to CS103!

The Power of Regular Expressions

Theorem: If R is a regular expression,
then (ℒ R) is regular.

Proof idea: Show how to convert a
regular expression into an NFA.

A Marvelous Construction

start

● The following theorem proves the language of
any regular expression is regular:

● Theorem: For any regular expression R, there
is an NFA N such that
● ℒ(R) = (ℒ N)
● N has exactly one accepting state.
● N has no transitions into its start state.
● N has no transitions out of its accepting state.

A Marvelous Construction

The following theorem proves the language of
any regular expression is regular:

Theorem: For any regular expression R, there
is an NFA N such that

ℒ(R) = (ℒ N)
● N has exactly one accepting state.
● N has no transitions into its start state.
● N has no transitions out of its accepting state.

These are stronger
requirements than are

necessary for a normal NFA.
 We enforce these rules to
simplify the construction.

These are stronger
requirements than are

necessary for a normal NFA.
 We enforce these rules to
simplify the construction.

start

Base Cases

εstart

Automaton for ε

astart

Automaton for single character a

start

Automaton for Ø

Machine for R₂Machine for R₁

Construction for R1R2

start
ε

 Machine for R₂

Machine for R₁

Construction for R1 | R2

start

ε

ε

ε

ε

Machine for R

Construction for R*

start ε ε

ε

ε

Why This Matters

● Many software tools work by matching regular
expressions against text.

● One possible algorithm for doing so:
● Convert the regular expression to an NFA.
● (Optionally) Convert the NFA to a DFA using the subset

construction.
● Run the text through the finite automaton and look for

matches.

● This is actually used in practice! The compiled
matching automata run extremely quickly.

The Power of Regular Expressions

Theorem: If L is a regular language,
then there is a regular expression for L.

This is not obvious!

Proof idea: Show how to convert an
arbitrary NFA into a regular expression.

From NFAs to Regular Expressions

 s
1
 | s

2
 | … | s

n

start

Regular expression: (s
1
 | s

2
 | … | s

n
)*

Key idea: Label
transitions with
arbitrary regular
expressions.

Key idea: Label
transitions with
arbitrary regular
expressions.

From NFAs to Regular Expressions

start

Regular expression: R

R

Key idea: If we can convert any
NFA into something that looks
like this, we can easily read off

the regular expression.

Key idea: If we can convert any
NFA into something that looks
like this, we can easily read off

the regular expression.

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

Could we eliminate
this state from

the NFA?

Could we eliminate
this state from

the NFA?

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12

Note: We're using
concatenation and

Kleene closure in order
to skip this state.

Note: We're using
concatenation and

Kleene closure in order
to skip this state.

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12

R21 R11* R12

From NFAs to Regular Expressions

qs qfqfq2

R22

start ε

ε R11* R12

R21 R11* R12

From NFAs to Regular Expressions

qs qfqfq2
start ε

R11* R12

R22 | R21 R11* R12

Note: We're using union
to combine these

transitions together.

Note: We're using union
to combine these

transitions together.

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 | R21 R11* R12

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 | R21 R11* R12

R11* R12 (R22 | R21R11*R12)* ε

From NFAs to Regular Expressions

qs qfqf
start R11* R12 (R22 | R21R11*R12)*

From NFAs to Regular Expressions

qs qfqf
start R11* R12 (R22 | R21R11*R12)*

q1
start q2

R12

R21

R11 R22

q2

The Construction at a Glance

● Start with an NFA for the language L.
● Add a new start state qs and accept state qf to

the NFA.
● Add ε-transitions from each original accepting

state to qf, then mark them as not accepting.

● Repeatedly remove states other than qs and qf
from the NFA by “shortcutting” them until
only two states remain: qs and qf.

● The transition from qs to qf is then a regular
expression for the NFA.

Eliminating a State

● To eliminate a state q from the automaton, do the following
for each pair of states q₀ and q₁, where there's a transition
from q₀ into q and a transition from q into q₁:

● Let Rin be the regex on the transition from q₀ to q.

● Let Rout be the regex on the transition from q to q₁.

● If there is a regular expression Rstay on a transition from q
to itself, add a new transition from q₀ to q₁ labeled
Rin(Rstay)*Rout.

● If there isn't, add a new transition from q₀ to q₁ labeled
RinRout.

● If a pair of states has multiple transitions between them
labeled R₁, R₂, …, Rₖ, replace them with a single transition
labeled R₁ | R₂ | … | Rₖ.

Our Transformations

DFA NFA Regexp

direct conversion

subset construction

state elimination

recursive transform

Theorem: The following are all equivalent:

 · L is a regular language.
 · There is a DFA D such that (ℒ D) = L.
 · There is an NFA N such that (ℒ N) = L.
 · There is a regular expression R such that (ℒ R) = L.

Why This Matters

● The equivalence of regular expressions and
finite automata has practical relevance.
● Tools like grep and flex that use regular

expressions capture all the power available via
DFAs and NFAs.

● This also is hugely theoretically significant:
the regular languages can be assembled
“from scratch” using a small number of
operations!

Next Time

● Applications of Regular Languages
● Answering “so what?”

● Intuiting Regular Languages
● What makes a language regular?

● The Myhill-Nerode Theorem
● The limits of regular languages.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

