

Nonregular Languages

Theorem: The following are all equivalent:

 · L is a regular language.
 · There is a DFA D such that (ℒ D) = L.
 · There is an NFA N such that (ℒ N) = L.
 · There is a regular expression R such that (ℒ R) = L.

Why does this matter?

Buttons as Finite-State Machines:

http://cs103.stanford.edu/tools/button-fsm/

http://cs103.stanford.edu/tools/button-fsm/

http://www.tti.unipa.it/~gneglia/ip_networks06/slides/TCPIP_State_Transition_Diagram.pdf

http://www.tti.unipa.it/~gneglia/ip_networks06/slides/TCPIP_State_Transition_Diagram.pdf

What exactly is a finite-state machine?

The Model

● The computing device has internal workings that can
be in one of finitely many possible configurations.
● Each state in a DFA corresponds to some possible

configuration of the internal workings.

● After each button press, the computing device does
some amount of processing, then gets to a
configuration where it's ready to receive more input.
● Each transition abstracts away how the computation is done

and just indicates what the ultimate configuration looks like.

● After the user presses the “done” button, the computer
outputs either YES or NO.
● The accepting and rejecting states of the machine model

what happens when that button is pressed.

Computers as Finite Automata

● My computer has 8GB of RAM and
750GB of hard disk space.

● That's a total of 758GB of memory, which
is 6,511,170,420,736 bits.

● There are “only” 26,511,170,420,736 possible
configurations of my computer.

● Could in principle build a DFA
representing my computer, where there's
one symbol per type of input the
computer can receive.

A Powerful Intuition

● Regular languages correspond to problems
that can be solved with finite memory.
● At each point in time, we only need to store

one of finitely many pieces of information.
● Nonregular languages, in a sense, correspond

to problems that cannot be solved with finite
memory.

● Since every computer ever built has finite
memory, in a sense, nonregular languages
correspond to problems that cannot be solved
by physical computers!

Finding Nonregular Languages

A Simple Language

● Let Σ = {a, b} and consider the following
language:

L = {anbn | n ∈ ℕ }

● L is the language of all strings of n a's
followed by n b's:

{ ε, ab, aabb, aaabbb, aaaabbbb, … }

● Is this language regular?

st
ar

t

aaaa

aa

bbbb

bb

bbbb

bb

aaaabbbb

aaaabb

aabbbb

aabb

These cannot be
the same state!

These cannot be
the same state!

This isn't a single
transition. Think of it as
“after reading aaaa, we

end up somewhere.”

This isn't a single
transition. Think of it as
“after reading aaaa, we

end up somewhere.”

q₀ qₖ qₙ

start

A Different Perspective

aa

aaaa aaaabbbb

aabbbb

What happens if qₙ is…

…an accepting state? We accept aabbbb ∉ L!
…a rejecting state? We reject aaaabbbb ∈ L!

What happens if qₙ is…

…an accepting state? We accept aabbbb ∉ L!
…a rejecting state? We reject aaaabbbb ∈ L!

The Intuition

● As you just saw, the strings a4 and a2 can't
end up in the same state in any DFA for
the language L = {anbn | n ∈ ℕ} .

● Rationale:
● Suppose they do.
● Then a4b4 and a2b4 end up in the same state.
● If it's an accepting state, then we accept a2b4,

which isn't in L.
● If it's a rejecting state, then we reject a4b4,

which is in L.

Distinguishability

● Let L be a language over Σ.
● Two strings x ∈ Σ* and y ∈ Σ* are called

distinguishable relative to L if there is a string w
∈ Σ* such that exactly one of xw and yw is in L.

● We denote this by writing x ≢≢L y.

● Formally: x ≢≢L y if

∃w ∈ Σ*. (xw ∈ L ↔ yw ∉ L)
● In our previous case example, a2 and a4 are

distinguishable relative to {anbn | n ∈ ℕ}.
● Try appending b4 to both of them.

Distinguishability

● Theorem: Let L be a language over Σ. Let x ∈ Σ* and
y ∈ Σ* be strings where x ≢≢L y. Then if D is any DFA for L,
then D must end in different states when run on inputs x
and y.

● Proof sketch:

q₀ qₖ qₙ

start

y

x xw

yw

st
ar

t

aaaa

aa

bbbb

bb

bbbb

bb

bbbb

bb

bbb

bbb

bbb

aaa

st
ar

t

aaaa

aa

bbbb

bb

bbbb

bb

bbbb

bb

bbb

bbb

bbb

aaa

Distinguishability

● Let's focus on this language for now:

L = {anbn | n ∈ ℕ }

● Lemma: If m, n ∈ ℕ and m ≠ n, then am ≢≢L an.

● Proof: Let am and an be strings where m ≠ n.
Then ambm ∈ L and anbm ∉ L. Therefore, by
definition, we see that am ≢≢L an. ■

A Bad Combination

● Suppose there is a DFA D for the language
L = {anbn | n ∈ ℕ }.

● We know the following:
● Any two strings of the form am and an, where m ≠ n,

cannot end in the same state when run through D.
● There are infinitely many pairs of strings of the

form am and an.
● However, there are only finitely many states they

can end up in, since D is a deterministic finite
automaton!

● If we put the pieces together, we see that...

Theorem: The language L = { anbn | n ∈ ℕ } is not regular.

Proof: Suppose for the sake of contradiction that L is regular.
Let D be a DFA for L, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D.

Our lemma tells us that am ≢≢L a
n, so by our earlier theorem

we know that am and an cannot end in the same state when
run through D. But this is impossible, since we know that
am and an must end in the same state when run through D.

We have reached a contradiction, so our assumption must
have been wrong. Therefore, L is not regular. ■

What Just Happened?

● We've just hit the limit of finite-
memory computation.

● To build a machine for { anbn | n ∈ ℕ },
we need to have different memory
configurations (states) for all possible
strings of the form an.

● There's no way to do this with finitely
many possible states!

More Nonregular Languages

Another Language

● Consider the following language L over
the alphabet Σ = {a, b, ≟}:

L = { w≟w | w ∈ {a, b}*}

● L is the language all strings consisting of
the same string of a's and b's twice, with
a ≟ symbol in-between.

● Examples:

ab ab≟ ∈ L bbb bbb≟ ∈ L ≟ ∈ L

ab ba≟ ∉ L bbb aaa≟ ∉ L b≟ ∉ L

Another Language

L = { w≟w | w ∈ {a, b}*}

● This language corresponds to the
following problem:

Given strings x and y, does x = y?
● Justification: x = y iff x≟y ∈ L.

● Is this language regular?

The Intuition

L = { w≟w | w ∈ {a, b}*}

● Intuitively, any machine for L has to be able to
remember the contents of everything to the
left of the ≟ so that it can match them against
the contents of the string to the right of the ≟.

● There are infinitely many possible strings we
can see, but we only have finite memory to
store which string we saw.

● That's a problem... can we formalize this?

q₀ qₖ qₙ

start

The Intuition

y

x x≟x

y≟x

What happens if qₙ is…

…an accepting state? We accept y≟x ∉ L!
…a rejecting state? We reject x≟x ∈ L!

What happens if qₙ is…

…an accepting state? We accept y≟x ∉ L!
…a rejecting state? We reject x≟x ∈ L!

Distinguishability

● Let's focus on this language for now:

L = { w≟w | w ∈ {a, b}*}

● Lemma: If x, y ∈ {a, b}* and x ≠ y, then x ≢≢L y.

● Proof: Let x and y be two distinct, arbitrary
strings from {a, b}*. Then x≟x ∈ L and y≟x ∉ L,
so by definition we know x ≢≢L y. ■

Theorem: The language L = { w≟w | w ∈ {a, b}*} is not
regular.

Proof: Suppose for the sake of contradiction that L is regular.
Let D be a DFA for L and let k be the number of states in
D. Consider any k+1 distinct strings in {a, b}*. Because D
only has k states, by the pigeonhole principle there must
be at least two strings x and y that, when run through D,
end in the same state.

Our lemma tells us that x ≢≢L y. By our earlier theorem, this
means that x and y cannot end in the same state when run
through D. But this is impossible, since specifically chose x
and y to end in the same state when run through D.

We have reached a contradiction, so our assumption must
have been wrong. Thus L is not regular. ■

Time-Out for Announcements!

Midterm Pickup

● Didn't pick up your midterm after class
last time? Stop by the Gates building to
pick it up!

● Solutions and statistics available in the
normal return filing cabinet (directions
online).

● Graded exams in the drawer just below
that.

Regrade Requests

● If you'd like to submit a problem set for a regrade,
email the regrades list
(cs103-spr1415-regrades@lists.stanford.edu) and let us know
● which problems you'd like us to review and
● why you believe that your answer is correct.

● If you'd like to submit a regrade request for the
midterm, print out a midterm regrade request form
from the website, attach it to your midterm, and
hand it to me at lecture or during office hours.

● In both cases, all regrade requests need to be
submitted at most one week after we've returned
the problem set or exam.

mailto:cs103-spr1415-regrades@lists.stanford.edu

Your Questions

“What class(es) at Stanford have you not
taken, but wish you had?”

In CS: CS147, CS229, and CS246.

Outside CS: English 90, Bio 150, CEE 151, SLE.

In CS: CS147, CS229, and CS246.

Outside CS: English 90, Bio 150, CEE 151, SLE.

“We thoroughly enjoyed your last talk on
nixtamalization. Speak (again) on

something that fascinates you! Teach us
something new (again)!”

I'd like to show you
an odd building with

an odd story.

I'd like to show you
an odd building with

an odd story.

Back to CS103!

The General Pattern

● These previous two proofs have the following
shape:
● Find an infinite collection of strings that cannot

end up in the same state in any DFA for a
language L.

● Conclude that since any DFA for L has only
finitely many states, that L cannot be regular.

● Two questions:
● Is there a bigger picture here?
● Can we abstract these proofs away from

machine specifics?

Theorem (Myhill-Nerode): Let L be a
language over Σ. If there is a set S ⊆ Σ*
with the following two properties, then
L is not regular:

 · S is infinite (i.e. it contains
 infinitely many strings).

 · If x, y ∈ S and x ≠ y, then x ≢≢L y.

Proof: Let L be an arbitrary language over Σ. Let S ⊆ Σ* be an
infinite set of strings with the following property: if x, y ∈ S and
x ≠ y, then x ≢≢L y. We will show that L is not regular.

Suppose for the sake of contradiction that L is regular. This
means that there must be some DFA D for L. Let k be the
number of states in D. Since S is an infinite set, we can choose
k+1 distinct strings from S. Because there are only k states in D
and we've chosen k+1 distinct strings from S, by the pigeonhole
principle we know that at least two strings from S must end in
the same state in D. Choose any two such strings and call them
x and y. Since x ∈ S and y ∈ S and x ≠ y, we know that x ≢≢L y.
Consequently, by our earlier theorem, we know that x and y
must end in different states when run through D. But this is
impossible – we chose x and y specifically because they end in
the same state when run through D.

We have reached a contradiction, so our assumption must have
been wrong. Thus L is not a regular language. ■

Theorem: The language L = { anbn | n ∈ ℕ } is not
regular.

Proof: Let S = { an | n ∈ ℕ }. This set is infinite
because it contains one string for each natural
number. Now, consider any strings an, am ∈ S
where an ≠ am. Then anbn ∈ L and ambn ∉ L.
Consequently, an ≢≢L a

m. Therefore, by the Myhill-
Nerode theorem, L is not regular. ■

Theorem: The language L = { w≟w | w ∈ {a, b}*} is
not regular.

Proof: Let S = {a, b}*. This set is infinite because it
contains one string for each natural number. Now,
consider any x, y ∈ S where x ≠ y. Then x≟x ∈ L
and y≟x ∉ L. Consequently, x ≢≢L y. Therefore, by
the Myhill-Nerode theorem, L is not regular. ■

Why it Works

● The Myhill-Nerode Theorem is,
essentially, a generalized version of the
argument from before.
● If there are infinitely many distinguishable

strings and only finitely many states, two
distinguishable strings must end up in the
same state.

● Therefore, two strings that cannot be in the
same state must end in the same state.

● Proof focuses on the infinite set of
strings, not the DFA mechanics.

Approaching Myhill-Nerode

● The challenge in using the Myhill-Nerode
theorem is finding the right set of strings to
use.

● General intuition:
● Start by thinking about what information a

computer “must” remember in order to answer
correctly.

● Choose a group of strings that all require
different information.

● Prove that those strings are distinguishable
relative to the language in question.

Next Time

● Context-Free Languages
● Context-Free Grammars
● Generating Languages from Scratch

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

