
  

Nonregular Languages



  

Theorem: The following are all equivalent:
 

  · L is a regular language.
  · There is a DFA D such that (ℒ D) = L.
  · There is an NFA N such that (ℒ N) = L.
  · There is a regular expression R such that (ℒ R) = L.



  

Why does this matter?



  

Buttons as Finite-State Machines:

http://cs103.stanford.edu/tools/button-fsm/

http://cs103.stanford.edu/tools/button-fsm/


  

http://www.tti.unipa.it/~gneglia/ip_networks06/slides/TCPIP_State_Transition_Diagram.pdf

http://www.tti.unipa.it/~gneglia/ip_networks06/slides/TCPIP_State_Transition_Diagram.pdf


  

What exactly is a finite-state machine?



  

The Model

● The computing device has internal workings that can 
be in one of finitely many possible configurations.
● Each state in a DFA corresponds to some possible 

configuration of the internal workings.

● After each button press, the computing device does 
some amount of processing, then gets to a 
configuration where it's ready to receive more input.
● Each transition abstracts away how the computation is done 

and just indicates what the ultimate configuration looks like.

● After the user presses the “done” button, the computer 
outputs either YES or NO.
● The accepting and rejecting states of the machine model 

what happens when that button is pressed.



  

Computers as Finite Automata

● My computer has 8GB of RAM and 
750GB of hard disk space.

● That's a total of 758GB of memory, which 
is 6,511,170,420,736 bits.

● There are “only” 26,511,170,420,736 possible 
configurations of my computer.

● Could in principle build a DFA 
representing my computer, where there's 
one symbol per type of input the 
computer can receive.



  

A Powerful Intuition

● Regular languages correspond to problems 
that can be solved with finite memory.
● At each point in time, we only need to store 

one of finitely many pieces of information.
● Nonregular languages, in a sense, correspond 

to problems that cannot be solved with finite 
memory.

● Since every computer ever built has finite 
memory, in a sense, nonregular languages 
correspond to problems that cannot be solved 
by physical computers!



  

Finding Nonregular Languages



  

A Simple Language

● Let Σ = {a, b} and consider the following 
language:

L = {anbn | n ∈ ℕ }     

● L is the language of all strings of n a's 
followed by n b's:

{ ε, ab, aabb, aaabbb, aaaabbbb, … }

● Is this language regular?
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These cannot be 
the same state!

These cannot be 
the same state!

This isn't a single 
transition. Think of it as 
“after reading aaaa, we 

end up somewhere.”

This isn't a single 
transition. Think of it as 
“after reading aaaa, we 

end up somewhere.”



  

q₀ qₖ qₙ

start  

A Different Perspective

aa

aaaa aaaabbbb

aabbbb

What happens if qₙ is…

…an accepting state? We accept aabbbb ∉ L!
…a rejecting state? We reject aaaabbbb ∈ L!

What happens if qₙ is…

…an accepting state? We accept aabbbb ∉ L!
…a rejecting state? We reject aaaabbbb ∈ L!



  

The Intuition

● As you just saw, the strings a4 and a2 can't 
end up in the same state in any DFA for 
the language L = {anbn | n ∈ ℕ} .

● Rationale:
● Suppose they do.
● Then a4b4 and a2b4 end up in the same state.
● If it's an accepting state, then we accept a2b4, 

which isn't in L.
● If it's a rejecting state, then we reject a4b4, 

which is in L.



  

Distinguishability

● Let L be a language over Σ.
● Two strings x ∈ Σ* and y ∈ Σ* are called 

distinguishable relative to L if there is a string w 
∈ Σ* such that exactly one of xw and yw is in L.

● We denote this by writing x ≢≢L y.

● Formally: x ≢≢L y if

∃w ∈ Σ*. (xw ∈ L ↔ yw ∉ L)   
● In our previous case example, a2 and a4 are 

distinguishable relative to {anbn | n ∈ ℕ}.
● Try appending b4 to both of them.



  

Distinguishability

● Theorem: Let L be a language over Σ. Let x ∈ Σ* and 
y ∈ Σ* be strings where x ≢≢L y. Then if D is any DFA for L, 
then D must end in different states when run on inputs x 
and y.

● Proof sketch:

q₀ qₖ qₙ
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Distinguishability

● Let's focus on this language for now:

L = {anbn | n ∈ ℕ } 

● Lemma: If m, n ∈ ℕ and m ≠ n, then am ≢≢L an.

● Proof: Let am and an be strings where m ≠ n. 
Then ambm ∈ L and anbm ∉ L. Therefore, by 
definition, we see that am ≢≢L an. ■



  

A Bad Combination

● Suppose there is a DFA D for the language
L = {anbn | n ∈ ℕ }.

● We know the following:
● Any two strings of the form am and an, where m ≠ n, 

cannot end in the same state when run through D.
● There are infinitely many pairs of strings of the 

form am and an.
● However, there are only finitely many states they 

can end up in, since D is a deterministic finite 
automaton!

● If we put the pieces together, we see that...



  

Theorem: The language L = { anbn | n ∈ ℕ } is not regular.

Proof: Suppose for the sake of contradiction that L is regular.
Let D be a DFA for L, and let k be the number of states in
D. Consider the strings a0, a1, a2, …, ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings am and an that end in the same state when run
through D.

Our lemma tells us that am ≢≢L a
n, so by our earlier theorem 

we know that am and an cannot end in the same state when 
run through D. But this is impossible, since we know that 
am and an must end in the same state when run through D.

We have reached a contradiction, so our assumption must 
have been wrong. Therefore, L is not regular. ■



  

What Just Happened?

● We've just hit the limit of finite-
memory computation.

● To build a machine for { anbn | n ∈ ℕ }, 
we need to have different memory 
configurations (states) for all possible 
strings of the form an.

● There's no way to do this with finitely 
many possible states!



  

More Nonregular Languages



  

Another Language

● Consider the following language L over 
the alphabet Σ = {a, b, ≟}:

L = { w≟w | w ∈ {a, b}*}  

● L is the language all strings consisting of 
the same string of a's and b's twice, with 
a ≟ symbol in-between.

● Examples:

ab ab≟  ∈ L  bbb bbb≟  ∈ L  ≟ ∈ L

ab ba≟  ∉ L  bbb aaa≟  ∉ L b≟ ∉ L



  

Another Language

L = { w≟w | w ∈ {a, b}*}  

● This language corresponds to the 
following problem:

Given strings x and y, does x = y? 
● Justification: x = y iff x≟y ∈ L.

● Is this language regular? 



  

The Intuition

L = { w≟w | w ∈ {a, b}*}  

● Intuitively, any machine for L has to be able to 
remember the contents of everything to the 
left of the ≟ so that it can match them against 
the contents of the string to the right of the ≟.

● There are infinitely many possible strings we 
can see, but we only have finite memory to 
store which string we saw.

● That's a problem... can we formalize this?



  

q₀ qₖ qₙ

start  

The Intuition

y

x x≟x

y≟x

What happens if qₙ is…

…an accepting state? We accept y≟x ∉ L!
…a rejecting state? We reject x≟x ∈ L!

What happens if qₙ is…

…an accepting state? We accept y≟x ∉ L!
…a rejecting state? We reject x≟x ∈ L!



  

Distinguishability

● Let's focus on this language for now:

L = { w≟w | w ∈ {a, b}*}  

● Lemma: If x, y ∈ {a, b}* and x ≠ y, then x ≢≢L y.

● Proof: Let x and y be two distinct, arbitrary 
strings from {a, b}*. Then x≟x ∈ L and y≟x ∉ L, 
so by definition we know x ≢≢L y. ■



  

Theorem: The language L = { w≟w | w ∈ {a, b}*} is not
regular.

Proof: Suppose for the sake of contradiction that L is regular.
Let D be a DFA for L and let k be the number of states in
D. Consider any k+1 distinct strings in {a, b}*. Because D
only has k states, by the pigeonhole principle there must
be at least two strings x and y that, when run through D,
end in the same state.

Our lemma tells us that x ≢≢L y. By our earlier theorem, this 
means that x and y cannot end in the same state when run 
through D. But this is impossible, since specifically chose x 
and y to end in the same state when run through D.

We have reached a contradiction, so our assumption must 
have been wrong. Thus L is not regular. ■



  

Time-Out for Announcements!



  

Midterm Pickup

● Didn't pick up your midterm after class 
last time? Stop by the Gates building to 
pick it up!

● Solutions and statistics available in the 
normal return filing cabinet (directions 
online).

● Graded exams in the drawer just below 
that.



  

Regrade Requests

● If you'd like to submit a problem set for a regrade, 
email the regrades list
(cs103-spr1415-regrades@lists.stanford.edu ) and let us know
● which problems you'd like us to review and
● why you believe that your answer is correct.

● If you'd like to submit a regrade request for the 
midterm, print out a midterm regrade request form 
from the website, attach it to your midterm, and 
hand it to me at lecture or during office hours.

● In both cases, all regrade requests need to be 
submitted at most one week after we've returned 
the problem set or exam.

mailto:cs103-spr1415-regrades@lists.stanford.edu


  

Your Questions



  

“What class(es) at Stanford have you not 
taken, but wish you had?”

In CS: CS147, CS229, and CS246.

Outside CS: English 90, Bio 150, CEE 151,  SLE.

In CS: CS147, CS229, and CS246.

Outside CS: English 90, Bio 150, CEE 151,  SLE.



  

“We thoroughly enjoyed your last talk on 
nixtamalization. Speak (again) on 

something that fascinates you! Teach us 
something new (again)!”

I'd like to show you 
an odd building with 

an odd story.

I'd like to show you 
an odd building with 

an odd story.



  



  

Back to CS103!



  

The General Pattern

● These previous two proofs have the following 
shape:
● Find an infinite collection of strings that cannot 

end up in the same state in any DFA for a 
language L.

● Conclude that since any DFA for L has only 
finitely many states, that L cannot be regular.

● Two questions:
● Is there a bigger picture here?
● Can we abstract these proofs away from 

machine specifics?



  

Theorem (Myhill-Nerode): Let L be a
language over Σ. If there is a set S ⊆ Σ*
with the following two properties, then
L is not regular:

 · S is infinite (i.e. it contains
  infinitely many strings).

 

  · If x, y ∈ S and x ≠ y, then x ≢≢L y.



  

Proof: Let L be an arbitrary language over Σ. Let S ⊆ Σ* be an
infinite set of strings with the following property: if x, y ∈ S and
x ≠ y, then x ≢≢L y. We will show that L is not regular.

Suppose for the sake of contradiction that L is regular. This 
means that there must be some DFA D for L. Let k be the 
number of states in D. Since S is an infinite set, we can choose 
k+1 distinct strings from S. Because there are only k states in D 
and we've chosen k+1 distinct strings from S, by the pigeonhole 
principle we know that at least two strings from S must end in 
the same state in D. Choose any two such strings and call them 
x and y. Since x ∈ S and y ∈ S and x ≠ y, we know that x ≢≢L y. 
Consequently, by our earlier theorem, we know that x and y 
must end in different states when run through D. But this is 
impossible – we chose x and y specifically because they end in 
the same state when run through D.

We have reached a contradiction, so our assumption must have 
been wrong. Thus L is not a regular language. ■



  

Theorem: The language L = { anbn | n ∈ ℕ } is not
regular.

Proof: Let S = { an | n ∈ ℕ }. This set is infinite
because it contains one string for each natural
number. Now, consider any strings an, am ∈ S
where an ≠ am. Then anbn ∈ L and ambn ∉ L.
Consequently, an ≢≢L a

m. Therefore, by the Myhill-
Nerode theorem, L is not regular. ■



  

Theorem: The language L = { w≟w | w ∈ {a, b}*} is
not regular.

Proof: Let S = {a, b}*. This set is infinite because it
contains one string for each natural number. Now,
consider any x, y ∈ S where x ≠ y. Then x≟x ∈ L
and y≟x ∉ L. Consequently, x ≢≢L y. Therefore, by
the Myhill-Nerode theorem, L is not regular. ■



  

Why it Works

● The Myhill-Nerode Theorem is, 
essentially, a generalized version of the 
argument from before.
● If there are infinitely many distinguishable 

strings and only finitely many states, two 
distinguishable strings must end up in the 
same state.

● Therefore, two strings that cannot be in the 
same state must end in the same state.

● Proof focuses on the infinite set of 
strings, not the DFA mechanics.



  

Approaching Myhill-Nerode

● The challenge in using the Myhill-Nerode 
theorem is finding the right set of strings to 
use.

● General intuition:
● Start by thinking about what information a 

computer “must” remember in order to answer 
correctly.

● Choose a group of strings that all require 
different information.

● Prove that those strings are distinguishable 
relative to the language in question.



  

Next Time

● Context-Free Languages
● Context-Free Grammars
● Generating Languages from Scratch


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

