

Turing Machines
Part Two

Recap from Last Time

The Turing Machine

● A Turing machine consists of three parts:

– A finite-state control that issues commands,

– an infinite tape for input and scratch space,
and

– a tape head that can read and write a single
tape cell.

● At each step, the Turing machine

– writes a symbol to the tape cell under the tape
head,

– changes state, and

– moves the tape head to the left or to the right.

Input and Tape Alphabets

● A Turing machine has two alphabets:

– An input alphabet Σ. All input strings are written
in the input alphabet.

– A tape alphabet Γ, where Σ ⊆ Γ. The tape alphabet
contains all symbols that can be written onto the
tape.

● The tape alphabet Γ can contain any number of
symbols, but always contains at least one blank
symbol, denoted . You are guaranteed ∉ Σ.☐ ☐

● At startup, the Turing machine begins with an
infnite tape of symbols with the input written at ☐
some location. The tape head is positioned at the
start of the input.

A Simple Turing Machine

q
0

q
acc

q
rej

q
1

start

1 → , R☐

1 → , R☐

 → ☐ ☐, R

 → ☐ ☐, R

q
acc

q
rej

Each transition of the form

x → y, D

means “upon reading x, replace it with
symbol y and move the tape head in
direction D (which is either L or R).
 The symbol ☐ represents the blank

symbol.

Each transition of the form

x → y, D

means “upon reading x, replace it with
symbol y and move the tape head in
direction D (which is either L or R).
 The symbol ☐ represents the blank

symbol.

This special accept
state causes the

machine to
immediately accept.

This special accept
state causes the

machine to
immediately accept.

This special reject
state causes the

machine to
immediately reject.

This special reject
state causes the

machine to
immediately reject.

Clear a
1

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start
Go to
start

start

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

q
acc

q
acc

 → ☐ ☐, R

q
acc

q
rej

1 → , R☐

 → ☐ ☐, R
0 → 0, R

Check
m≟0

Check
m≟0

Cross
off 1

To End

Cross
off 1

Next
0

To EndNext
0

Back
home
Back
home

Back
home
Back
home

UnmarkUnmark

 → ◻ ◻, R

start

0 → 0, R 1 → 1, L

0 → 0, L

 → ☐ ☐, R 0 → ×, R

× → ×, R
0 → 0, R
1 → 1, R

 → ◻ ◻, L

1 → , L☐× → ×, L
0 → 0, L
1 → 1, L

 × → ×, R
 → ☐ ☐, L

 1 → 1, L

 × → 0, L
 → ☐ ☐, R

Accept!

 → ◻ ◻, R

Main Question for Today:
Just how powerful are Turing machines?

A Sample Problem

Composite Numbers

● A natural number n ≥ 2 is composite if it is
the product of two natural numbers p and q,
neither of which is n.

● Example:
– 6 = 3 · 2 is composite.
– 42 = 7 · 6 is composite
– 5 is not composite.

● Programming problem: write a method that
determines whether a natural number is
composite.

bool isComposite(int n) {
if (n ≤ 1) return false;

int divisor = 2;
while (divisor ≠ n) {

if (n is a multiple of divisor) {
return true;

}
divisor++;

}

return false;
}

bool isComposite(int n) {
if (n ≤ 1) return false;

int divisor = 2;
while (divisor ≠ n) {

if (n is a multiple of divisor) {
return true;

}
divisor++;

}

return false;
}

Question: Can we build a TM that
determines whether a number is

composite?

Back to Languages

● Let Σ = {1} and consider the following
language L over Σ:

 L = { 1n | n is composite }
● This language is not regular (think about why

this is).
● It's also not context-free (don't worry if you

don't see why – we didn't discuss this in
CS103. ☺)

● Can we build a TM for it?

Check
for ε

st
ar

t

1 1 1 1 1 ……

Check
for 1

1 → 1, R 1 → 1, L

bool isComposite(int n) {
if (n ≤ 1) return false;

int divisor = 2;
while (divisor ≠ n) {

if (n is a multiple of divisor) {
return true;

}
divisor++;

}

return false;
}

bool isComposite(int n) {
if (n ≤ 1) return false;

int divisor = 2;
while (divisor ≠ n) {

if (n is a multiple of divisor) {
return true;

}
divisor++;

}

return false;
}

Check
for ε

st
ar

t

1 1 1 1 1 ……

Check
for 1

1 → 1, R 1 → 1, L

bool isComposite(int n) {
if (n ≤ 1) return false;

int divisor = 2;
while (divisor ≠ n) {

if (n is a multiple of divisor) {
return true;

}
divisor++;

}

return false;
}

bool isComposite(int n) {
if (n ≤ 1) return false;

int divisor = 2;
while (divisor ≠ n) {

if (n is a multiple of divisor) {
return true;

}
divisor++;

}

return false;
}

Reusing our TMs

● What does our TM need to be able to do?
– Check if divisor = n

– Check if n is a multiple of divisor.

● What TMs did we build last time?
– One that checks for 0n1n

– One that checks for 0m1n, where n is a
multiple of m.

● Coincidence? I think not!

A Sketch of the TM

0 0 1 1 1 1 1 ……

bool isComposite(int n) {
if (n ≤ 1) return false;

int divisor = 2;
while (divisor ≠ n) {

if (n is a multiple of divisor) {
return true;

}
divisor++;

}

return false;
}

bool isComposite(int n) {
if (n ≤ 1) return false;

int divisor = 2;
while (divisor ≠ n) {

if (n is a multiple of divisor) {
return true;

}
divisor++;

}

return false;
}

bool isComposite(int n) {
if (n ≤ 1) return false;

int divisor = 2;
while (divisor ≠ n) {

if (n is a multiple of divisor) {
return true;

}
divisor++;

}

return false;
}

bool isComposite(int n) {
if (n ≤ 1) return false;

int divisor = 2;
while (divisor ≠ n) {

if (n is a multiple of divisor) {
return true;

}
divisor++;

}

return false;
}

A Sketch of the TM

0 0 1 1 1 1 1 ……

Somehow, run our TM from
last time to see if the string

is of the form 0n1n.

Somehow, run our TM from
last time to see if the string

is of the form 0n1n.

A Sketch of the TM

0 0 1 1 1 1 1 ……

bool isComposite(int n) {
if (n ≤ 1) return false;

int divisor = 2;
while (divisor ≠ n) {

if (n is a multiple of divisor) {
return true;

}
divisor++;

}

return false;
}

bool isComposite(int n) {
if (n ≤ 1) return false;

int divisor = 2;
while (divisor ≠ n) {

if (n is a multiple of divisor) {
return true;

}
divisor++;

}

return false;
}

Somehow, run our TM from
last time to see if the string
is of the form 0m1n, where n

is a multiple of m.

Somehow, run our TM from
last time to see if the string
is of the form 0m1n, where n

is a multiple of m.

A Sketch of the TM

0 0 0 1 1 1 1 1 ……

bool isComposite(int n) {
if (n ≤ 1) return false;

int divisor = 2;
while (divisor ≠ n) {

if (n is a multiple of divisor) {
return true;

}
divisor++;

}

return false;
}

bool isComposite(int n) {
if (n ≤ 1) return false;

int divisor = 2;
while (divisor ≠ n) {

if (n is a multiple of divisor) {
return true;

}
divisor++;

}

return false;
}

How can we get our new TM
to run our old TMs?

Function Call and Return

● Think about actual programming for a
minute.

● If you write a function that performs a
task, another part of the code can call
that function to use the functionality.

● Could we do something like that here in
our TM?

Function Call and Return

● Internally, the memory
for each function call
is allocated on the
stack:
– Each call allocates

more space.

– Each return cleans up
the space.

– Arguments are copied
by value.

Space for main

Arguments to fn1

Space for fn1

Arguments to fn2

Space for fn2

Combining TMs

● Claim: We can use the TM's tape to
simulate function call and return.

● This means that we can build very
complex TMs by assembling smaller
subroutines and combining them
together.

● The details are icky; we'll see them in a
second.

Our TM, in More Depth

0 0 1 1 1 1 1 ……

High-level idea: Pass
the current string as
a “parameter” to the

TM for 0n1n.

High-level idea: Pass
the current string as
a “parameter” to the

TM for 0n1n.

Our TM, in More Depth

★ 0 0 1 1 1 1 1 ★ 0 0 1 1 1 1 1 ……

High-level idea: Pass
the current string as
a “parameter” to the

TM for 0n1n.

High-level idea: Pass
the current string as
a “parameter” to the

TM for 0n1n.

★ 0 0 1 1 1 1 1 …★…

Our TM, in More Depth

0 0 1 1 1 1 1

Now, go run the TM for 0n1n by
transitioning into its start state. It
never takes more than one step off
the string in either direction, so it
has no idea there's anything else

on the tape.

Now, go run the TM for 0n1n by
transitioning into its start state. It
never takes more than one step off
the string in either direction, so it
has no idea there's anything else

on the tape.

★ ★ 0 0 1 1 1 1 1 ……

Our TM, in More Depth

1 1 1

High-level idea:
Clean up the stack

space to return from
the function call.

High-level idea:
Clean up the stack

space to return from
the function call.

★ ★ 0 0 1 1 1 1 1 ……

Our TM, in More Depth

1 1 1

High-level idea:
Clean up the stack

space to return from
the function call.

High-level idea:
Clean up the stack

space to return from
the function call.

0 0 1 1 1 1 1 ……

Our TM, in More Depth

Now, you can
imagine that we do
the same thing, but

for the TM that
checks if the number
of 1's is a multiple of

the number of 0's.

Now, you can
imagine that we do
the same thing, but

for the TM that
checks if the number
of 1's is a multiple of

the number of 0's.

Subroutines in TMs

● Just as complex programs are often broken
down into smaller functions and classes,
complex TMs are often broken down into
smaller “subroutines.”

● Each subroutine performs some task that
helps in the overall task.

● The TM is then described by giving a
collection of subroutines and showing how
they link up.

The “Copy” Subroutine

● This subroutine starts with the tape head at the
start of a string of 0s and 1s:

● It ends in this confguration:

● We use the copy subroutine to let us run
another TM on the current input without
breaking it.

0 0 1 1 1 1 1 ……

★ 0 0 1 1 1 1 1 …… 0 0 1 1 1 1 1★

The “Cleanup” Subroutine

● This subroutine starts with the tape head
between two characters delimiting TM ★
workspace:

● It ends in this confguration:

● We use the cleanup subroutine to recover from
the end of running a sub-TM.

★ 1 × × 0 0 × ★ 0 0 1 1 1 1 1 ……

0 0 1 1 1 1 1 ……

Copy
Sub

Multiple
Sub

Multiple
Sub

Copy
Sub

Check
for ε

Check
for 1

To
Front First 0

Second
0

Check
0n1n

Cleanup
Sub

Copy
Sub

Cleanup
Sub

Add
0

Check
for ε

st
ar

t

Check
for 1

1 → 1, R
To

Front

1 → 1, L
First 0

1 → 1, L

Second
0

 → ☐ 0, L

 → ☐ 0, L

Check
0n1n

done

Reject!

 yes

Cleanup
Sub

no
Copy
Sub

done

done

Accept!

Cleanup
Sub

 yes

no
Add

0

done

 → ☐ 0, L

TM Subroutines

● To represent a subroutine call inside a
TM, just add a state with dashed edges
with the name of the subroutine.

● If the subroutine is just a “processing”
subroutine, have a single exit arrow.

● If the subroutine may exit along
different paths, have multiple exit
arrows.

done

Defining a Subroutine

● If you want to (or are asked to) design a
TM subroutine, design it like a normal
TM with one change: have special
dashed states representing the exit of
the subroutine.

Check
for ε

Check
for 1

To
Front

Check
for ε

Check
for 1

1 → 1, R
To

Front

1 → 1, L 1 → 1, L

st
ar

t

Time-Out for Announcements!

CFG Tool

● We have a tool available online you can use to
develop and test out context-free grammars.

● Features include
– Autogeneration of strings in the language of your

grammar.

– Automatic testing of whether a specific string can
be generated.

● Doesn't support submission (sorry), but still
highly recommended!

Midterm Logistics

● Midterm is next Thursday, May 21 from
7PM – 10PM, location TBA.
– Cumulative, focusing primarily on topics from PS4 – PS6.

– Covers material up through and including the lecture on
CFGs; TMs will not be tested.

● Same format as last time: four questions, closed-book,
closed-computer, open one double-sided 8.5” × 11”
sheet of paper.

● Alternate exam: 4PM – 7PM on Thursday, May 21.
Contact us ASAP if you'd like to take the exam at an
alternate time.

● Practice exam next Monday, May 18th from
7PM – 10PM; location TBA.

Extra Practice Problems

● We've released another set of extra
practice problems (Practice Problems 4)
to help you review for the exam.

● We'll release solutions and another set
of practice problems on Monday.

I wish my CS Professor had known...

“We are working to make the CS department here at
Stanford a more welcoming environment for all students,
especially those who are racial, gender, socioeconomic, or
other minority students.

To assist with this, we are collecting responses from
students that seek to share their experiences in CS courses
with the members of the Stanford community. For this
project, we are asking students who want to share things
they wish their computer science professor knew about
them or their own personal experiences in the classroom.

Please use the following form to anonymously submit your
experience.

If you have any questions, comments, or concerns, contact
us at ecortes@stanford.edu or vniu@stanford.edu.”

http://goo.gl/forms/FJMzJcYxoJ
mailto:ecortes@stanford.edu
mailto:vniu@stanford.edu

Midterms Regraded

● All midterm regrade requests have been
processed. They're available for pickup in
the filing cabinet where we normally
returned exams.

● Going forward, please only submit
regrades if we deducted points for
something that's actually correct. Please
don't use regrades as a way to ask for
more partial credit.

Your Questions!

“I have no idea what all this 'language'
stuff has to do with computation. I feel I

understand it in isolation, but not in terms
of how it ties in with figuring out what

impossible problems are, how to find them,
or how to even reason about them.”

We're just about
to talk about this –

hang in there!

We're just about
to talk about this –

hang in there!

“What implications do the limits of
computation have on our understanding of

the universe?”

We're also going to talk a bit about that soon. Some teasers:

1. Various problems in physics, chemistry, and biology can be
solved by computers, but we suspect that they can't be
solved efficiently at the necessary scale.

2. Certain economic models work if and only if specific
computational problems can be solved efficiently.

3. There is a fundamental distinction between something being
true and us being able to know that it's true.

We're also going to talk a bit about that soon. Some teasers:

1. Various problems in physics, chemistry, and biology can be
solved by computers, but we suspect that they can't be
solved efficiently at the necessary scale.

2. Certain economic models work if and only if specific
computational problems can be solved efficiently.

3. There is a fundamental distinction between something being
true and us being able to know that it's true.

“In powers of 2, how many atoms are in the
universe?”

There are about 1080 atoms in the universe. Let's
upper-bound that at 10100.

Numbers you should know: 210 10≈ 3

So 10100 2≈ 300.

This means that log (atoms in universe) 300.₂ ≈

There are about 1080 atoms in the universe. Let's
upper-bound that at 10100.

Numbers you should know: 210 10≈ 3

So 10100 2≈ 300.

This means that log (atoms in universe) 300.₂ ≈

Back to CS103!

Main Question for Today:
Just how powerful are Turing machines?

How Powerful are TMs?

● Regular languages, intuitively, are as
powerful as computers with finite
memory.

● TMs by themselves seem like they can do
a fair number of tasks, but it's unclear
specifically what they can do.

● Let's explore their expressive power.

Claim 1: Computers with unbounded
memory can simulate Turing machines.

“Anything that can be done with a TM
can also be done with an unbounded-

memory computer.”

Clear a
1q₂

Go to
end

Check
for 0 q₁q₀

Go to
startq₃

start

0 → , R☐ 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐0 → 0, L
1 → 1, L

 → ☐ ☐, R

q
acc
q

a

 → ☐ ☐, R

q
acc
q

r

1 → , R☐

 → ☐ ☐, R
0 → 0, R

q₀

q₁

q₂

q₃

0
q₁ ◻ R

1
q
r ◻ R

◻
q
a ◻ R

q₁ 0 R q₁ 1 R q₂ ◻ L
q
r 0 R q₃ ◻ L q

r ◻ R

q₃ 0 L q₃ 1 L q₀ ◻ R

Simulating a TM

● To simulate a TM, the computer would need to be
able to keep track of
● the finite-state control,
● the current state,
● the position of the tape head, and
● the tape contents.

● The tape contents are infinite, but that's because
there are infinitely many blanks on both sides.

● We only need to store the “interesting” part of the
tape (the parts that have been read from or written
to so far.)

Claim 2: Turing machines can simulate
computers with unbounded memory.

“Anything that can be done with an
unbounded-memory computer can be done

with a TM.”

What We've Seen

● TMs can
● implement loops (basically, every TM we've seen).
● make function calls (subroutines).
● keep track of natural numbers (written in unary on

the tape).
● perform elementary arithmetic (equality testing,

multiplication, addition, division, etc.).
● perform if/else tests (different transitions based on

different cases).

What Else Can TMs Do?

● Maintain variables.
● Have a dedicated part of the tape where the

variables are stored.
● Each variable can be represented as a name (written

one symbol at a time) followed by a value.

● Maintain arrays and linked structures.
● Divide the tape into different regions corresponding

to memory locations.
● Represent arrays and linked structures by keeping

track of the ID of one of those regions.

A CS107 Perspective

● Internally, computers execute by using basic
operations like
● simple arithmetic,
● memory reads and writes,
● branches and jumps,
● register operations,
● etc.

● Each of these are simple enough that they
could be simulated by a Turing machine.

A Leap of Faith

● It may require a leap of faith, but anything you
can do a computer (excluding randomness and
user input) can be performed by a Turing
machine.

● The resulting TM might be colossal, or really
slow, or both, but it would still faithfully simulate
the computer.

● We're going to take this as an article of faith in
CS103. If you curious for more details, come talk
to me after class.

Just how powerful are Turing machines?

Effective Computation

● An effective method of computation is a form
of computation with the following properties:
● The computation consists of a set of steps.
● There are fixed rules governing how one step leads to

the next.
● Any computation that yields an answer does so in

finitely many steps.
● Any computation that yields an answer always yields

the correct answer.

● This is not a formal definition. Rather, it's a set
of properties we expect out of a computational
system.

The Church-Turing Thesis claims that

every effective method of computation is either
equivalent to or weaker than a Turing machine.

“This is not a theorem – it is a
falsifiable scientific hypothesis.
And it has been thoroughly
tested!”

- Ryan Williams

Regular
Languages CFLs

All Languages

Problems
Solvable by

Any Feasible
Computing

Machine

Regular
Languages CFLs

All Languages

Problems
solvable by

Turing
Machines

Strings, Languages,
Encodings, and Problems

What problems can we solve with a computer?

What kind of
computer?

What problems can we solve with a computer?

What is a
“problem?”

Languages and Problems

● We've been using formal languages as a way
of modeling computational problems.

● However, the problems we encounter in The
Real World don't look at all like language
problems.

● Is this all theoretical nonsense? Or is there a
reason for this?

“In theory, there's no difference between
theory and practice. In practice, there is.”

Decision Problems

● A decision problem is a type of problem where the
goal is to provide a yes or no answer.

● Example: checking arithmetic.

Given x, y, and z, is x+y=z?

● Example: detecting relationships.

Given a family tree T and people x and y,
is x a grandparent of y?

● Example: avoiding traffic.

Given a transportation grid G annotated with traffic
information, a start location s, a destination d, and a time

limit t, is there a way to get from s to d within time t?

Solving Decision Problems

Yes

No

Computational
Device

input

Solving Decision Problems

Yes

No

Computational
Device

input

How do we
represent our

inputs?

How do we
represent our

inputs?

Strings and Objects

● Think about how my
computer encodes the
image on the right.

● Internally, it's just a
series of zeros and
ones sitting on my
hard drive.

● All data on my
computer can be
thought of as (suitably-
encoded) strings of 0s
and 1s.

Strings and Objects

● A different sequence of
0s and 1s gives rise to
the image on the right.

● Every image can be
encoded as a sequence
of 0s and 1s, though
not all sequences of 0s
and 1s correspond to
images.

Strings and Objects

● Let Obj be some discrete, finite object (a string, a
video, an image, a text file, etc.)

● Let Σ be some alphabet.
● We'll represent an encoding of Obj using the

characters in Σ by writing ⟨Obj⟩. Think of ⟨Obj⟩ like a
file on disk – it encodes complex data as a series of
characters.

● A few remarks about encodings:
● We don't care how we encode the object, just that we can.
● The particular choice of alphabet isn't important. Given any

alphabet, we can always find a way of encoding things.
● We'll assume we can perform “reasonable” operations on

encoded objects.

Strings and Objects

● Given a group of objects Obj₁, Obj₂, …, Objₙ, we
can create a single string encoding all these
objects.
● Think of it like a .zip file, but without the

compression.

● We'll denote the encoding of all of these objects
as a single string by ⟨Obj₁, …, Objₙ⟩.

● This lets us feed multiple inputs into our
computational device at the same time.

Solving Decision Problems

Yes

No

Turing Machine
input

(some string)

How do we specify
the behavior we

want?

How do we specify
the behavior we

want?

Specifying a Decision Problem

● Consider this decision problem:

Given x, y, z ∈ ℕ, determine
whether x+y=z.

● With our computational model, we'll feed
some string into a TM, and it then might
come back with an answer (yes or no).

● Some strings are accepted, some are
rejected, and some cause the machine to
loop infinitely.

Specifying a Decision Problem

● Consider this decision problem:

Given x, y, z ∈ ℕ, determine
whether x+y=z.

● If we give the input as ⟨x, y, z⟩, the set of
strings the TM should say YES to is

{ ⟨x, y, z⟩ | x, y, z ∈ ℕ and x + y = z }
● Notice that this is a language – it's a set

of strings!

Problems and Languages

● Key intuition: Every language
corresponds to some decision problem.

● Example:
● { ⟨x, y⟩ | x, y ∈ ℕ and x ≡₃ y } is a language.
● It corresponds to the following decision

problem:

Given x, y ∈ ℕ, do x and y leave the
same remainder when divided by 3?

Problems and Languages

● Key intuition: Every language
corresponds to some decision problem.

● Example:
● { ⟨D⟩ | D is a DFA that accepts ε } is a

language.
● It corresponds to the following decision

problem:

Given a DFA D, does D accept ε?

Problems and Languages

● Key intuition: Every language
corresponds to some decision problem.

● Example:
● { ⟨G⟩ | G is a planar graph } is a language.
● It corresponds to the following decision

problem:

Given a graph G, is G planar?

Problems and Languages

● Key intuition: Every decision problem on
finite, discrete objects corresponds to some
language.

● If Π is a problem and the inputs to Π are
objects x₁, x₂, …, xₙ, we can form the language

{ ⟨x₁, x₂, …, xₙ⟩ | the answer to problem
 Π, given inputs x₁, …, xₙ,

 is “yes.” }

What All This Means

● Our goal is to speak of computers solving
problems.

● We will model this by looking at TMs
recognizing languages.

● For decision problems that we're
interested in solving, this precisely
captures what we're interested in
capturing.

