
  

Turing Machines
Part Two



  

Recap from Last Time



  

The Turing Machine

● A Turing machine consists of three parts:

– A finite-state control that issues commands,

– an infinite tape for input and scratch space, 
and

– a tape head that can read and write a single 
tape cell.

● At each step, the Turing machine

– writes a symbol to the tape cell under the tape 
head,

– changes state, and

– moves the tape head to the left or to the right.



  

Input and Tape Alphabets

● A Turing machine has two alphabets:

– An input alphabet Σ. All input strings are written 
in the input alphabet.

– A tape alphabet Γ, where Σ ⊆ Γ. The tape alphabet 
contains all symbols that can be written onto the 
tape.

● The tape alphabet Γ can contain any number of 
symbols, but always contains at least one blank 
symbol, denoted . You are guaranteed  ∉ Σ.☐ ☐

● At startup, the Turing machine begins with an 
infnite tape of  symbols with the input written at ☐
some location. The tape head is positioned at the 
start of the input.



  

A Simple Turing Machine
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Each transition of the form
 

x → y, D
 

means “upon reading x, replace it with 
symbol y and move the tape head in 
direction D (which is either L or R). 
 The symbol ☐ represents the blank 

symbol.

Each transition of the form
 

x → y, D
 

means “upon reading x, replace it with 
symbol y and move the tape head in 
direction D (which is either L or R). 
 The symbol ☐ represents the blank 

symbol.
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immediately reject.
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Main Question for Today:
Just how powerful are Turing machines?



  

A Sample Problem



  

Composite Numbers

● A natural number n ≥ 2 is composite if it is 
the product of two natural numbers p and q, 
neither of which is n.

● Example:
– 6 = 3 · 2 is composite.
– 42 = 7 · 6 is composite
– 5 is not composite.

● Programming problem: write a method that 
determines whether a natural number is 
composite.



  

bool isComposite(int n) {
if (n ≤ 1) return false;

int divisor = 2;
while (divisor ≠ n) {

if (n is a multiple of divisor) {
return true;

}
divisor++;

}

return false;
}

bool isComposite(int n) {
if (n ≤ 1) return false;

int divisor = 2;
while (divisor ≠ n) {

if (n is a multiple of divisor) {
return true;

}
divisor++;

}

return false;
}



  

Question: Can we build a TM that 
determines whether a number is 

composite?



  

Back to Languages

● Let Σ = {1} and consider the following 
language L over Σ:

 L = { 1n | n is composite }
● This language is not regular (think about why 

this is).
● It's also not context-free (don't worry if you 

don't see why – we didn't discuss this in 
CS103. ☺)

● Can we build a TM for it?
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}
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Reusing our TMs

● What does our TM need to be able to do?
– Check if divisor = n

– Check if n is a multiple of divisor.

● What TMs did we build last time?
– One that checks for 0n1n

– One that checks for 0m1n, where n is a 
multiple of m.

● Coincidence? I think not!



  

A Sketch of the TM

0 0 1 1 1 1 1 ……
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bool isComposite(int n) {
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A Sketch of the TM

0 0 1 1 1 1 1 ……

Somehow, run our TM from 
last time to see if the string 

is of the form 0n1n.

Somehow, run our TM from 
last time to see if the string 

is of the form 0n1n.



  

A Sketch of the TM
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A Sketch of the TM
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How can we get our new TM
to run our old TMs?



  

Function Call and Return

● Think about actual programming for a 
minute.

● If you write a function that performs a 
task, another part of the code can call 
that function to use the functionality.

● Could we do something like that here in 
our TM?



  

Function Call and Return

● Internally, the memory 
for each function call 
is allocated on the 
stack:
– Each call allocates 

more space.

– Each return cleans up 
the space.

– Arguments are copied 
by value.

Space for main

Arguments to fn1

Space for fn1

Arguments to fn2

Space for fn2



  

Combining TMs

● Claim: We can use the TM's tape to 
simulate function call and return.

● This means that we can build very 
complex TMs by assembling smaller 
subroutines and combining them 
together.

● The details are icky; we'll see them in a 
second.



  

Our TM, in More Depth

0 0 1 1 1 1 1 ……

High-level idea: Pass 
the current string as 
a “parameter” to the 

TM for 0n1n.

High-level idea: Pass 
the current string as 
a “parameter” to the 

TM for 0n1n.



  

Our TM, in More Depth

★ 0 0 1 1 1 1 1 ★ 0 0 1 1 1 1 1 ……

High-level idea: Pass 
the current string as 
a “parameter” to the 

TM for 0n1n.

High-level idea: Pass 
the current string as 
a “parameter” to the 

TM for 0n1n.



  

★ 0 0 1 1 1 1 1 …★…

Our TM, in More Depth

0 0 1 1 1 1 1

Now, go run the TM for 0n1n by 
transitioning into its start state. It 
never takes more than one step off 
the string in either direction, so it 
has no idea there's anything else 

on the tape.

Now, go run the TM for 0n1n by 
transitioning into its start state. It 
never takes more than one step off 
the string in either direction, so it 
has no idea there's anything else 

on the tape.



  

★ ★ 0 0 1 1 1 1 1 ……

Our TM, in More Depth

1 1 1

High-level idea: 
Clean up the stack 

space to return from 
the function call.

High-level idea: 
Clean up the stack 

space to return from 
the function call.



  

★ ★ 0 0 1 1 1 1 1 ……

Our TM, in More Depth

1 1 1

High-level idea: 
Clean up the stack 

space to return from 
the function call.

High-level idea: 
Clean up the stack 

space to return from 
the function call.



  

0 0 1 1 1 1 1 ……

Our TM, in More Depth

Now, you can 
imagine that we do 
the same thing, but 

for the TM that 
checks if the number 
of 1's is a multiple of 

the number of 0's.

Now, you can 
imagine that we do 
the same thing, but 

for the TM that 
checks if the number 
of 1's is a multiple of 

the number of 0's.



  

Subroutines in TMs

● Just as complex programs are often broken 
down into smaller functions and classes, 
complex TMs are often broken down into 
smaller “subroutines.”

● Each subroutine performs some task that 
helps in the overall task.

● The TM is then described by giving a 
collection of subroutines and showing how 
they link up.



  

The “Copy” Subroutine

● This subroutine starts with the tape head at the 
start of a string of 0s and 1s:

 

 
● It ends in this confguration: 

● We use the copy subroutine to let us run 
another TM on the current input without 
breaking it.

0 0 1 1 1 1 1 ……

★ 0 0 1 1 1 1 1 …… 0 0 1 1 1 1 1★



  

The “Cleanup” Subroutine

● This subroutine starts with the tape head 
between two  characters delimiting TM ★
workspace:

 

 
● It ends in this confguration: 

● We use the cleanup subroutine to recover from 
the end of running a sub-TM.

★ 1 × × 0 0 × ★ 0 0 1 1 1 1 1 ……

0 0 1 1 1 1 1 ……
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TM Subroutines

● To represent a subroutine call inside a 
TM, just add a state with dashed edges 
with the name of the subroutine.

● If the subroutine is just a “processing” 
subroutine, have a single exit arrow.

● If the subroutine may exit along 
different paths, have multiple exit 
arrows.



  

done

Defining a Subroutine

● If you want to (or are asked to) design a 
TM subroutine, design it like a normal 
TM with one change: have special 
dashed states representing the exit of 
the subroutine.

Check
for ε

Check
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To
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Front

1 → 1, L 1 → 1, L

st
ar

t



  

Time-Out for Announcements!



  

CFG Tool

● We have a tool available online you can use to 
develop and test out context-free grammars.

● Features include
– Autogeneration of strings in the language of your 

grammar.

– Automatic testing of whether a specific string can 
be generated.

● Doesn't support submission (sorry), but still 
highly recommended!



  

Midterm Logistics

● Midterm is next Thursday, May 21 from 
7PM – 10PM, location TBA.
– Cumulative, focusing primarily on topics from PS4 – PS6.

– Covers material up through and including the lecture on 
CFGs; TMs will not be tested.

● Same format as last time: four questions, closed-book, 
closed-computer, open one double-sided 8.5” × 11” 
sheet of paper.

● Alternate exam: 4PM – 7PM on Thursday, May 21. 
Contact us ASAP if you'd like to take the exam at an 
alternate time.

● Practice exam next Monday, May 18th from 
7PM – 10PM; location TBA.



  

Extra Practice Problems

● We've released another set of extra 
practice problems (Practice Problems 4) 
to help you review for the exam.

● We'll release solutions and another set 
of practice problems on Monday.



  

I wish my CS Professor had known...

“We are working to make the CS department here at 
Stanford a more welcoming environment for all students, 
especially those who are racial, gender, socioeconomic, or 
other minority students.

To assist with this, we are collecting responses from 
students that seek to share their experiences in CS courses 
with the members of the Stanford community. For this 
project, we are asking students who want to share things 
they wish their computer science professor knew about 
them or their own personal experiences in the classroom. 

Please use the following form to anonymously submit your 
experience.

If you have any questions, comments, or concerns, contact 
us at ecortes@stanford.edu or vniu@stanford.edu.”

http://goo.gl/forms/FJMzJcYxoJ
mailto:ecortes@stanford.edu
mailto:vniu@stanford.edu


  

Midterms Regraded

● All midterm regrade requests have been 
processed. They're available for pickup in 
the filing cabinet where we normally 
returned exams.

● Going forward, please only submit 
regrades if we deducted points for 
something that's actually correct. Please 
don't use regrades as a way to ask for 
more partial credit.



  

Your Questions!



  

“I have no idea what all this 'language' 
stuff has to do with computation. I feel I 

understand it in isolation, but not in terms 
of how it ties in with figuring out what 

impossible problems are, how to find them, 
or how to even reason about them.”

We're just about 
to talk about this – 

hang in there!

We're just about 
to talk about this – 

hang in there!



  

“What implications do the limits of 
computation have on our understanding of 

the universe?”

We're also going to talk a bit about that soon. Some teasers:

1. Various problems in physics, chemistry, and biology can be
solved by computers, but we suspect that they can't be
solved efficiently at the necessary scale.

2. Certain economic models work if and only if specific
computational problems can be solved efficiently.

3. There is a fundamental distinction between something being
true and us being able to know that it's true.

We're also going to talk a bit about that soon. Some teasers:

1. Various problems in physics, chemistry, and biology can be
solved by computers, but we suspect that they can't be
solved efficiently at the necessary scale.

2. Certain economic models work if and only if specific
computational problems can be solved efficiently.

3. There is a fundamental distinction between something being
true and us being able to know that it's true.



  

“In powers of 2, how many atoms are in the 
universe?”

There are about 1080 atoms in the universe. Let's 
upper-bound that at 10100.

Numbers you should know: 210  10≈ 3

So 10100  2≈ 300.

This means that log  (atoms in universe)  300.₂ ≈

There are about 1080 atoms in the universe. Let's 
upper-bound that at 10100.

Numbers you should know: 210  10≈ 3

So 10100  2≈ 300.

This means that log  (atoms in universe)  300.₂ ≈



  

Back to CS103!



  

Main Question for Today:
Just how powerful are Turing machines?



  

How Powerful are TMs?

● Regular languages, intuitively, are as 
powerful as computers with finite 
memory.

● TMs by themselves seem like they can do 
a fair number of tasks, but it's unclear 
specifically what they can do.

● Let's explore their expressive power.



  

Claim 1: Computers with unbounded 
memory can simulate Turing machines.

“Anything that can be done with a TM
can also be done with an unbounded-

memory computer.”
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Simulating a TM

● To simulate a TM, the computer would need to be 
able to keep track of
● the finite-state control,
● the current state,
● the position of the tape head, and
● the tape contents.

● The tape contents are infinite, but that's because 
there are infinitely many blanks on both sides.

● We only need to store the “interesting” part of the 
tape (the parts that have been read from or written 
to so far.)



  

Claim 2: Turing machines can simulate 
computers with unbounded memory.

“Anything that can be done with an 
unbounded-memory computer can be done 

with a TM.”



  

What We've Seen

● TMs can
● implement loops (basically, every TM we've seen).
● make function calls (subroutines).
● keep track of natural numbers (written in unary on 

the tape).
● perform elementary arithmetic (equality testing, 

multiplication, addition, division, etc.).
● perform if/else tests (different transitions based on 

different cases).



  

What Else Can TMs Do?

● Maintain variables.
● Have a dedicated part of the tape where the 

variables are stored.
● Each variable can be represented as a name (written 

one symbol at a time) followed by a value.

● Maintain arrays and linked structures.
● Divide the tape into different regions corresponding 

to memory locations.
● Represent arrays and linked structures by keeping 

track of the ID of one of those regions.



  

A CS107 Perspective

● Internally, computers execute by using basic 
operations like
● simple arithmetic,
● memory reads and writes,
● branches and jumps,
● register operations,
● etc.

● Each of these are simple enough that they 
could be simulated by a Turing machine.



  

A Leap of Faith

● It may require a leap of faith, but anything you 
can do a computer (excluding randomness and 
user input) can be performed by a Turing 
machine.

● The resulting TM might be colossal, or really 
slow, or both, but it would still faithfully simulate 
the computer.

● We're going to take this as an article of faith in 
CS103. If you curious for more details, come talk 
to me after class.



  

Just how powerful are Turing machines?



  

Effective Computation

● An effective method of computation is a form 
of computation with the following properties:
● The computation consists of a set of steps.
● There are fixed rules governing how one step leads to 

the next.
● Any computation that yields an answer does so in 

finitely many steps.
● Any computation that yields an answer always yields 

the correct answer.

● This is not a formal definition. Rather, it's a set 
of properties we expect out of a computational 
system.



  

The Church-Turing Thesis claims that

every effective method of computation is either 
equivalent to or weaker than a Turing machine.

“This is not a theorem – it is a
falsifiable scientific hypothesis.
And it has been thoroughly
tested!”

- Ryan Williams



  

Regular
Languages CFLs

All Languages

Problems 
Solvable by 
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Computing 

Machine
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Strings, Languages,
Encodings, and Problems



  

What problems can we solve with a computer?

What kind of 
computer?



  

What problems can we solve with a computer?

What is a 
“problem?”



  

Languages and Problems

● We've been using formal languages as a way 
of modeling computational problems.

● However, the problems we encounter in The 
Real World don't look at all like language 
problems.

● Is this all theoretical nonsense? Or is there a 
reason for this?

“In theory, there's no difference between   
theory and practice. In practice, there is.”



  

Decision Problems

● A decision problem is a type of problem where the 
goal is to provide a yes or no answer.

● Example: checking arithmetic.

Given x, y, and z, is x+y=z?  

● Example: detecting relationships.

Given a family tree T and people x and y,
is x a grandparent of y?

● Example: avoiding traffic.

Given a transportation grid G annotated with traffic 
information, a start location s, a destination d, and a time 

limit t, is there a way to get from s to d within time t?



  

Solving Decision Problems

Yes

No

Computational
Device

input



  

Solving Decision Problems

Yes

No

Computational
Device

input

How do we 
represent our 

inputs?

How do we 
represent our 

inputs?



  

Strings and Objects

● Think about how my 
computer encodes the 
image on the right.

● Internally, it's just a 
series of zeros and 
ones sitting on my 
hard drive.

● All data on my 
computer can be 
thought of as (suitably-
encoded) strings of 0s 
and 1s.



  

Strings and Objects

● A different sequence of 
0s and 1s gives rise to 
the image on the right.

● Every image can be 
encoded as a sequence 
of 0s and 1s, though 
not all sequences of 0s 
and 1s correspond to 
images.



  

Strings and Objects

● Let Obj be some discrete, finite object (a string, a 
video, an image, a text file, etc.)

● Let Σ be some alphabet.
● We'll represent an encoding of Obj using the 

characters in Σ by writing ⟨Obj⟩. Think of ⟨Obj⟩ like a 
file on disk – it encodes complex data as a series of 
characters.

● A few remarks about encodings:
● We don't care how we encode the object, just that we can.
● The particular choice of alphabet isn't important. Given any 

alphabet, we can always find a way of encoding things.
● We'll assume we can perform “reasonable” operations on 

encoded objects.



  

Strings and Objects

● Given a group of objects Obj₁, Obj₂, …, Objₙ, we 
can create a single string encoding all these 
objects.
● Think of it like a .zip file, but without the 

compression.

● We'll denote the encoding of all of these objects 
as a single string by ⟨Obj₁, …, Objₙ⟩.

● This lets us feed multiple inputs into our 
computational device at the same time.



  

Solving Decision Problems

Yes

No

Turing Machine
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How do we specify 
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want?



  

Specifying a Decision Problem

● Consider this decision problem:

Given x, y, z ∈ ℕ, determine
whether x+y=z. 

● With our computational model, we'll feed 
some string into a TM, and it then might 
come back with an answer (yes or no).

● Some strings are accepted, some are 
rejected, and some cause the machine to 
loop infinitely.



  

Specifying a Decision Problem

● Consider this decision problem:

Given x, y, z ∈ ℕ, determine
whether x+y=z. 

● If we give the input as ⟨x, y, z⟩, the set of 
strings the TM should say YES to is

{ ⟨x, y, z⟩ | x, y, z ∈ ℕ and x + y = z }
● Notice that this is a language – it's a set 

of strings!



  

Problems and Languages

● Key intuition: Every language 
corresponds to some decision problem.

● Example:
● { ⟨x, y⟩ | x, y ∈ ℕ and x ≡₃ y } is a language.
● It corresponds to the following decision 

problem:

Given x, y ∈ ℕ, do x and y leave the 
same remainder when divided by 3?



  

Problems and Languages

● Key intuition: Every language 
corresponds to some decision problem.

● Example:
● { ⟨D⟩ | D is a DFA that accepts ε } is a 

language.
● It corresponds to the following decision 

problem:

Given a DFA D, does D accept ε?  



  

Problems and Languages

● Key intuition: Every language 
corresponds to some decision problem.

● Example:
● { ⟨G⟩ | G is a planar graph } is a language.
● It corresponds to the following decision 

problem:

Given a graph G, is G planar?  



  

Problems and Languages

● Key intuition: Every decision problem on 
finite, discrete objects corresponds to some 
language.

● If Π is a problem and the inputs to Π are 
objects x₁, x₂, …, xₙ, we can form the language

{ ⟨x₁, x₂, …, xₙ⟩ | the answer to problem
       Π, given inputs x₁, …, xₙ,

   is “yes.” }



  

What All This Means

● Our goal is to speak of computers solving 
problems.

● We will model this by looking at TMs 
recognizing languages.

● For decision problems that we're 
interested in solving, this precisely 
captures what we're interested in 
capturing.


