Unsolvable Problems
Part One

A (Not So) Briet Recap of Last Time

What problems can we solve with a computer?

/

What does it
mean to solve
a problem?

Very Important Terminology

Let M be a Turing machine.
M accepts a string w if it enters the accept state when run on w.
M rejects a string w if it enters the reject state when run on w.

M loops infinitely (or just loops) on a string w if when run on w
it enters neither the accept or reject state.

M does not accept w if it either rejects w or loops infinitely on w.
M does not reject w w if it either accepts w or loops on w.

M halts on w if it accepts w or rejects w.

: Accept ~«
does not reject | P X

Loop halts

does not accept - - -f

The Language of a TM

The language of a Turing machine M, denoted Z(M), is
the set of all strings that M accepts:

Y(M) = {we X*| M accepts w }
For any w € #(M), M accepts w.
For any w ¢ #(M), M does not accept w.

« It might loop forever, or it might explicitly reject.

A language is called recognizable if it is the language
of some TM. A TM for a language is sometimes called a
recognizer for that language.

Notation: the class RE is the set of all recognizable
languages.

L € RE iff L isrecognizable

Deciders

 Some Turing machines always halt; they never
go into an infinite loop.

« [t M is a TM and M halts on every possible
input, then we say that M is a decider.

 For deciders, accepting is the same as not
rejecting and rejecting is the same as not
accepting.

does not reject -
~ halts (always)

does not accept -

Decidable Languages

« A language L is called decidable if there is a
decider M such that (M) = L.

 Equivalently, a language L is decidable if there is a
TM M such that

« If we L, then M accepts w.
 If w & L, then M rejects w.
 The class R is the set of all decidable languages.

L € R iff L is decidable

The Universal Turing Machine

« Theorem: There is a Turing machine U_,, called the

universal Turing machine that, when run on (M, w),
where M is a Turing machine and w is a string, simulates

M running on w.

« Conceptually:
U, = “On input (M, w), where M is a TM and w € X*:

T
Set up the initial configuration of M running on w.

while (true) {
If M accepted w, then U_, accepts (M, w).

If M rejected w, then U_,, rejects (M, w).
Otherwise, simulate one more step of M on w.

3

The Language of U,

. U, accepts (M, w) iff M is a TM that accepts w.

e Therefore:
Y(U,)=1{(M,w) | MisaTM and M accepts w }

YU, ={{M,w) | MisaTM and w € ¥(M) }
. For simplicity, define A, = ¥(U

TM) ’

Self-Reterential Programs

« Claim: Going forward, assume that any program
can be augmented to include a method called

mySource() that returns a string representation of
its source code.

e General idea:

« Write the initial program with mySource() as a
placeholder.

« Use the Quine technique we just saw to convert the
program into something self-referential.

« Now, mySource() magically works as intended.

The Recursion Theorem

 There is a deep result in computability theory
called Kleene's second recursion theorem
that, informally, states the tollowing:

It is possible to construct TMs that
perform arbitrary computations
on their own descriptions.

 Intuitively, this generalizes our Quine
constructions to work with arbitrary TMs.

« Want the formal statement of the theorem?
Take CS154!

A Recipe for Disaster

« Suppose that A € R.

 Formally, this means that there is a TM
that decides Aqy;.

 Intuitively, this means that there is a TM
that takes as input a TM M and string w,
then

e accepts if M accepts w, and
* rejects if M does not accept w.

A Recipe for Disaster

« To make the previous discussion more concrete,
let's explore the analog for computer programs.

« If Ay i1s decidable, we could construct a function

bool willAccept(string program,
string input)

that takes in as input a program and a string,
then returns true if the program will accept the
input and false otherwise.

« What could we do with this?

What does this program do?

bool willAccept(string program, string input) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}

}

What does this program do?

}

int main() {

reject();

string me = mySource();
string input = getInput();

bool willAccept(string program, string input) {
[* .. some implementation .. */

if (willAccept(me, input)) {

} else {
accept();
}
}

What happens if...

... this program accepts its input?

What does this program do?

}

reject();

bool willAccept(string program, string input) {
[* .. some implementation .. */

int_main(). {. ..
rstring me = mySource();

1
|

1
...... 4

if (willAccept(me, input)) {

} else {
accept();
}
}

What happens if...

... this program accepts its input?

What does this program do?

bool willAccept(string program, string input) {
[* .. some implementation .. */
}

int main() {

.string.me_= _mySource();. . .._... ‘
rstring input = getInput(); :

--

if (willAccept(me, input)) {

reject();

} else { What happens if...
accept();

} ... this program accepts its input?

}

What does this program do?

bool willAccept(string program, string input) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

} else { What happens if...

} ... this program accepts its input?

What does this program do?

bool willAccept(string program, string input) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

Af_(willAccepi(me., mpLLt).)--{--
. reject(); .
yelse’{ T What happens if...

} ... this program accepts its input?

What does this program do?

bool willAccept(string program, string input) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

Af(willAccepi(me.,.. mpLLt).)--{--

\ reject(); .
}else { What happens if...
accept();
} ... this program accepts its input?

} It rejects the input!

What does this program do?

bool willAccept(string program, string input) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {

reject();
} else { What happens if...
accept();
} ... this program accepts its input?
} It rejects the input!

What does this program do?

bool willAccept(string program, string input) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {

reject();
} else { What happens if...
accept();
} ... this program accepts its input?
} It rejects the input!

... this program doesn't accept its input?

What does this program do?

bool willAccept(string program, string input) {
[* .. some implementation .. */
}

int_main(). {. .. ‘
' string me = mySource(); :

if (willAccept(me, input)) {

reject();
} else { What happens if...
accept();
} ... this program accepts its input?
} It rejects the input!

... this program doesn't accept its input?

What does this program do?

bool willAccept(string program, string input) {
[* .. some implementation .. */
}

int main() {

--

if (willAccept(me, input)) {

reject();
} else { What happens if...
accept();
} ... this program accepts its input?
} It rejects the input!

... this program doesn't accept its input?

What does this program do?

bool willAccept(string program, string input) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

reject(;
} else { What happens if...
accept();
} ... this program accepts its input?
} It rejects the input!

.. this program doesn't accept its input?

What does this program do?

bool willAccept(string program, string input) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
PR of -y =T ok of (0 S ‘

E~ _}_ _?'_L_Sf__{_ _________________ What happens if...
accept();
} ... this program accepts its input?
} It rejects the input!

... this program doesn't accept its input?

What does this program do?

bool willAccept(string program, string input) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {

reject();
r}--ﬂls-e--{ -------------------- What happens if...
accept();
3 ... this program accepts its input?
} It rejects the input!

... this program doesn't accept its input?

What does this program do?

bool willAccept(string program, string input) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {

reject();
r}--ﬂls-e--{ -------------------- What happens if...
accept();
3 ... this program accepts its input?
} It rejects the input!

.. this program doesn't accept its input?
It accepts the input!

What does this program do?

bool willAccept(string program, string input) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {

reject();
} else { What happens if...
accept();
} ... this program accepts its input?
} It rejects the input!

.. this program doesn't accept its input?
It accepts the input!

Outline for Today

 What exactly did we just do?

« How would we prove it?

« Why does any of this matter?

« What other problems are unsolvable?
 And what does “unsolvable” even mean?

First, The Proof

Theorem: A+ € R.

Theorem: A+ € R.

Proof: By contradiction; assume that A, € R. Then there is some
decider D for A ;.

Theorem: A+ € R.

Proof: By contradiction; assume that A, € R. Then there is some
decider D for Ary,. If this machine is given any TM/string pair, it

will then determine whether the TM accepts the string and
report back the answer.

Theorem: A+ € R.

Proof: By contradiction; assume that A, € R. Then there is some
decider D for Ary,. If this machine is given any TM/string pair, it
will then determine whether the TM accepts the string and
report back the answer.

Given this, we could then construct the following TM:

M = “On input w:
Have M obtain its own description, (M).
Run D on (M, w) and see what it says.
If D says that M will accept w, reject.
If D says that M will not accept w, accept.”

Theorem: A+ € R.

Proof: By contradiction; assume that A, € R. Then there is some
decider D for Ary,. If this machine is given any TM/string pair, it
will then determine whether the TM accepts the string and
report back the answer.

Given this, we could then construct the following TM:

M = “On input w:
Have M obtain its own description, (M).
Run D on (M, w) and see what it says.
If D says that M will accept w, reject.
If D says that M will not accept w, accept.”

Choose any string w and trace through the execution of the
machine, focusing on the answer given back by machine D.

Theorem: A+ € R.

Proof: By contradiction; assume that A, € R. Then there is some
decider D for Ary,. If this machine is given any TM/string pair, it
will then determine whether the TM accepts the string and
report back the answer.

Given this, we could then construct the following TM:

M = “On input w:
Have M obtain its own description, (M).
Run D on (M, w) and see what it says.
If D says that M will accept w, reject.
If D says that M will not accept w, accept.”

Choose any string w and trace through the execution of the
machine, focusing on the answer given back by machine D. If D
says that M will accept w, notice that M then proceeds to
reject w, contradicting what D says.

Theorem: A+ € R.

Proof: By contradiction; assume that A, € R. Then there is some
decider D for Ary,. If this machine is given any TM/string pair, it
will then determine whether the TM accepts the string and
report back the answer.

Given this, we could then construct the following TM:

M = “On input w:
Have M obtain its own description, (M).
Run D on (M, w) and see what it says.
If D says that M will accept w, reject.
If D says that M will not accept w, accept.”

Choose any string w and trace through the execution of the
machine, focusing on the answer given back by machine D. If D
says that M will accept w, notice that M then proceeds to
reject w, contradicting what D says. Otherwise, if D says that
M will not accept w, notice that M then proceeds to accept w,
contradicting what D says.

Theorem: A+ € R.

Proof: By contradiction; assume that A, € R. Then there is some
decider D for Ary,. If this machine is given any TM/string pair, it
will then determine whether the TM accepts the string and
report back the answer.

Given this, we could then construct the following TM:

M = “On input w:
Have M obtain its own description, (M).
Run D on (M, w) and see what it says.
If D says that M will accept w, reject.
If D says that M will not accept w, accept.”

Choose any string w and trace through the execution of the
machine, focusing on the answer given back by machine D. If D
says that M will accept w, notice that M then proceeds to
reject w, contradicting what D says. Otherwise, if D says that
M will not accept w, notice that M then proceeds to accept w,
contradicting what D says.

In both cases we reach a contradiction, so our assumption
must have been wrong. Therefore, A, € R. B

Regular

Languages

All Languages

What Does This Mean?

* In one fell swoop, we've proven that

« Ay is undecidable; there is no algorithm

that can determine whether a TM will accept
a string.

« R # RE, because A, € R but A+ € RE.

« What do these two statements really
mean? As in, why should you care?

A ¢ R

 The proof we've done says that

There is no possible way to design an
algorithm that will determine whether
a program will accept an input.

« Notice that our proot only relies on the
observable behavior of a proposed
decider for A, and not on its internal
workings. This immediately rules out all
possible implementations!

A ¢ R

« At a more fundamental level, the existence
of undecidable problems tells us the
following:

There is a difference between what is
true and what we can show is true.

 Given an TM and any string w, either the
TM accepts the string or it doesn't - but
there is no algorithm we can follow that will
tell us which it is!

A, ¢R

« What exactly does it mean for A, to be
undecidable?

» Intuition: The only general way to find
out what a program will do is to run it.

 As you'll see, this means that it's provably
impossible for computers to be able to

answer questions about what a program
will do.

R # RE

 The fact that R # RE has enormous philosophical
ramifications.

« A problem is in class R if there is an algorithm for
solving it - there's some computational procedure that
will give you the answer.

« A problem is in class RE if there is a semialgorithm for it.
If the answer is “yes,” the machine can tell this to you,
but if the answer is “no,” you may never learn this.

 Because R # RE, there are some problems where “yes”
answers can be checked, but there is no algorithm for
deciding what the answer is.

 In some sense, it is fundamentally harder to solve a
problem than it is to check an answer.

More Impossibility Results

The Halting Problem

« The most famous undecidable problem is the
halting problem, which asks:

Given a TM M and a string w,
will M halt when run on w?

« As a formal language, this problem would be
expressed as

HALT = { (M, w) | M is a TM that halts on w }
« How hard is this problem to solve?
« How do we know?

HALT € RE

« Claim: HALT € RE.

« Idea: If you were sure that a TM M halted on a
string w, could you somehow confirm that?

* Yes - just run M on w and see what happens!

int main() {
TM M = getInputTM();
string w = getInputString();

feed w into M;

while (true) {
if (M is in an accepting state) accept();
else i1f (M is in a rejecting state) accept();
else simulate one more step of M running on w;

}
}

HALT ¢ R

 Claim: HALT ¢ R.

e [f HALT is decidable, we could write some
function

bool willHalt(string program,
string input)

that accepts as input a program and a string
input, then reports whether the program will
halt when run on the given input.

« Then, we could do this...

What does this program do?

bool willHalt(string program, string input) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {
[/ loop infinitely

}
} else {

accept();
}

What does this program do?

bool willHalt(string program, string input) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

[/ loop infinitely What happens if...
}
} else { ... this program halts on this input?
accept();
}
}

What does this program do?

}

}

rstring me = mySource();

if (willHalt(me, input)) {

bool willHalt(string program, string input) {
[* .. some implementation ..

*/

int_main(). {. ..

1
|

|
----'

while (true) {
[/ loop infinitely
}

} else {
accept();
}

What happens if...

... this program halts on this input?

What does this program do?

bool willHalt(string program, string input) {
[* .. some implementation .. */
}

int main() {

string.me_= _mySource(); ... ‘

rstring input = getInput(); :

if (willHalt(me, input)) {
while (true) {

[/ loop infinitely What happens if...
}
} else { ... this program halts on this input?
accept();
}
}

What does this program do?

bool willHalt(string program, string input) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();
if (willHalt(me, tnput)) {
while (true) {

[/ loop infinitely What happens if...
}
} else { ... this program halts on this input?
accept();
}
}

What does this program do?

bool willHalt(string program, string input) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

--------------------------------- N

while (true) { :
[/ loop infinitely What happens if...

Telse 77 T ... this program halts on this input?

What does this program do?

bool willHalt(string program, string input) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

--------------------------------- N

while (true) { :
[/ loop infinitely What happens if...

Telse 77 T ... this program halts on this input?
accept(); It loops on the input!

What does this program do?

bool willHalt(string program, string input) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

[/ loop infinitely What happens if...
}
} else { ... this program halts on this input?
accept(); It loops on the input!
}
}

What does this program do?

bool willHalt(string program, string input) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

[/ loop infinitely What happens if...
}
} else { ... this program halts on this input?
accept(); It loops on the input!
}) ... this program loops on this input?

What does this program do?

bool willHalt(string program, string input) {

[* .. some implementation ..

}

int_main(). {. ..

rstring me = mySource();

if (willHalt(me, input)) {
while (true) {

*/

1

[/ loop infinitely
}

} else {
accept();

}

}

.. this program halts on this input?

.. this program loops on this input?

What happens if...

It loops on the input!

What does this program do?

bool willHalt(string program, string input) {
[* .. some implementation .. */
}

int main() {
-string.me._= mySource(); -.......
rstring input = getInput(); :

if (willHalt(me, input)) {
while (true) {

[/ loop infinitely What happens if...
}
} else { ... this program halts on this input?
accept(); It loops on the input!
}) .. this program loops on this input?

What does this program do?

bool willHalt(string program, string input) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

-1f (willHalt(me, input)) { :

""" while "(¥roae) { "~
[/ loop infinitely What happens if...
}
else ... this program halts on this input:
1 { hi hal his i ?
accept(); It loops on the input!
}) .. this program loops on this input?

What does this program do?

bool willHalt(string program, string input) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

[/ loop infinitely What happens if...
]
 } else { ... this program halts on this input?
~e-m-areept (Yot It loops on the input!
}) ... this program loops on this input?

What does this program do?

bool willHalt(string program, string input) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

[/ loop infinitely What happens if...
}
doelse { oo ... this program halts on this input?
: accept(); It loops on the input!
} } ... this program loops on this input?

What does this program do?

bool willHalt(string program, string input) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

[/ loop infinitely What happens if...
}
doelse { oo ... this program halts on this input?
: accept(); It loops on the input!
} } ... this program loops on this input?

It halts on the input!

What does this program do?

bool willHalt(string program, string input) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {

[/ loop infinitely What happens if...
}
} else { ... this program halts on this input?
accept(); It loops on the input!
}) .. this program loops on this input?

It halts on the input!

Theorem: HALT ¢ R.

Proof: By contradiction; assume that HALT € R. Then there is
some decider D for HALT. If this machine is given any TM/string
pair, it will then determine whether the TM halts on the string
and report back the answer.

Given this, we could then construct the following TM:

M = “On input w:
Have M obtain its own description, (M).
Run D on (M, w) and see what it says.
If D says that M halt on w, go into an infinite loop.
If D says that M loop on w, accept.”

Choose any string w and trace through the execution of the
machine, focusing on the answer given back by machine D. If D
says that M will halt on w, notice that M then proceeds to loop
on w, contradicting what D says. Otherwise, if D says that M will
loop on w, notice that M then proceeds to accept w, so M halts
on w, contradicting what D says.

In both cases we reach a contradiction, so our assumption must
have been wrong. Therefore, HALT ¢ R. &

Regular
Languages

HALT

All Languages

So What?

 These problems might not seem all that
exciting, so who cares if we can't solve
them?

« Turns out, this same line of reasoning
can be used to show that some very
important problems are impossible to
solve.

Secure Voting

« Suppose that you want to make a voting
machine for use in an election between two
parties.

e« Let X = {r, d}. A string in w corresponds to
a series of votes for the candidates.

« Example: rrdddrd means “two people voted
for r, then three people voted for d, then
one more person voted for r, then one more
person voted for d.”

Secure Voting

« A voting machine is a program that accepts
a string of r's and d's, then reports whether
person r won the election.

 Formally: a TM M is a voting machine if
Y(M) ={we{r,d}*| whas more r's than
d's }

* Question: Given a TM that claims to be a

voting machine, could we check whether it
actually is a fair voting machine?

Secure Voting

 The secure voting problem is the
following:

Given a TM M, is the language of M
{wé€ {r, d}* | w has more r's than d's }?

« Claim: This problem is not decidable -
there is no algorithm that can check an
arbitrary TM to verity that it's a secure
voting machine!

Secure Voting

 Suppose that the secure voting problem is
decidable. Then we could write a function

bool isSecureVotingMachine(string program)

that would accept as input a program and
return whether or not it's a secure voting
machine.

« As you might expect, this lets us do Cruel
and Unusual Things...

bool isSecureVotingMachine(string program) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

bool actualAnswer =
countRs(input) > countDs(input);

if (isSecureVotingMachine(me)) {
return !actualAnswer;

} else {
return actualAnswer;
}

}

bool isSecureVotingMachine(string program) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

bool actualAnswer =
countRs(input) > countDs(input);

if (isSecureVotingMachine(me)) {
return !actualAnswer;

} else {
return actualAnswer;

What happens if...

} ... this program is a secure voting

'}_ machine?

bool isSecureVotingMachine(string program) {
[* .. some implementation .. */

}
inlt-main()--{ ‘
' string me = mySource(); 5
“string input ="getInput();
bool actualAnswer =
countRs(input) > countDs(input);
if (isSecureVotingMachine(me)) {
return !actualAnswer;
} else { ,
return actualAnswer; What happens if...
} ... this program is a secure voting
} machine?

bool isSecureVotingMachine(string program) {
[* .. some implementation .. */
}

int main() {
.string.me.=.mySource();
string input = getInput(); 5
bool actualAnswer =
countRs(input) > countDs(input);

if (isSecureVotingMachine(me)) {
return !actualAnswer;

} else {
return actualAnswer;

What happens if...

} ... this program is a secure voting

'}_ machine?

bool isSecureVotingMachine(string program) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

N
@)
c
>
—+
P
n
VS
(—Io
>
O
c
—+
o/
\"
N
@)
c
>
—+
O
n
VS
f-l.
>
©
c
—+
) g
e e

if (isSecureVotingMachine(me)) {
return !actualAnswer;

} else {
return actualAnswer;

What happens if...

} ... this program is a secure voting

'}_ machine?

bool isSecureVotingMachine(string program) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

bool actualAnswer =
countRs(input) > countDs(input);

} else {

return actualAnswer;
} . this program is a secure voting

'}_ machine?

What happens if...

bool isSecureVotingMachine(string program) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

bool actualAnswer =
countRs(input) > countDs(input);

~f._(isSecureVotingMachine(me)). {...... .
: return !actualAnswer; :

- }- élseé- '{- ----------------------- : :
return actualAnswer; What happens if...

. this program is a secure voting
} machine?

bool isSecureVotingMachine(string program) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

bool actualAnswer =
countRs(input) > countDs(input);

~f._(isSecureVotingMachine(me)). {...... .
: return !actualAnswer; :

- }- élseé- '{- ----------------------- : :
return actualAnswer; What happens if...

. this program is a secure voting
} machine?

It's not a secure machine!

bool isSecureVotingMachine(string program) {

[* .. some implementation .. */

}

int main() {
string me = mySource();
string input = getInput();

bool actualAnswer =
countRs(input) > countDs(input);

if (isSecureVotingMachine(me)) {

return !actualAnswer;

} else {
return actualAnswer;
}
}

What happens if...

. this program is a secure voting
machine?
It's not a secure machine!

bool isSecureVotingMachine(string program) {

[* .. some implementation .. */

}

int main() {
string me = mySource();
string input = getInput();

bool actualAnswer =
countRs(input) > countDs(input);

if (isSecureVotingMachine(me)) {

return !actualAnswer;

} else {
return actualAnswer;
}
}

What happens if...

. this program is a secure voting

machine?
It's not a secure machine!

. this program is not a secure
voting machine?

bool isSecureVotingMachine(string program) {
[* .. some implementation .. */
}

inF-mainL)“£
' string me = mySource();

bool actualAnswer =
countRs(input) > countDs(input);

if (isSecureVotingMachine(me)) {

return !actualAnswer;
} else {

return actualAnswer;
} . this program is a secure voting

} machine?
R | .
It's not a secure machine!

What happens if...

. this program is not a secure
voting machine?

bool isSecureVotingMachine(string program) {
[* .. some implementation .. */
}

int main() {
string.me .= mySource() s e .
'string input = getInput(); E

bool actualAnswer =
countRs(input) > countDs(input);

if (isSecureVotingMachine(me)) {

return !actualAnswer;
} else {

return actualAnswer;
} . this program is a secure voting

} machine?
R | .
It's not a secure machine!

What happens if...

. this program is not a secure
voting machine?

bool isSecureVotingMachine(string program) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

if (isSecureVotingMachine(me)) {
return !actualAnswer;

} else {
return actualAnswer;

What happens if...

} ... this program is a secure voting

} machine?
R | .
It's not a secure machine!

. this program is not a secure
voting machine?

bool isSecureVotingMachine(string program) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

bool actualAnswer =
countRs(input) > countDs(input);

} else {

return actualAnswer;
} . this program is a secure voting

} machine?
R | .
It's not a secure machine!

What happens if...

. this program is not a secure
voting machine?

bool isSecureVotingMachine(string program) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

bool actualAnswer =
countRs(input) > countDs(input);

if (isSecureVotingMachine(me)) {

~...return lactualAnswer;_. .
 } else { ' ,
..... PR - SCtUSTATSHEry = What happens if...
} ... this program is a secure voting
} machine?

It's not a secure machine!

. this program is not a secure
voting machine?

bool isSecureVotingMachine(string program) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

bool actualAnswer =
countRs(input) > countDs(input);

if (isSecureVotingMachine(me)) {
return !actualAnswer;

telse { ..
: return actualAnswer;

What happens if...

} ... this program is a secure voting

} machine?
R | .
It's not a secure machine!

. this program is not a secure
voting machine?

bool isSecureVotingMachine(string program) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

bool actualAnswer =
countRs(input) > countDs(input);

if (isSecureVotingMachine(me)) {
return !actualAnswer;

telse { ..
: return actualAnswer;

What happens if...

} ... this program is a secure voting

} machine?
R | .
It's not a secure machine!

. this program is not a secure
voting machine?
It is a secure voting machine!

This previous example is not contrived!

This is a problem we really would like
to be able to solve!

Yet it's provably impossible!

Time-Out for Announcements!

Second Midterm Exam

 Second midterm exam is this Thursday,
May 21 from 7PM - 10PM.

 Rooms divvied up by last (family) name:

« Aba - Sow: Go to Hewlett 200
 Spe - Zoc: Go to Hewlett 201

« Closed-book, closed-computer, open one
double-sided 8.5” X 11” sheet of notes.

 Cumulative, focusing on PS4 - PSo0.

Practice Midterm Exam

 We will be holding a practice midterm exam
tonight trom 7PM - 10PM in room 320-105.

e Structure and format of practice exam is
similar to that of the main exam.

« TAs will be on-hand to answer questions;
we'll release solutions as well.

« Can't make it? Don't worry! We'll post the
exam on the course website.

More Practice Problems

e Solutions to Extra Practice Problems 5
are available for pickup right now.

« We've released a sixth and final set of
extra practice problems you can use to
prepare for the midterm.

« Solutions will go out on Wednesday.

Problem Set Seven

e Problem Set Six was due at the start of
class.

 Due tomorrow by 12:50PM with one late day
and on Wednesday at 12:50PM with two.

« Solutions will go out on Wednesday.

 Problem Set Seven goes out now. It's due on
Wednesday of next week.

« Play around with Turing machines, R, RE, and
the limits of computation!

Turing Machine Tool

« This quarter, we're piloting a new tool
you can use to design, edit, test, and
submit Turing machines.

« We'll send out an email with details about
this later today or early tomorrow.

« Please email the staff list with any
feedback - we want this tool to be as
useful as possible!

WiCS Casual Dinner

 WIiCS is holding their second biquarterly
Casual CS Dinner on Wednesday from
6:00PM - 8:00PM in the Women's

Community Center.

» This is a wondertul event and I highly
recommend it!

« RSVP requested; use this link.

https://docs.google.com/forms/d/1rAhnjKutAu08NQvbZl5OJz1Kst40qH9l7Uvcq0CZzjY/viewform?usp=send_form

Checking In - Seriously

Back to CS103!

Beyond R

What exactly is the class RE?

An Intuition for RE

 Intuitively, a language L is in RE if a TM
can search for positive proof that a string
w belongs to L.

e Such a machine could work as follows:

 Find a possible proof.
 Check the proof.

« If correct, accept!

 If not, try the next prootf.

The MU Puzzle

« Begin with the string MI.

 Repeatedly apply one of the following
operations:

 Double the contents of the string after the M: for
example, MIIU becomes MIIUIIU, or MI becomes MII.

 Replace III with U: MIIII becomes MUI or MIU.

« Append U to the string if it ends in I: MI becomes
MIU.

« Remove any UU: MUUU becomes MU.
* Question: How do you transform MI to MU?

MI

@

MII

@

MIIII

(a) Double the string after an M. i(c)

(b) Replace III with u. MIIITIU

(c) Append U, if the string ends in I. i (b)

(d) Delete uu from the string. MUTIU

@

MUIUUIU

@

MUIIU

An Intuition for RE

« Let's consider the generalized MU
puzzle:

Given a string w, can you transform
it into MU using the four rules?

 Claim: We can build a computer
program that, given any string w, will

repor
MU.

ed into

. “yes” if w can be conver

int main() {
string w = getInput();
queue<string> configs;
configs.enqueue(w);

while (!configs.isEmpty()) {
string curr = configs.dequeue();
if (curr == “MU”) return true;

if (curr starts with 'M') {
curr.enqueue(doubleContentsAfterM(curr));
}

for (each copy of III in curr) {
curr.enqueue(replace the III with U);
}

if (curr ends with 'I'") {
curr.enqueue(curr + “U”);
}

for (each copy of UU in curr) {
curr.enqueue(delete that UU);
}

}

return false;

An Intuition for RE

 Many problems in RE can be solved by
searching for a solution:

« Try all possible combinations of moves in a puzzle.

« Try all possible strings to see if any of them have
some property.

e In other words, the TM needs to both search for
answers and verify whether those answers work.

» This leads to a new perspective on the RE
languages.

Verifiers

« A verifier for a language Lisa TM V
with the following properties:

« Vis a decider (that is, V halts on all inputs.)
« For any string w € 2%, the following is true:
weL o dc € X* V accepts (w, c)

 Intuitively, what does this mean?

Intuiting Verifiers

Intuiting Verifiers

Intuiting Verifiers

Question:
Can this lock
be opened?

Verifiers

« A verifier for a language L is a TM V with the
following properties:

« Vis a decider (that is, V halts on all inputs.)
« For any string w € 2%, the following is true:
weL o dc € X* Vaccepts (w, c)
 Some notes about V:
« If Vaccepts (w, c), then we're guaranteed w € L.

« If V does not accept (w, c), then either

- w € L, but you gave the wrong c, or
- w & L, so no possible ¢ will work.

Verifiers

« A verifier for a language L is a TM V with the
following properties:

« Vis a decider (that is, V halts on all inputs.)
« For any string w € 2%, the following is true:
weL o dc € X* Vaccepts (w, c)
 Some notes about V:

 If w € L, a string ¢ for which V accepts (w, c) is
called a certificate for w.

« Vis required to halt, so given any potential
certificate ¢ for w, you can check whether the
certificate is correct.

Verifiers

« A verifier for a language L is a TM V with the
following properties:

« Vis a decider (that is, V halts on all inputs.)
« For any string w € 2%, the following is true:
weL o dc € X* Vaccepts (w, c)
 Some notes about V:

« Notice that (V) # L. Instead:

Y(V) ={{w,c)|weLandcisa
certificate for w }

 The job of Vis just to check certificates, not to
decide membership in L.

Some Verifiers

Let L be the following language:
L ={ (G, w) | Gis a CFG that generates w }

Let's see how to build a verifier for L.

A certificate for a grammar G string w should
convince us that G accepts w. What kind of
information would help us with that?

One option: Let the certificate be a possible
derivation of w from the start symbol.

Our verifier then just needs to check whether
the derivation is valid.

Some Verifiers

« Let L be the following language:
L ={ (G, w) | Gis a CFG that generates w }

 Here is one possible verifier for L:

V = “On input (G, w, c), where G is a CFG:

Check whether c is a valid derivation of w
from the start symbol of G.

If so, accept. If not, reject.”

e If the certificate is a correct derivation, we
know for a fact that G can generate w.

« If not, we can't tell whether we got a bad
certificate or whether G doesn't generate w.

Some Verifiers

Let L be the following language:

L ={(n) | n € N and the hailstone sequence
terminates for n }

Let's see how to build a verifier for L.

A certificate for (n) should convince us that the
hailstone sequence terminates for n. A bad
certificate shouldn't leave us running forever.

A thought: if the hailstone sequence terminates
for n, then it has to terminate in some number
of steps.

Let the certificate be that number of steps.

Some Verifiers

« Let L be the following language:

L ={(n) | n € N and the hailstone sequence
terminates for n }

V = “On input (n, k), where n, k € N.

Check that n # 0.

Run the hailstone sequence, starting at n,
for at most k steps.

If after k steps we reach 1, accept.

Otherwise, reject.”

Do you see why (n) € L iff there is some k such
that V accepts (n, k)?

What languages are verifiable?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119

