Unsolvable Problems
Part One



A (Not So) Briet Recap of Last Time



What problems can we solve with a computer?

/

What does it
mean to solve
a problem?



Very Important Terminology

Let M be a Turing machine.
M accepts a string w if it enters the accept state when run on w.
M rejects a string w if it enters the reject state when run on w.

M loops infinitely (or just loops) on a string w if when run on w
it enters neither the accept or reject state.

M does not accept w if it either rejects w or loops infinitely on w.
M does not reject w w if it either accepts w or loops on w.

M halts on w if it accepts w or rejects w.

: Accept ~«
does not reject | P X

Loop halts

does not accept - - -f




The Language of a TM

The language of a Turing machine M, denoted Z(M), is
the set of all strings that M accepts:

Y(M) = {we X*| M accepts w }
For any w € #(M), M accepts w.
For any w ¢ #(M), M does not accept w.

« It might loop forever, or it might explicitly reject.

A language is called recognizable if it is the language
of some TM. A TM for a language is sometimes called a
recognizer for that language.

Notation: the class RE is the set of all recognizable
languages.

L € RE iff L isrecognizable



Deciders

 Some Turing machines always halt; they never
go into an infinite loop.

« [t M is a TM and M halts on every possible
input, then we say that M is a decider.

 For deciders, accepting is the same as not
rejecting and rejecting is the same as not
accepting.

does not reject -
~ halts (always)

does not accept -




Decidable Languages

« A language L is called decidable if there is a
decider M such that (M) = L.

 Equivalently, a language L is decidable if there is a
TM M such that

« If we L, then M accepts w.
 If w & L, then M rejects w.
 The class R is the set of all decidable languages.

L € R iff L is decidable



The Universal Turing Machine

« Theorem: There is a Turing machine U_,, called the

universal Turing machine that, when run on (M, w),
where M is a Turing machine and w is a string, simulates

M running on w.

« Conceptually:
U, = “On input (M, w), where M is a TM and w € X*:

T
Set up the initial configuration of M running on w.

while (true) {
If M accepted w, then U_, accepts (M, w).

If M rejected w, then U_,, rejects (M, w).
Otherwise, simulate one more step of M on w.

3



The Language of U,

. U, accepts (M, w) iff M is a TM that accepts w.

e Therefore:
Y(U,)=1{(M,w) | MisaTM and M accepts w }

YU, ={{M,w) | MisaTM and w € ¥(M) }
. For simplicity, define A, = ¥(U

TM) ’



Self-Reterential Programs

« Claim: Going forward, assume that any program
can be augmented to include a method called

mySource() that returns a string representation of
its source code.

e General idea:

« Write the initial program with mySource() as a
placeholder.

« Use the Quine technique we just saw to convert the
program into something self-referential.

« Now, mySource() magically works as intended.



The Recursion Theorem

 There is a deep result in computability theory
called Kleene's second recursion theorem
that, informally, states the tollowing:

It is possible to construct TMs that
perform arbitrary computations
on their own descriptions.

 Intuitively, this generalizes our Quine
constructions to work with arbitrary TMs.

« Want the formal statement of the theorem?
Take CS154!



A Recipe for Disaster

« Suppose that A € R.

 Formally, this means that there is a TM
that decides Aqy;.

 Intuitively, this means that there is a TM
that takes as input a TM M and string w,
then

e accepts if M accepts w, and
* rejects if M does not accept w.



A Recipe for Disaster

« To make the previous discussion more concrete,
let's explore the analog for computer programs.

« If Ay i1s decidable, we could construct a function

bool willAccept(string program,
string input)

that takes in as input a program and a string,
then returns true if the program will accept the
input and false otherwise.

« What could we do with this?



What does this program do?

bool willAccept(string program, string input) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}

}




What does this program do?

}

int main() {

reject();

string me = mySource();
string input = getInput();

bool willAccept(string program, string input) {
[* .. some implementation .. */

if (willAccept(me, input)) {

} else {
accept();
}
}

What happens if...

... this program accepts its input?




What does this program do?

}

reject();

bool willAccept(string program, string input) {
[* .. some implementation .. */

int_main(). {. ..
rstring me = mySource();
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if (willAccept(me, input)) {

} else {
accept();
}
}

What happens if...

... this program accepts its input?
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What does this program do?

bool willAccept(string program, string input) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {

reject();
} else { What happens if...
accept();
} ... this program accepts its input?
} It rejects the input!

.. this program doesn't accept its input?
It accepts the input!




Outline for Today

 What exactly did we just do?

« How would we prove it?

« Why does any of this matter?

« What other problems are unsolvable?
 And what does “unsolvable” even mean?



First, The Proof



Theorem: A+ € R.
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Theorem: A+ € R.

Proof: By contradiction; assume that A, € R. Then there is some
decider D for Ary,. If this machine is given any TM/string pair, it
will then determine whether the TM accepts the string and
report back the answer.

Given this, we could then construct the following TM:

M = “On input w:
Have M obtain its own description, (M).
Run D on (M, w) and see what it says.
If D says that M will accept w, reject.
If D says that M will not accept w, accept.”
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Choose any string w and trace through the execution of the
machine, focusing on the answer given back by machine D.
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Theorem: A+ € R.

Proof: By contradiction; assume that A, € R. Then there is some
decider D for Ary,. If this machine is given any TM/string pair, it
will then determine whether the TM accepts the string and
report back the answer.

Given this, we could then construct the following TM:

M = “On input w:
Have M obtain its own description, (M).
Run D on (M, w) and see what it says.
If D says that M will accept w, reject.
If D says that M will not accept w, accept.”

Choose any string w and trace through the execution of the
machine, focusing on the answer given back by machine D. If D
says that M will accept w, notice that M then proceeds to
reject w, contradicting what D says. Otherwise, if D says that
M will not accept w, notice that M then proceeds to accept w,
contradicting what D says.



Theorem: A+ € R.

Proof: By contradiction; assume that A, € R. Then there is some
decider D for Ary,. If this machine is given any TM/string pair, it
will then determine whether the TM accepts the string and
report back the answer.

Given this, we could then construct the following TM:

M = “On input w:
Have M obtain its own description, (M).
Run D on (M, w) and see what it says.
If D says that M will accept w, reject.
If D says that M will not accept w, accept.”

Choose any string w and trace through the execution of the
machine, focusing on the answer given back by machine D. If D
says that M will accept w, notice that M then proceeds to
reject w, contradicting what D says. Otherwise, if D says that
M will not accept w, notice that M then proceeds to accept w,
contradicting what D says.

In both cases we reach a contradiction, so our assumption
must have been wrong. Therefore, A, € R. B
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What Does This Mean?

* In one fell swoop, we've proven that

« Ay is undecidable; there is no algorithm

that can determine whether a TM will accept
a string.

« R # RE, because A, € R but A+ € RE.

« What do these two statements really
mean? As in, why should you care?



A ¢ R

 The proof we've done says that

There is no possible way to design an
algorithm that will determine whether
a program will accept an input.

« Notice that our proot only relies on the
observable behavior of a proposed
decider for A, and not on its internal
workings. This immediately rules out all
possible implementations!



A ¢ R

« At a more fundamental level, the existence
of undecidable problems tells us the
following:

There is a difference between what is
true and what we can show is true.

 Given an TM and any string w, either the
TM accepts the string or it doesn't - but
there is no algorithm we can follow that will
tell us which it is!



A, ¢R

« What exactly does it mean for A, to be
undecidable?

» Intuition: The only general way to find
out what a program will do is to run it.

 As you'll see, this means that it's provably
impossible for computers to be able to

answer questions about what a program
will do.



R # RE

 The fact that R # RE has enormous philosophical
ramifications.

« A problem is in class R if there is an algorithm for
solving it - there's some computational procedure that
will give you the answer.

« A problem is in class RE if there is a semialgorithm for it.
If the answer is “yes,” the machine can tell this to you,
but if the answer is “no,” you may never learn this.

 Because R # RE, there are some problems where “yes”
answers can be checked, but there is no algorithm for
deciding what the answer is.

 In some sense, it is fundamentally harder to solve a
problem than it is to check an answer.



More Impossibility Results



The Halting Problem

« The most famous undecidable problem is the
halting problem, which asks:

Given a TM M and a string w,
will M halt when run on w?

« As a formal language, this problem would be
expressed as

HALT = { (M, w) | M is a TM that halts on w }
« How hard is this problem to solve?
« How do we know?



HALT € RE

« Claim: HALT € RE.

« Idea: If you were sure that a TM M halted on a
string w, could you somehow confirm that?

* Yes - just run M on w and see what happens!

int main() {
TM M = getInputTM();
string w = getInputString();

feed w into M;

while (true) {
if (M is in an accepting state) accept();
else i1f (M is in a rejecting state) accept();
else simulate one more step of M running on w;

}
}




HALT ¢ R

 Claim: HALT ¢ R.

e [f HALT is decidable, we could write some
function

bool willHalt(string program,
string input)

that accepts as input a program and a string
input, then reports whether the program will
halt when run on the given input.

« Then, we could do this...



What does this program do?

bool willHalt(string program, string input) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

if (willHalt(me, input)) {
while (true) {
[/ loop infinitely

}
} else {

accept();
}
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What does this program do?

}

}

rstring me = mySource();

if (willHalt(me, input)) {

bool willHalt(string program, string input) {
[* .. some implementation ..
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int_main(). {. ..
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What does this program do?

bool willHalt(string program, string input) {
[* .. some implementation .. */
}
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Theorem: HALT ¢ R.

Proof: By contradiction; assume that HALT € R. Then there is
some decider D for HALT. If this machine is given any TM/string
pair, it will then determine whether the TM halts on the string
and report back the answer.

Given this, we could then construct the following TM:

M = “On input w:
Have M obtain its own description, (M).
Run D on (M, w) and see what it says.
If D says that M halt on w, go into an infinite loop.
If D says that M loop on w, accept.”

Choose any string w and trace through the execution of the
machine, focusing on the answer given back by machine D. If D
says that M will halt on w, notice that M then proceeds to loop
on w, contradicting what D says. Otherwise, if D says that M will
loop on w, notice that M then proceeds to accept w, so M halts
on w, contradicting what D says.

In both cases we reach a contradiction, so our assumption must
have been wrong. Therefore, HALT ¢ R. &
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So What?

 These problems might not seem all that
exciting, so who cares if we can't solve
them?

« Turns out, this same line of reasoning
can be used to show that some very
important problems are impossible to
solve.



Secure Voting

« Suppose that you want to make a voting
machine for use in an election between two
parties.

e« Let X = {r, d}. A string in w corresponds to
a series of votes for the candidates.

« Example: rrdddrd means “two people voted
for r, then three people voted for d, then
one more person voted for r, then one more
person voted for d.”



Secure Voting

« A voting machine is a program that accepts
a string of r's and d's, then reports whether
person r won the election.

 Formally: a TM M is a voting machine if
Y(M) ={we{r,d}*| whas more r's than
d's }

* Question: Given a TM that claims to be a

voting machine, could we check whether it
actually is a fair voting machine?



Secure Voting

 The secure voting problem is the
following:

Given a TM M, is the language of M
{wé€ {r, d}* | w has more r's than d's }?

« Claim: This problem is not decidable -
there is no algorithm that can check an
arbitrary TM to verity that it's a secure
voting machine!



Secure Voting

 Suppose that the secure voting problem is
decidable. Then we could write a function

bool isSecureVotingMachine(string program)

that would accept as input a program and
return whether or not it's a secure voting
machine.

« As you might expect, this lets us do Cruel
and Unusual Things...
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int main() {
string me = mySource();
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countRs(input) > countDs(input);
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if (isSecureVotingMachine(me)) {
return !actualAnswer;

} else {
return actualAnswer;
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} ... this program is a secure voting
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return actualAnswer; What happens if...

. this program is a secure voting
} machine?




bool isSecureVotingMachine(string program) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

bool actualAnswer =
countRs(input) > countDs(input);

~f._(isSecureVotingMachine(me)). {...... .
: return !actualAnswer; :

- }- élseé- '{- ----------------------- : :
return actualAnswer; What happens if...

. this program is a secure voting
} machine?

It's not a secure machine!




bool isSecureVotingMachine(string program) {

[* .. some implementation .. */

}

int main() {
string me = mySource();
string input = getInput();

bool actualAnswer =
countRs(input) > countDs(input);

if (isSecureVotingMachine(me)) {

return !actualAnswer;

} else {
return actualAnswer;
}
}

What happens if...

. this program is a secure voting
machine?
It's not a secure machine!




bool isSecureVotingMachine(string program) {

[* .. some implementation .. */

}

int main() {
string me = mySource();
string input = getInput();

bool actualAnswer =
countRs(input) > countDs(input);

if (isSecureVotingMachine(me)) {

return !actualAnswer;

} else {
return actualAnswer;
}
}

What happens if...

. this program is a secure voting

machine?
It's not a secure machine!

. this program is not a secure
voting machine?




bool isSecureVotingMachine(string program) {
[* .. some implementation .. */
}

inF-mainL)“£ ....................................
' string me = mySource();

--------------------------------------

bool actualAnswer =
countRs(input) > countDs(input);

if (isSecureVotingMachine(me)) {

return !actualAnswer;
} else {

return actualAnswer;
} . this program is a secure voting

} machine?
R | .
It's not a secure machine!

What happens if...

. this program is not a secure
voting machine?




bool isSecureVotingMachine(string program) {
[* .. some implementation .. */
}

int main() {
string.me .= mySource() s e .
'string input = getInput(); E

bool actualAnswer =
countRs(input) > countDs(input);

if (isSecureVotingMachine(me)) {

return !actualAnswer;
} else {

return actualAnswer;
} . this program is a secure voting

} machine?
R | .
It's not a secure machine!

What happens if...

. this program is not a secure
voting machine?




bool isSecureVotingMachine(string program) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

if (isSecureVotingMachine(me)) {
return !actualAnswer;

} else {
return actualAnswer;

What happens if...

} ... this program is a secure voting

} machine?
R | .
It's not a secure machine!

. this program is not a secure
voting machine?




bool isSecureVotingMachine(string program) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

bool actualAnswer =
countRs(input) > countDs(input);

---------------------------------------------

} else {

return actualAnswer;
} . this program is a secure voting

} machine?
R | .
It's not a secure machine!

What happens if...

. this program is not a secure
voting machine?




bool isSecureVotingMachine(string program) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

bool actualAnswer =
countRs(input) > countDs(input);

if (isSecureVotingMachine(me)) {

~...return lactualAnswer; ... ...._. .
 } else { ' ,
..... PR - SCtUSTATSHEry = What happens if...
} ... this program is a secure voting
} machine?

It's not a secure machine!

. this program is not a secure
voting machine?




bool isSecureVotingMachine(string program) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

bool actualAnswer =
countRs(input) > countDs(input);

if (isSecureVotingMachine(me)) {
return !actualAnswer;

telse { ..
: return actualAnswer;

What happens if...

} ... this program is a secure voting

} machine?
R | .
It's not a secure machine!

. this program is not a secure
voting machine?




bool isSecureVotingMachine(string program) {
[* .. some implementation .. */
}

int main() {
string me = mySource();
string input = getInput();

bool actualAnswer =
countRs(input) > countDs(input);

if (isSecureVotingMachine(me)) {
return !actualAnswer;

telse { ..
: return actualAnswer;

What happens if...

} ... this program is a secure voting

} machine?
R | .
It's not a secure machine!

. this program is not a secure
voting machine?
It is a secure voting machine!




This previous example is not contrived!

This is a problem we really would like
to be able to solve!

Yet it's provably impossible!



Time-Out for Announcements!



Second Midterm Exam

 Second midterm exam is this Thursday,
May 21 from 7PM - 10PM.

 Rooms divvied up by last (family) name:

« Aba - Sow: Go to Hewlett 200
 Spe - Zoc: Go to Hewlett 201

« Closed-book, closed-computer, open one
double-sided 8.5” X 11” sheet of notes.

 Cumulative, focusing on PS4 - PSo0.



Practice Midterm Exam

 We will be holding a practice midterm exam
tonight trom 7PM - 10PM in room 320-105.

e Structure and format of practice exam is
similar to that of the main exam.

« TAs will be on-hand to answer questions;
we'll release solutions as well.

« Can't make it? Don't worry! We'll post the
exam on the course website.



More Practice Problems

e Solutions to Extra Practice Problems 5
are available for pickup right now.

« We've released a sixth and final set of
extra practice problems you can use to
prepare for the midterm.

« Solutions will go out on Wednesday.



Problem Set Seven

e Problem Set Six was due at the start of
class.

 Due tomorrow by 12:50PM with one late day
and on Wednesday at 12:50PM with two.

« Solutions will go out on Wednesday.

 Problem Set Seven goes out now. It's due on
Wednesday of next week.

« Play around with Turing machines, R, RE, and
the limits of computation!



Turing Machine Tool

« This quarter, we're piloting a new tool
you can use to design, edit, test, and
submit Turing machines.

« We'll send out an email with details about
this later today or early tomorrow.

« Please email the staff list with any
feedback - we want this tool to be as
useful as possible!



WiCS Casual Dinner

 WIiCS is holding their second biquarterly
Casual CS Dinner on Wednesday from
6:00PM - 8:00PM in the Women's

Community Center.

» This is a wondertul event and I highly
recommend it!

« RSVP requested; use this link.


https://docs.google.com/forms/d/1rAhnjKutAu08NQvbZl5OJz1Kst40qH9l7Uvcq0CZzjY/viewform?usp=send_form

Checking In - Seriously



Back to CS103!



Beyond R



What exactly is the class RE?



An Intuition for RE

 Intuitively, a language L is in RE if a TM
can search for positive proof that a string
w belongs to L.

e Such a machine could work as follows:

 Find a possible proof.
 Check the proof.

« If correct, accept!

 If not, try the next prootf.



The MU Puzzle

« Begin with the string MI.

 Repeatedly apply one of the following
operations:

 Double the contents of the string after the M: for
example, MIIU becomes MIIUIIU, or MI becomes MII.

 Replace III with U: MIIII becomes MUI or MIU.

« Append U to the string if it ends in I: MI becomes
MIU.

« Remove any UU: MUUU becomes MU.
* Question: How do you transform MI to MU?



MI

@

MII

@

MIIII

(a) Double the string after an M. i(c)

(b) Replace III with u. MIIITIU

(c) Append U, if the string ends in I. i (b)

(d) Delete uu from the string. MUTIU

@

MUIUUIU

@

MUIIU




An Intuition for RE

« Let's consider the generalized MU
puzzle:

Given a string w, can you transform
it into MU using the four rules?

 Claim: We can build a computer
program that, given any string w, will

repor
MU.

ed into

. “yes” if w can be conver



int main() {
string w = getInput();
queue<string> configs;
configs.enqueue(w);

while (!configs.isEmpty()) {
string curr = configs.dequeue();
if (curr == “MU”) return true;

if (curr starts with 'M') {
curr.enqueue(doubleContentsAfterM(curr));
}

for (each copy of III in curr) {
curr.enqueue(replace the III with U);
}

if (curr ends with 'I'") {
curr.enqueue(curr + “U”);
}

for (each copy of UU in curr) {
curr.enqueue(delete that UU);
}

}

return false;




An Intuition for RE

 Many problems in RE can be solved by
searching for a solution:

« Try all possible combinations of moves in a puzzle.

« Try all possible strings to see if any of them have
some property.

e In other words, the TM needs to both search for
answers and verify whether those answers work.

» This leads to a new perspective on the RE
languages.



Verifiers

« A verifier for a language Lisa TM V
with the following properties:

« Vis a decider (that is, V halts on all inputs.)
« For any string w € 2%, the following is true:
weL o dc € X* V accepts (w, c)

 Intuitively, what does this mean?



Intuiting Verifiers



Intuiting Verifiers




Intuiting Verifiers

Question:
Can this lock
be opened?




Verifiers

« A verifier for a language L is a TM V with the
following properties:

« Vis a decider (that is, V halts on all inputs.)
« For any string w € 2%, the following is true:
weL o dc € X* Vaccepts (w, c)
 Some notes about V:
« If Vaccepts (w, c), then we're guaranteed w € L.

« If V does not accept (w, c), then either

- w € L, but you gave the wrong c, or
- w & L, so no possible ¢ will work.



Verifiers

« A verifier for a language L is a TM V with the
following properties:

« Vis a decider (that is, V halts on all inputs.)
« For any string w € 2%, the following is true:
weL o dc € X* Vaccepts (w, c)
 Some notes about V:

 If w € L, a string ¢ for which V accepts (w, c) is
called a certificate for w.

« Vis required to halt, so given any potential
certificate ¢ for w, you can check whether the
certificate is correct.



Verifiers

« A verifier for a language L is a TM V with the
following properties:

« Vis a decider (that is, V halts on all inputs.)
« For any string w € 2%, the following is true:
weL o dc € X* Vaccepts (w, c)
 Some notes about V:

« Notice that (V) # L. Instead:

Y(V) ={{w,c)|weLandcisa
certificate for w }

 The job of Vis just to check certificates, not to
decide membership in L.



Some Verifiers

Let L be the following language:
L ={ (G, w) | Gis a CFG that generates w }

Let's see how to build a verifier for L.

A certificate for a grammar G string w should
convince us that G accepts w. What kind of
information would help us with that?

One option: Let the certificate be a possible
derivation of w from the start symbol.

Our verifier then just needs to check whether
the derivation is valid.



Some Verifiers

« Let L be the following language:
L ={ (G, w) | Gis a CFG that generates w }

 Here is one possible verifier for L:

V = “On input (G, w, c), where G is a CFG:

Check whether c is a valid derivation of w
from the start symbol of G.

If so, accept. If not, reject.”

e If the certificate is a correct derivation, we
know for a fact that G can generate w.

« If not, we can't tell whether we got a bad
certificate or whether G doesn't generate w.



Some Verifiers

Let L be the following language:

L ={(n) | n € N and the hailstone sequence
terminates for n }

Let's see how to build a verifier for L.

A certificate for (n) should convince us that the
hailstone sequence terminates for n. A bad
certificate shouldn't leave us running forever.

A thought: if the hailstone sequence terminates
for n, then it has to terminate in some number
of steps.

Let the certificate be that number of steps.



Some Verifiers

« Let L be the following language:

L ={(n) | n € N and the hailstone sequence
terminates for n }

V = “On input (n, k), where n, k € N.

Check that n # 0.

Run the hailstone sequence, starting at n,
for at most k steps.

If after k steps we reach 1, accept.

Otherwise, reject.”

Do you see why (n) € L iff there is some k such
that V accepts (n, k)?



What languages are verifiable?
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