
  

Unsolvable Problems
Part Two



  

Recap from Last Time



  

What exactly is the class RE?



  

An Intuition for RE

● Intuitively, a language L is in RE if a TM 
can search for positive proof that a string 
w belongs to L.

● Such a machine could work as follows:
● Find a possible proof.
● Check the proof.
● If correct, accept!
● If not, try the next proof.



  

Verifiers

● A verifier for a language L is a TM V 
with the following properties:
● V is a decider (that is, V halts on all inputs.)
● For any string w ∈ Σ*, the following is true:

w ∈ L  ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩

● Intuitively, what does this mean?
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Intuiting Verifiers

Question: 
Can this lock 
be opened?

Question: 
Can this lock 
be opened?



  

Verifiers

● A verifier for a language L is a TM V with the 
following properties:

● V is a decider (that is, V halts on all inputs.)
● For any string w ∈ Σ*, the following is true:

w ∈ L   ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩
● Some notes about V:

● If V accepts ⟨w, c⟩, then we're guaranteed w ∈ L.

● If V does not accept ⟨w, c⟩, then either

– w ∈ L, but you gave the wrong c, or
– w ∉ L, so no possible c will work.



  

Verifiers

● A verifier for a language L is a TM V with the 
following properties:

● V is a decider (that is, V halts on all inputs.)
● For any string w ∈ Σ*, the following is true:

w ∈ L   ↔   ∃c ∈ Σ*. V accepts ⟨w, c⟩
● Some notes about V:

● If w ∈ L, a string c for which V accepts ⟨w, c⟩ is 
called a certificate for w.

● V is required to halt, so given any potential 
certificate c for w, you can check whether the 
certificate is correct.



  

Some Verifiers

● Let L be the following language:

L = { ⟨G, w⟩ | G is a CFG that generates w }

● Here is one possible verifier for L:

● If the certificate is a correct derivation, we 
know for a fact that G can generate w.

● If not, we can't tell whether we got a bad 
certificate or whether G doesn't generate w.

V = “On input ⟨G, w, c⟩, where G is a CFG:
Check whether c is a valid derivation of w

from the start symbol of G.
If so, accept. If not, reject.”

V = “On input ⟨G, w, c⟩, where G is a CFG:
Check whether c is a valid derivation of w

from the start symbol of G.
If so, accept. If not, reject.”



  

Some Verifiers

● Let L be the following language:

    L = { ⟨n⟩ | n ∈ ℕ and the hailstone sequence
                     terminates for n }

  

 

● Do you see why ⟨n⟩ ∈ L iff there is some k such 
that V accepts ⟨n, k⟩?

V = “On input ⟨n, k⟩, where n, k ∈ ℕ.
Check that n ≠ 0.
Run the hailstone sequence, starting at n,

for at most k steps.
If after k steps we reach 1, accept.
Otherwise, reject.”

V = “On input ⟨n, k⟩, where n, k ∈ ℕ.
Check that n ≠ 0.
Run the hailstone sequence, starting at n,

for at most k steps.
If after k steps we reach 1, accept.
Otherwise, reject.”



  

What languages are verifiable?



  

Verifiers and RE

● Theorem: If there is a verifier V for a 
language L, then L ∈ RE.

● Proof idea: Build a recognizer that tries 
every possible certificate to see if w ∈ L.

● Proof sketch: Show that this TM is a 
recognizer for L:

M = “On input w:
For i = 0 to ∞

For each string c of length i:
Run V on ⟨w, c⟩.
If V accepts ⟨w, c⟩, M accepts w.”

M = “On input w:
For i = 0 to ∞

For each string c of length i:
Run V on ⟨w, c⟩.
If V accepts ⟨w, c⟩, M accepts w.”



  

Verifiers and RE

● Theorem: If L ∈ RE, then there is a 
verifier for L.

● Proof idea: If L ∈ RE, there is a 
recognizer M for L.

● If w ∈ L, M accepts w after some number 
of steps. If w ∉ L, M never accepts.

● Have the certificate for w be the number 
of steps before M accepts w.



  

Verifiers and RE

● Theorem: If L ∈ RE, then there is a 
verifier for L.

● Proof sketch: Let L be an RE language 
and let M be a recognizer for it. Then 
show that this is a verifier for L:

V = “On input ⟨w, n⟩, where n ∈ ℕ:
Run M on w for n steps.
If M accepts w within n steps, accept.
If M did not accept w in n steps, reject.”

V = “On input ⟨w, n⟩, where n ∈ ℕ:
Run M on w for n steps.
If M accepts w within n steps, accept.
If M did not accept w in n steps, reject.”



  

Verifiers and RE

● The verifier definition of RE gives a new 
perspective on RE languages.

● A language L is in RE if there is a way to 
prove that strings belong to L.

● Equivalently, a problem is an RE problem 
if there is a way to prove that “yes” 
answers are correct.



  

R ≠ RE

● We know that R ≠ RE.
● The verifier perspective of RE gives a 

new interpretation to this:

In the limit, it is fundamentally 
harder to solve a problem than it is 
to check an answer to a problem.



  

Nondeterministic Turing Machines



  

Nondeterministic TMs

● A nondeterministic Turing machine (or NTM) is a 
Turing machine in which there can be zero or multiple 
transitions defined at each state.

● Nondeterministic TMs do not have ε-transitions; they 
have to read or write something and move the tape at 
each step.

● As with NFAs, NTMs accept if any path accepts. In 
other words, an NTM for a language L is one where

w ∈ L iff there is some series of choices N can 
make that causes N to accept w.

● In particular, if w ∈ L, N only needs to accept w along 
one branch. The rest can loop infinitely or reject.



  

Designing an NTM

● A tautonym is a word that consists of the same 
string repeated twice.

● Some examples:
● dikdik (an adorable petite antelope)

● hotshots (people who aren't very fun to be around)

Consider the following language over Σ = {0, 1}:

L = { ww | w ∈ Σ* and w ≠ ε }   

This is the set of all nonempty tautonyms.

How might we design a TM for this language?
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Designing an NTM

● A tautonym is a word that consists of the same 
string repeated twice.

● Some examples:
● dikdik (an adorable petite antelope)

● hotshots (people who aren't very fun to be around)

● Consider the following language over Σ = {0, 1}:

L = { ww | w ∈ Σ* and w ≠ ε }   
● This is the set of all nonempty tautonyms.
● How might we design a TM for this language?



  

What's Tricky

0 0 1 1 0 0 1 1 ……
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Using Nondeterminism
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Guess
Split

start
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Guess
Split

start
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Split
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Guess
Split
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A huge difference between
NTMs and NFAs.
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In an NFA, we can follow 
multiple transitions at once by 

just being in many states at 
the same time.

That doesn't work with NTMs! 
The tapes will be different in 

each case.
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Every time we have multiple choices, 
the entire computation branches.

 

Imagine that we completely clone the 
Turing machine, then have one go 
down one branch and one go down 

the other.
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down one branch and one go down 

the other.



  

Intuiting Nondeterministic TMs

● Two of our previous NTM intuitions are useful here:
● Perfect guessing: If there is some choice of transitions 

that leads to an accepting state, the NTM can perfectly 
guess those transitions.
● There's just one NTM, and it makes the right guess if one exists.

● Massive parallelism: The NTM tries all options. Each 
time it follows multiple transitions, it copies the current 
state of the machine once for each option, then tries each 
option.
● Each step of the computation creates multiple new NTMs to try 

out each branch.

● The “guess-and-check” intuition from NFAs still applies 
here and is probably the best way to design NTMs.



  

Guessing Arbitrary Objects

● NTMs can use their nondeterminism to 
guess an arbitrary discrete, finite object.

● Idea: The NTM nondeterministically 
chooses a string to write on its tape, then 
does something with the string it just 
wrote.



  

Guessing an Arbitrary String

● As an example, here's how an NTM can 
guess an arbitrary string, then go do 
something with it:

 

 
● As a high-level description:

Build
string

Back
home

Check
string

 → ☐ a, R
 → ☐ b, R

 

a → a, L
b → b, L

 

 → ☐ ☐, L    → ☐ ☐, R   

N = “On input w:
Nondeterministically guess a string x ∈ Σ*.
Deterministically check whether [...]”

N = “On input w:
Nondeterministically guess a string x ∈ Σ*.
Deterministically check whether [...]”



  

Just How Powerful are NTMs?



  

NTMs and DTMs

● Theorem: If L ∈ RE, then there is an 
NTM for L.

● Proof Sketch: Every deterministic TM 
(DTM) can be thought of as an NTM with 
no nondeterminism, so if L is the 
language of a DTM, it's also the language 
of an NTM. ■



  

NTMs and DTMs

● Theorem: If L is the language of an NTM, then 
L ∈ RE.

● Faulty Proof Idea: Use the subset 
construction.

● Why doesn't this work?
● In an NFA, the only “memory” is which states are 

active, so creating one state per configuration 
simulates the NFA with a DFA.

● In an NTM, the memory is the current state plus the 
tape contents, so building one state per 
configuration is impossible.



  

NTMs and DTMs

● Theorem: If L is the language of an NTM, then 
L ∈ RE.

● Proof Idea: Show how to construct an verifier for L 
using the NTM.

● We showed how to build a verifier for an arbitrary 
TM M by having the certificate for some w ∈ L be 
the number of steps it takes for M to accept w.

● With an NTM N, there might be many possible 
executions of length n on the string w.

● Idea: Our certificate will be the series of transitions 
that N is supposed to follow to accept w.



  

NTMs and DTMs

● Theorem: If L is the language of an NTM, 
then L ∈ RE.

● Proof Sketch: Let N be an NTM for L. Then 
we can prove that this is a verifier for L:

V = “On input ⟨w, T⟩, where T is a sequence of
    transitions:

· Run N on w, following transitions in the order
· specified in T.
· If any of the transitions in T are invalid or
· can't be followed, reject.
· If after following the transitions N accepts w,
· accept; otherwise reject.

V = “On input ⟨w, T⟩, where T is a sequence of
    transitions:

· Run N on w, following transitions in the order
· specified in T.
· If any of the transitions in T are invalid or
· can't be followed, reject.
· If after following the transitions N accepts w,
· accept; otherwise reject.



  

Three Views of RE

TM Verifier

NTM

Certificate is number of steps

Try all certificates

All TMs are NTMs
Certificate is sequence

of transitions to use



  

Why This Matters

● We now have three perspectives on the RE 
languages:
● They're languages where a TM can search for proof that a 

string in the language.
● They're languages where a verifier can check a proof that 

a string is in the language.
● They're languages where an NTM can guess a proof that a 

string is in the language.

● All of this comes back to the notion of proving strings 
in the language: you might not be able to determine 
whether a string is in an RE language, but if a string 
is in an RE language, there is some way to prove it.



  

Time-Out for Announcements!



  

Solution Sets

● Solutions for PS6 are available for pickup 
outside lecture.

● We've also just released the solutions to the 
final set of practice problems.

● If you need to pick up solutions after class, 
check out the filing cabinets in the Gates 
building; directions are up on the course 
website.

● We'll be recycling PS1 – PS3 and related 
solution sets later this week – grab them if you 
want them!



  

Words of Encouragement

● Good luck on the exam tomorrow!
● Stressed? Worried? Losing perspective? 

Check the course website for two links:
● The video “A Math Major Talks about Fear.”
● The article “How I Faced my Fears and 

Learned to be Good at Math.”

● Hope this helps!



  

Upcoming Event

● Senator Dianne Feinstein will be visiting 
Stanford a week from tomorrow to talk 
about what role congress does and 
should play in overseeing the CIA and 
NSA. 

● Talk will be Thursday, May 28 at 6:30PM 
at Cemex.

● RSVP required: click here!

https://www.eventbrite.com/e/security-conundrum-series-an-evening-with-us-senator-dianne-feinstein-tickets-16997634382


  

Your Questions



  

“What are your thoughts on the Stanford 
core undergraduate requirements? Do you 
ever find it embarrassing that engineering 
students here can graduate without ever 
learning things like linear algebra, optics, 

and differential equations?”

So, um, I never learned optics. I did learn differential 
equations and have never used them, though linear algebra is 

super useful and really cool.
 

I really like the idea of breadth requirements, though I think 
that we as a university need to do a better job getting people 
excited about them. If anything, we should have more breadth 

requirements in more areas.

So, um, I never learned optics. I did learn differential 
equations and have never used them, though linear algebra is 

super useful and really cool.
 

I really like the idea of breadth requirements, though I think 
that we as a university need to do a better job getting people 
excited about them. If anything, we should have more breadth 

requirements in more areas.



  

“What are some things that you wish 
Stanford could change or do differently?”

A few thoughts:
 

1. Help students gain perspective on the purpose of their education
and empower them to make more informed decisions about how
to approach their classes and their course selection.

 

2. Stress the importance of accountability and honesty and give
students space to make mistakes and recover from them.

 

3. Open better lines of communication between students and faculty
members to ensure that concerns are heard and that all parties
involved in education understand the needs and goals of all
others.

A few thoughts:
 

1. Help students gain perspective on the purpose of their education
and empower them to make more informed decisions about how
to approach their classes and their course selection.

 

2. Stress the importance of accountability and honesty and give
students space to make mistakes and recover from them.

 

3. Open better lines of communication between students and faculty
members to ensure that concerns are heard and that all parties
involved in education understand the needs and goals of all
others.



  

Back to CS103!



  

Beyond RE

● What would it mean for a language not to be 
in class RE?

● That would mean that
● There's no algorithm for checking whether a 

string is in the language (because R ⊆ RE).
● There's no algorithm for checking a proof that a 

string is in the language.

● In a sense, languages outside of RE are so 
complex, even if you know for a fact a string 
is in the language, you may not be able to 
prove it!



  

Going Beyond RE



  

Languages, TMs, and TM Encodings

● Recall: The language of a TM M is the set

ℒ(M) = { w ∈ Σ* | M accepts w }     
● Some of the strings in this set might be 

descriptions of TMs.
● What happens if we just focus on the set 

of strings that are legal TM descriptions?
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“The language of all
TMs that do not accept
their own description.”
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{ ⟨M⟩ | M is a TM that 
does not accept ⟨M⟩ }
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{ ⟨M⟩ | M is a TM 
and ⟨M⟩ ∉ ℒ(M) }
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Diagonalization Revisited

● The diagonalization language, which we 
denote LD, is defined as

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

● That is, LD is the set of descriptions of 
Turing machines that do not accept 
themselves. 
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All Languages
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LD
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Non-RE Languages

● We've just discovered a non-RE language.
● In a sense, though, we did it by cheating: we 

specifically constructed this problem so that by 
construction it cannot be solved!

● This technique won't generalize to other cases 
very well. For that, we'll need a new set of 
techniques.

● That said, the technique we used here is quite 
clever; you'll explore it in more depth in Problem 
Set Eight.
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