

Unsolvable Problems
Part Two

Recap from Last Time

What exactly is the class RE?

An Intuition for RE

● Intuitively, a language L is in RE if a TM
can search for positive proof that a string
w belongs to L.

● Such a machine could work as follows:
● Find a possible proof.
● Check the proof.
● If correct, accept!
● If not, try the next proof.

Verifiers

● A verifier for a language L is a TM V
with the following properties:
● V is a decider (that is, V halts on all inputs.)
● For any string w ∈ Σ*, the following is true:

w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩

● Intuitively, what does this mean?

Intuiting Verifiers

Intuiting Verifiers

Intuiting Verifiers

Question:
Can this lock
be opened?

Question:
Can this lock
be opened?

Verifiers

● A verifier for a language L is a TM V with the
following properties:

● V is a decider (that is, V halts on all inputs.)
● For any string w ∈ Σ*, the following is true:

w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩
● Some notes about V:

● If V accepts ⟨w, c⟩, then we're guaranteed w ∈ L.

● If V does not accept ⟨w, c⟩, then either

– w ∈ L, but you gave the wrong c, or
– w ∉ L, so no possible c will work.

Verifiers

● A verifier for a language L is a TM V with the
following properties:

● V is a decider (that is, V halts on all inputs.)
● For any string w ∈ Σ*, the following is true:

w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩
● Some notes about V:

● If w ∈ L, a string c for which V accepts ⟨w, c⟩ is
called a certificate for w.

● V is required to halt, so given any potential
certificate c for w, you can check whether the
certificate is correct.

Some Verifiers

● Let L be the following language:

L = { ⟨G, w⟩ | G is a CFG that generates w }

● Here is one possible verifier for L:

● If the certificate is a correct derivation, we
know for a fact that G can generate w.

● If not, we can't tell whether we got a bad
certificate or whether G doesn't generate w.

V = “On input ⟨G, w, c⟩, where G is a CFG:
Check whether c is a valid derivation of w

from the start symbol of G.
If so, accept. If not, reject.”

V = “On input ⟨G, w, c⟩, where G is a CFG:
Check whether c is a valid derivation of w

from the start symbol of G.
If so, accept. If not, reject.”

Some Verifiers

● Let L be the following language:

 L = { ⟨n⟩ | n ∈ ℕ and the hailstone sequence
 terminates for n }

● Do you see why ⟨n⟩ ∈ L iff there is some k such
that V accepts ⟨n, k⟩?

V = “On input ⟨n, k⟩, where n, k ∈ ℕ.
Check that n ≠ 0.
Run the hailstone sequence, starting at n,

for at most k steps.
If after k steps we reach 1, accept.
Otherwise, reject.”

V = “On input ⟨n, k⟩, where n, k ∈ ℕ.
Check that n ≠ 0.
Run the hailstone sequence, starting at n,

for at most k steps.
If after k steps we reach 1, accept.
Otherwise, reject.”

What languages are verifiable?

Verifiers and RE

● Theorem: If there is a verifier V for a
language L, then L ∈ RE.

● Proof idea: Build a recognizer that tries
every possible certificate to see if w ∈ L.

● Proof sketch: Show that this TM is a
recognizer for L:

M = “On input w:
For i = 0 to ∞

For each string c of length i:
Run V on ⟨w, c⟩.
If V accepts ⟨w, c⟩, M accepts w.”

M = “On input w:
For i = 0 to ∞

For each string c of length i:
Run V on ⟨w, c⟩.
If V accepts ⟨w, c⟩, M accepts w.”

Verifiers and RE

● Theorem: If L ∈ RE, then there is a
verifier for L.

● Proof idea: If L ∈ RE, there is a
recognizer M for L.

● If w ∈ L, M accepts w after some number
of steps. If w ∉ L, M never accepts.

● Have the certificate for w be the number
of steps before M accepts w.

Verifiers and RE

● Theorem: If L ∈ RE, then there is a
verifier for L.

● Proof sketch: Let L be an RE language
and let M be a recognizer for it. Then
show that this is a verifier for L:

V = “On input ⟨w, n⟩, where n ∈ ℕ:
Run M on w for n steps.
If M accepts w within n steps, accept.
If M did not accept w in n steps, reject.”

V = “On input ⟨w, n⟩, where n ∈ ℕ:
Run M on w for n steps.
If M accepts w within n steps, accept.
If M did not accept w in n steps, reject.”

Verifiers and RE

● The verifier definition of RE gives a new
perspective on RE languages.

● A language L is in RE if there is a way to
prove that strings belong to L.

● Equivalently, a problem is an RE problem
if there is a way to prove that “yes”
answers are correct.

R ≠ RE

● We know that R ≠ RE.
● The verifier perspective of RE gives a

new interpretation to this:

In the limit, it is fundamentally
harder to solve a problem than it is
to check an answer to a problem.

Nondeterministic Turing Machines

Nondeterministic TMs

● A nondeterministic Turing machine (or NTM) is a
Turing machine in which there can be zero or multiple
transitions defined at each state.

● Nondeterministic TMs do not have ε-transitions; they
have to read or write something and move the tape at
each step.

● As with NFAs, NTMs accept if any path accepts. In
other words, an NTM for a language L is one where

w ∈ L iff there is some series of choices N can
make that causes N to accept w.

● In particular, if w ∈ L, N only needs to accept w along
one branch. The rest can loop infinitely or reject.

Designing an NTM

● A tautonym is a word that consists of the same
string repeated twice.

● Some examples:
● dikdik (an adorable petite antelope)

● hotshots (people who aren't very fun to be around)

Consider the following language over Σ = {0, 1}:

L = { ww | w ∈ Σ* and w ≠ ε }

This is the set of all nonempty tautonyms.

How might we design a TM for this language?

Designing an NTM

● A tautonym is a word that consists of the same
string repeated twice.

● Some examples:
● dikdik (an adorable petite antelope)

● hotshots (people who aren't very fun to be around)

Consider the following language over Σ = {0, 1}:

L = { ww | w ∈ Σ* and w ≠ ε }

This is the set of all nonempty tautonyms.

How might we design a TM for this language?

Designing an NTM

● A tautonym is a word that consists of the same
string repeated twice.

● Some examples:
● dikdik (an adorable petite antelope)

● hotshots (people who aren't very fun to be around)

● Consider the following language over Σ = {0, 1}:

L = { ww | w ∈ Σ* and w ≠ ε }
● This is the set of all nonempty tautonyms.
● How might we design a TM for this language?

What's Tricky

0 0 1 1 0 0 1 1 ……

What's Tricky

0 0 1 1 0 0 1 1 ……

Using Nondeterminism

0 0 1 1 0 0 1 1 ……

Using Nondeterminism

0 0 1 1 0 0 1 1 ……

Using Nondeterminism

0 0 1 1 0 0 1 1 ……

Using Nondeterminism

0 0 1 1 0 0 1 1 ……

Using Nondeterminism

0 0 1 × 0 0 1 1 ……

Using Nondeterminism

0 0 1 × 0 0 1 1 ……

Using Nondeterminism

0 0 1 × 0 0 1 1 ……

Using Nondeterminism

0 0 1 × 0 0 1 1 ……

Using Nondeterminism

0 0 1 × 0 0 1 1 ……

Using Nondeterminism

0 0 1 × 0 0 1 1 ……

Using Nondeterminism

0 0 1 × 0 0 1 × ……

start

0 0 1 1 0 0 1 1 ……

start

0 0 1 1 0 0 1 1 ……

Guess
Split

start

0 0 1 1 0 0 1 1 ……

Guess
Split

start

0 0 1 1 0 0 1 1 ……

0 → 0, R
1 → 1, R

Guess
Split

start

0 0 1 1 0 0 1 1 ……

0 → 0, R
1 → 1, R

Guess
Split

start

0 0 1 1 0 0 1 1 ……

0 → 0, R
1 → 1, R

Guess
Split

start

0 0 1 1 0 0 1 1 ……

0 → 0, R
1 → 1, R

Guess
Split

start

0 0 1 1 0 0 1 1 ……

0 → 0, R
1 → 1, R

To end

 1 → ×, R

Guess
Split

start

0 0 1 × 0 0 1 1 ……

0 → 0, R
1 → 1, R

To end

 1 → ×, R

Guess
Split

start

0 0 1 × 0 0 1 1 ……

0 → 0, R
1 → 1, R

To end

 1 → ×, R

0 → 0, R
1 → 1, R

Guess
Split

start

0 0 1 × 0 0 1 1 ……

0 → 0, R
1 → 1, R

To end

 1 → ×, R

0 → 0, R
1 → 1, R

Guess
Split

start

0 0 1 × 0 0 1 1 ……

0 → 0, R
1 → 1, R

To end

 1 → ×, R

0 → 0, R
1 → 1, R

Guess
Split

start

0 0 1 × 0 0 1 1 ……

0 → 0, R
1 → 1, R

To end

 1 → ×, R

0 → 0, R
1 → 1, R

Guess
Split

start

0 0 1 × 0 0 1 1 ……

0 → 0, R
1 → 1, R

To end

 1 → ×, R

0 → 0, R
1 → 1, R

Guess
Split

start

0 0 1 × 0 0 1 1 ……

0 → 0, R
1 → 1, R

To end

 1 → ×, R

0 → 0, R
1 → 1, R

 → ☐ ☐, L

Guess
Split

start

0 0 1 × 0 0 1 1 ……

0 → 0, R
1 → 1, R

To end

 1 → ×, R

0 → 0, R
1 → 1, R

 → ☐ ☐, L

Guess
Split

start

0 0 1 × 0 0 1 1 ……

0 → 0, R
1 → 1, R

To end

 1 → ×, R

0 → 0, R
1 → 1, R

Match
1

 → ☐ ☐, L

Guess
Split

start

0 0 1 × 0 0 1 1 ……

0 → 0, R
1 → 1, R

To end

 1 → ×, R

0 → 0, R
1 → 1, R

Match
1

 → ☐ ☐, L

 1 → ×, L

Guess
Split

start

0 0 1 × 0 0 1 × ……

0 → 0, R
1 → 1, R

To end

 1 → ×, R

0 → 0, R
1 → 1, R

Match
1

 → ☐ ☐, L

 1 → ×, L

Guess
Split

start

0 0 1 × 0 0 1 × ……

0 → 0, R
1 → 1, R

To end

 1 → ×, R

0 → 0, R
1 → 1, R

Match
1

 → ☐ ☐, L

Check
split 1 → ×, L

Guess
Split

To end

To endMatch
0

Match
1

0 → 0, R
1 → 1, R

0 → ×, R 1 → ×, R

 0 → 0, R
 1 → 1, R

0 → 0, R
1 → 1, R

 → ☐ ☐, L

 → ☐ ☐, L

Check
split0 → ×, L 1 → ×, L

start

0 0 1 1 0 0 1 1 ……

A huge difference between
NTMs and NFAs.

Guess
Split

To end

To endMatch
0

Match
1

0 → 0, R
1 → 1, R

0 → ×, R 1 → ×, R

 0 → 0, R
 1 → 1, R

0 → 0, R
1 → 1, R

 → ☐ ☐, L

 → ☐ ☐, L

Check
split

0 → ×, L

 1 → ×, L

start

0 1 0 0 1 0 ……

Guess
Split

To end

To endMatch
0

Match
1

0 → 0, R
1 → 1, R

0 → ×, R 1 → ×, R

 0 → 0, R
 1 → 1, R

0 → 0, R
1 → 1, R

 → ☐ ☐, L

 → ☐ ☐, L

Check
split

0 → ×, L

 1 → ×, L

start

0 1 0 0 1 0 ……

Guess
Split

To end

To endMatch
0

Match
1

0 → 0, R
1 → 1, R

0 → ×, R 1 → ×, R

 0 → 0, R
 1 → 1, R

0 → 0, R
1 → 1, R

 → ☐ ☐, L

 → ☐ ☐, L

Check
split

0 → ×, L

 1 → ×, L

start

0 1 0 0 1 0 ……

In an NFA, we can follow
multiple transitions at once by

just being in many states at
the same time.

That doesn't work with NTMs!
The tapes will be different in

each case.

In an NFA, we can follow
multiple transitions at once by

just being in many states at
the same time.

That doesn't work with NTMs!
The tapes will be different in

each case.

Guess
Split

To end

To endMatch
0

Match
1

0 → 0, R
1 → 1, R

0 → ×, R 1 → ×, R

 0 → 0, R
 1 → 1, R

0 → 0, R
1 → 1, R

 → ☐ ☐, L

 → ☐ ☐, L

Check
split

0 → ×, L

 1 → ×, L

start

0 1 0 0 1 0 ……

In an NFA, we can follow
multiple transitions at once by

just being in many states at
the same time.

That doesn't work with NTMs!
The tapes will be different in

each case.

In an NFA, we can follow
multiple transitions at once by

just being in many states at
the same time.

That doesn't work with NTMs!
The tapes will be different in

each case.

Guess
Split

To end

To endMatch
0

Match
1

0 → 0, R
1 → 1, R

0 → ×, R 1 → ×, R

 0 → 0, R
 1 → 1, R

0 → 0, R
1 → 1, R

 → ☐ ☐, L

 → ☐ ☐, L

Check
split

0 → ×, L

 1 → ×, L

start

0 1 0 0 1 0 ……

Guess
Split

To end

To endMatch
0

Match
1

0 → 0, R
1 → 1, R

0 → ×, R 1 → ×, R

 0 → 0, R
 1 → 1, R

0 → 0, R
1 → 1, R

 → ☐ ☐, L

 → ☐ ☐, L

Check
split

0 → ×, L

 1 → ×, L

start

0 1 0 0 1 0 ……

Guess
Split

To end

To endMatch
0

Match
1

0 → 0, R
1 → 1, R

0 → ×, R 1 → ×, R

 0 → 0, R
 1 → 1, R

0 → 0, R
1 → 1, R

 → ☐ ☐, L

 → ☐ ☐, L

Check
split

0 → ×, L

 1 → ×, L

start

0 1 0 0 1 0 ……

Guess
Split

To end

To endMatch
0

Match
1

0 → 0, R
1 → 1, R

0 → ×, R 1 → ×, R

 0 → 0, R
 1 → 1, R

0 → 0, R
1 → 1, R

 → ☐ ☐, L

 → ☐ ☐, L

Check
split

0 → ×, L

 1 → ×, L

start

× 1 0 0 1 0 ……

Guess
Split

To end

To endMatch
0

Match
1

0 → 0, R
1 → 1, R

0 → ×, R 1 → ×, R

 0 → 0, R
 1 → 1, R

0 → 0, R
1 → 1, R

 → ☐ ☐, L

 → ☐ ☐, L

Check
split

0 → ×, L

 1 → ×, L

start

0 1 0 0 1 0 ……

Guess
Split

To end

To endMatch
0

Match
1

0 → 0, R
1 → 1, R

0 → ×, R 1 → ×, R

 0 → 0, R
 1 → 1, R

0 → 0, R
1 → 1, R

 → ☐ ☐, L

 → ☐ ☐, L

Check
split

0 → ×, L

 1 → ×, L

start

× 1 0 0 1 0 ……

Every time we have multiple choices,
the entire computation branches.

Imagine that we completely clone the
Turing machine, then have one go
down one branch and one go down

the other.

Every time we have multiple choices,
the entire computation branches.

Imagine that we completely clone the
Turing machine, then have one go
down one branch and one go down

the other.

Intuiting Nondeterministic TMs

● Two of our previous NTM intuitions are useful here:
● Perfect guessing: If there is some choice of transitions

that leads to an accepting state, the NTM can perfectly
guess those transitions.
● There's just one NTM, and it makes the right guess if one exists.

● Massive parallelism: The NTM tries all options. Each
time it follows multiple transitions, it copies the current
state of the machine once for each option, then tries each
option.
● Each step of the computation creates multiple new NTMs to try

out each branch.

● The “guess-and-check” intuition from NFAs still applies
here and is probably the best way to design NTMs.

Guessing Arbitrary Objects

● NTMs can use their nondeterminism to
guess an arbitrary discrete, finite object.

● Idea: The NTM nondeterministically
chooses a string to write on its tape, then
does something with the string it just
wrote.

Guessing an Arbitrary String

● As an example, here's how an NTM can
guess an arbitrary string, then go do
something with it:

● As a high-level description:

Build
string

Back
home

Check
string

 → ☐ a, R
 → ☐ b, R

a → a, L
b → b, L

 → ☐ ☐, L → ☐ ☐, R

N = “On input w:
Nondeterministically guess a string x ∈ Σ*.
Deterministically check whether [...]”

N = “On input w:
Nondeterministically guess a string x ∈ Σ*.
Deterministically check whether [...]”

Just How Powerful are NTMs?

NTMs and DTMs

● Theorem: If L ∈ RE, then there is an
NTM for L.

● Proof Sketch: Every deterministic TM
(DTM) can be thought of as an NTM with
no nondeterminism, so if L is the
language of a DTM, it's also the language
of an NTM. ■

NTMs and DTMs

● Theorem: If L is the language of an NTM, then
L ∈ RE.

● Faulty Proof Idea: Use the subset
construction.

● Why doesn't this work?
● In an NFA, the only “memory” is which states are

active, so creating one state per configuration
simulates the NFA with a DFA.

● In an NTM, the memory is the current state plus the
tape contents, so building one state per
configuration is impossible.

NTMs and DTMs

● Theorem: If L is the language of an NTM, then
L ∈ RE.

● Proof Idea: Show how to construct an verifier for L
using the NTM.

● We showed how to build a verifier for an arbitrary
TM M by having the certificate for some w ∈ L be
the number of steps it takes for M to accept w.

● With an NTM N, there might be many possible
executions of length n on the string w.

● Idea: Our certificate will be the series of transitions
that N is supposed to follow to accept w.

NTMs and DTMs

● Theorem: If L is the language of an NTM,
then L ∈ RE.

● Proof Sketch: Let N be an NTM for L. Then
we can prove that this is a verifier for L:

V = “On input ⟨w, T⟩, where T is a sequence of
 transitions:

· Run N on w, following transitions in the order
· specified in T.
· If any of the transitions in T are invalid or
· can't be followed, reject.
· If after following the transitions N accepts w,
· accept; otherwise reject.

V = “On input ⟨w, T⟩, where T is a sequence of
 transitions:

· Run N on w, following transitions in the order
· specified in T.
· If any of the transitions in T are invalid or
· can't be followed, reject.
· If after following the transitions N accepts w,
· accept; otherwise reject.

Three Views of RE

TM Verifier

NTM

Certificate is number of steps

Try all certificates

All TMs are NTMs
Certificate is sequence

of transitions to use

Why This Matters

● We now have three perspectives on the RE
languages:
● They're languages where a TM can search for proof that a

string in the language.
● They're languages where a verifier can check a proof that

a string is in the language.
● They're languages where an NTM can guess a proof that a

string is in the language.

● All of this comes back to the notion of proving strings
in the language: you might not be able to determine
whether a string is in an RE language, but if a string
is in an RE language, there is some way to prove it.

Time-Out for Announcements!

Solution Sets

● Solutions for PS6 are available for pickup
outside lecture.

● We've also just released the solutions to the
final set of practice problems.

● If you need to pick up solutions after class,
check out the filing cabinets in the Gates
building; directions are up on the course
website.

● We'll be recycling PS1 – PS3 and related
solution sets later this week – grab them if you
want them!

Words of Encouragement

● Good luck on the exam tomorrow!
● Stressed? Worried? Losing perspective?

Check the course website for two links:
● The video “A Math Major Talks about Fear.”
● The article “How I Faced my Fears and

Learned to be Good at Math.”

● Hope this helps!

Upcoming Event

● Senator Dianne Feinstein will be visiting
Stanford a week from tomorrow to talk
about what role congress does and
should play in overseeing the CIA and
NSA.

● Talk will be Thursday, May 28 at 6:30PM
at Cemex.

● RSVP required: click here!

https://www.eventbrite.com/e/security-conundrum-series-an-evening-with-us-senator-dianne-feinstein-tickets-16997634382

Your Questions

“What are your thoughts on the Stanford
core undergraduate requirements? Do you
ever find it embarrassing that engineering
students here can graduate without ever
learning things like linear algebra, optics,

and differential equations?”

So, um, I never learned optics. I did learn differential
equations and have never used them, though linear algebra is

super useful and really cool.

I really like the idea of breadth requirements, though I think
that we as a university need to do a better job getting people
excited about them. If anything, we should have more breadth

requirements in more areas.

So, um, I never learned optics. I did learn differential
equations and have never used them, though linear algebra is

super useful and really cool.

I really like the idea of breadth requirements, though I think
that we as a university need to do a better job getting people
excited about them. If anything, we should have more breadth

requirements in more areas.

“What are some things that you wish
Stanford could change or do differently?”

A few thoughts:

1. Help students gain perspective on the purpose of their education
and empower them to make more informed decisions about how
to approach their classes and their course selection.

2. Stress the importance of accountability and honesty and give
students space to make mistakes and recover from them.

3. Open better lines of communication between students and faculty
members to ensure that concerns are heard and that all parties
involved in education understand the needs and goals of all
others.

A few thoughts:

1. Help students gain perspective on the purpose of their education
and empower them to make more informed decisions about how
to approach their classes and their course selection.

2. Stress the importance of accountability and honesty and give
students space to make mistakes and recover from them.

3. Open better lines of communication between students and faculty
members to ensure that concerns are heard and that all parties
involved in education understand the needs and goals of all
others.

Back to CS103!

Beyond RE

● What would it mean for a language not to be
in class RE?

● That would mean that
● There's no algorithm for checking whether a

string is in the language (because R ⊆ RE).
● There's no algorithm for checking a proof that a

string is in the language.

● In a sense, languages outside of RE are so
complex, even if you know for a fact a string
is in the language, you may not be able to
prove it!

Going Beyond RE

Languages, TMs, and TM Encodings

● Recall: The language of a TM M is the set

ℒ(M) = { w ∈ Σ* | M accepts w }
● Some of the strings in this set might be

descriptions of TMs.
● What happens if we just focus on the set

of strings that are legal TM descriptions?

M
1

M
2

M
0

M
3

M
4

M
5

…

M
1

M
2

M
0

M
3

M
4

M
5

…

All Turing machines,
listed in some order.
All Turing machines,
listed in some order.

M
1

M
2

M
0

M
3

M
4

M
5

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

…

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

All descriptions
of TMs, listed in
the same order.

All descriptions
of TMs, listed in
the same order.

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

Acc Acc Acc No Acc No …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

Acc Acc Acc No Acc No …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

Flip all “accept”
to “no” and
vice-versa

Flip all “accept”
to “no” and
vice-versa

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

What TM has
this behavior?
What TM has
this behavior?

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No Acc No …

No No Acc Acc No No …

… … … … … … …

No No No Acc No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

Acc

No

Acc

No

…

No Acc …

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No No …

… … … … … … …

No No No Acc Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

Acc

No

No

Acc

Acc

No

No

…

Acc …

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … … …

No No No Acc …

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

No

Acc

…

…

Acc

No

No

Acc

Acc

No

…

…

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

No TM has
this behavior!
No TM has

this behavior!

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …⟨M

0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

“The language of all
TMs that do not accept
their own description.”

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

{ ⟨M⟩ | M is a TM that
does not accept ⟨M⟩ }

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

…

…

No

Acc

…

…

Acc

No

No

Acc

Acc

No

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc No No Acc Acc No …

Acc Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc Acc …

No Acc Acc No Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

{ ⟨M⟩ | M is a TM
and ⟨M⟩ ∉ ℒ(M) }

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

Diagonalization Revisited

● The diagonalization language, which we
denote LD, is defined as

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

● That is, LD is the set of descriptions of
Turing machines that do not accept
themselves.

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some TM R such that (ℒ R) = LD.

Since (ℒ R) = LD, we know that if M is any TM, then

⟨M⟩ ∈ LD iff ⟨M⟩ ∈ (ℒ R) (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD iff ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) iff ⟨M⟩ ∈ (ℒ R) (2)

Statement (2) holds for any TM M, so in particular it should
hold when M = R. If we pick M = R, we see that

⟨R⟩ ∉ (ℒ R) iff ⟨R⟩ ∈ (ℒ R) (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some TM R such that (ℒ R) = LD.

Since (ℒ R) = LD, we know that if M is any TM, then

⟨M⟩ ∈ LD iff ⟨M⟩ ∈ (ℒ R) (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD iff ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) iff ⟨M⟩ ∈ (ℒ R) (2)

Statement (2) holds for any TM M, so in particular it should
hold when M = R. If we pick M = R, we see that

⟨R⟩ ∉ (ℒ R) iff ⟨R⟩ ∈ (ℒ R) (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some TM R such that (ℒ R) = LD.

Since (ℒ R) = LD, we know that if M is any TM, then

⟨M⟩ ∈ LD iff ⟨M⟩ ∈ (ℒ R) (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD iff ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) iff ⟨M⟩ ∈ (ℒ R) (2)

Statement (2) holds for any TM M, so in particular it should
hold when M = R. If we pick M = R, we see that

⟨R⟩ ∉ (ℒ R) iff ⟨R⟩ ∈ (ℒ R) (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some TM R such that (ℒ R) = LD.

Since (ℒ R) = LD, we know that if M is any TM, then

⟨M⟩ ∈ LD iff ⟨M⟩ ∈ (ℒ R) (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD iff ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) iff ⟨M⟩ ∈ (ℒ R) (2)

Statement (2) holds for any TM M, so in particular it should
hold when M = R. If we pick M = R, we see that

⟨R⟩ ∉ (ℒ R) iff ⟨R⟩ ∈ (ℒ R) (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some TM R such that (ℒ R) = LD.

Since (ℒ R) = LD, we know that if M is any TM, then

⟨M⟩ ∈ LD iff ⟨M⟩ ∈ (ℒ R) (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD iff ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) iff ⟨M⟩ ∈ (ℒ R) (2)

Statement (2) holds for any TM M, so in particular it should
hold when M = R. If we pick M = R, we see that

⟨R⟩ ∉ (ℒ R) iff ⟨R⟩ ∈ (ℒ R) (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

Because (ℒ R) = LD, we know that a
string belongs to one set if and
only if it belongs to the other.

Because (ℒ R) = LD, we know that a
string belongs to one set if and
only if it belongs to the other.

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some TM R such that (ℒ R) = LD.

Since (ℒ R) = LD, we know that if M is any TM, then

⟨M⟩ ∈ LD iff ⟨M⟩ ∈ (ℒ R) (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD iff ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) iff ⟨M⟩ ∈ (ℒ R) (2)

Statement (2) holds for any TM M, so in particular it should
hold when M = R. If we pick M = R, we see that

⟨R⟩ ∉ (ℒ R) iff ⟨R⟩ ∈ (ℒ R) (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some TM R such that (ℒ R) = LD.

Since (ℒ R) = LD, we know that if M is any TM, then

⟨M⟩ ∈ LD iff ⟨M⟩ ∈ (ℒ R) (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD iff ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) iff ⟨M⟩ ∈ (ℒ R) (2)

Statement (2) holds for any TM M, so in particular it should
hold when M = R. If we pick M = R, we see that

⟨R⟩ ∉ (ℒ R) iff ⟨R⟩ ∈ (ℒ R) (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some TM R such that (ℒ R) = LD.

Since (ℒ R) = LD, we know that if M is any TM, then

⟨M⟩ ∈ LD iff ⟨M⟩ ∈ (ℒ R) (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD iff ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) iff ⟨M⟩ ∈ (ℒ R) (2)

Statement (2) holds for any TM M, so in particular it should
hold when M = R. If we pick M = R, we see that

⟨R⟩ ∉ (ℒ R) iff ⟨R⟩ ∈ (ℒ R) (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

We've replaced the left-hand side
of this biconditional with an

equivalent statement.

We've replaced the left-hand side
of this biconditional with an

equivalent statement.

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some TM R such that (ℒ R) = LD.

Since (ℒ R) = LD, we know that if M is any TM, then

⟨M⟩ ∈ LD iff ⟨M⟩ ∈ (ℒ R) (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD iff ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) iff ⟨M⟩ ∈ (ℒ R) (2)

Statement (2) holds for any TM M, so in particular it should
hold when M = R. If we pick M = R, we see that

⟨R⟩ ∉ (ℒ R) iff ⟨R⟩ ∈ (ℒ R) (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some TM R such that (ℒ R) = LD.

Since (ℒ R) = LD, we know that if M is any TM, then

⟨M⟩ ∈ LD iff ⟨M⟩ ∈ (ℒ R) (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD iff ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) iff ⟨M⟩ ∈ (ℒ R) (2)

Statement (2) holds for any TM M, so in particular it should
hold when M = R. If we pick M = R, we see that

⟨R⟩ ∉ (ℒ R) iff ⟨R⟩ ∈ (ℒ R) (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

A nice consequence of a universally-
quantified statement is that it should

work in all cases.

A nice consequence of a universally-
quantified statement is that it should

work in all cases.

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some TM R such that (ℒ R) = LD.

Since (ℒ R) = LD, we know that if M is any TM, then

⟨M⟩ ∈ LD iff ⟨M⟩ ∈ (ℒ R) (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD iff ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) iff ⟨M⟩ ∈ (ℒ R) (2)

Statement (2) holds for any TM M, so in particular it should
hold when M = R. If we pick M = R, we see that

⟨R⟩ ∉ (ℒ R) iff ⟨R⟩ ∈ (ℒ R) (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some TM R such that (ℒ R) = LD.

Since (ℒ R) = LD, we know that if M is any TM, then

⟨M⟩ ∈ LD iff ⟨M⟩ ∈ (ℒ R) (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD iff ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) iff ⟨M⟩ ∈ (ℒ R) (2)

Statement (2) holds for any TM M, so in particular it should
hold when M = R. If we pick M = R, we see that

⟨R⟩ ∉ (ℒ R) iff ⟨R⟩ ∈ (ℒ R) (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some TM R such that (ℒ R) = LD.

Since (ℒ R) = LD, we know that if M is any TM, then

⟨M⟩ ∈ LD iff ⟨M⟩ ∈ (ℒ R) (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD iff ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) iff ⟨M⟩ ∈ (ℒ R) (2)

Statement (2) holds for any TM M, so in particular it should
hold when M = R. If we pick M = R, we see that

⟨R⟩ ∉ (ℒ R) iff ⟨R⟩ ∈ (ℒ R) (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some TM R such that (ℒ R) = LD.

Since (ℒ R) = LD, we know that if M is any TM, then

⟨M⟩ ∈ LD iff ⟨M⟩ ∈ (ℒ R) (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD iff ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) iff ⟨M⟩ ∈ (ℒ R) (2)

Statement (2) holds for any TM M, so in particular it should
hold when M = R. If we pick M = R, we see that

⟨R⟩ ∉ (ℒ R) iff ⟨R⟩ ∈ (ℒ R) (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

LD = { ⟨M⟩ | M is a TM and ⟨M⟩ ∉ ℒ(M) }

Theorem: LD ∉ RE.
Proof: By contradiction; assume that LD ∈ RE. Then there must

be some TM R such that (ℒ R) = LD.

Since (ℒ R) = LD, we know that if M is any TM, then

⟨M⟩ ∈ LD iff ⟨M⟩ ∈ (ℒ R) (1)

From the definition of LD, we see that ⟨M⟩ ∈ LD iff ⟨M⟩ ∉ (ℒ M).
Combining this with statement (1) tells us that

⟨M⟩ ∉ (ℒ M) iff ⟨M⟩ ∈ (ℒ R) (2)

Statement (2) holds for any TM M, so in particular it should
hold when M = R. If we pick M = R, we see that

⟨R⟩ ∉ (ℒ R) iff ⟨R⟩ ∈ (ℒ R) (3)

This is clearly impossible. We have reached a contradiction, so
our assumption must have been wrong. Thus LD ∉ RE. ■

Regular
Languages CFLs

All Languages

R RE

LD

ATM

HALT

Non-RE Languages

● We've just discovered a non-RE language.
● In a sense, though, we did it by cheating: we

specifically constructed this problem so that by
construction it cannot be solved!

● This technique won't generalize to other cases
very well. For that, we'll need a new set of
techniques.

● That said, the technique we used here is quite
clever; you'll explore it in more depth in Problem
Set Eight.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136

