

Unsolvable Problems
Part Three

Recap from Last Time

Verifiers

● A verifier for a language L is a TM V with the
following properties:

● V is a decider (that is, V halts on all inputs.)
● For any string w ∈ Σ*, the following is true:

w ∈ L ↔ ∃c ∈ Σ*. V accepts ⟨w, c⟩
● Some notes about V:

● If V accepts ⟨w, c⟩, then we're guaranteed w ∈ L.

● If V does not accept ⟨w, c⟩, then either

– w ∈ L, but you gave the wrong c, or
– w ∉ L, so no possible c will work.

Verifiers and RE

● Theorem: If there is a verifier V for a
language L, then L ∈ RE.

● Proof idea: Build a recognizer that tries
every possible certificate to see if w ∈ L.

● Proof sketch: Show that this TM is a
recognizer for L:

M = “On input w:
For i = 0 to ∞

For each string c of length i:
Run V on ⟨w, c⟩.
If V accepts ⟨w, c⟩, M accepts w.”

M = “On input w:
For i = 0 to ∞

For each string c of length i:
Run V on ⟨w, c⟩.
If V accepts ⟨w, c⟩, M accepts w.”

Verifiers and RE

● Theorem: If L ∈ RE, then there is a
verifier for L.

● Proof sketch: Let L be an RE language
and let M be a recognizer for it. Then
show that this is a verifier for L:

V = “On input ⟨w, n⟩, where n ∈ ℕ:
Run M on w for n steps.
If M accepts w within n steps, accept.
If M did not accept w in n steps, reject.”

V = “On input ⟨w, n⟩, where n ∈ ℕ:
Run M on w for n steps.
If M accepts w within n steps, accept.
If M did not accept w in n steps, reject.”

Nondeterministic TMs

● A nondeterministic Turing machine (or NTM) is a
Turing machine in which there can be zero or multiple
transitions defined at each state.

● Nondeterministic TMs do not have ε-transitions; they
have to read or write something and move the tape at
each step.

● As with NFAs, NTMs accept if any path accepts. In
other words, an NTM for a language L is one where

w ∈ L iff there is some series of choices N can
make that causes N to accept w.

● In particular, if w ∈ L, N only needs to accept w along
one branch. The rest can loop infinitely or reject.

Guessing an Arbitrary String

● Here's how an NTM can guess an
arbitrary string, then go do something
with it:

● As a high-level description:

Build
string

Back
home

Check
string

 → ☐ a, R
 → ☐ b, R

a → a, L
b → b, L

 → ☐ ☐, L → ☐ ☐, R

N = “On input w:
Nondeterministically guess a string x ∈ Σ*.
Deterministically check whether [...]”

N = “On input w:
Nondeterministically guess a string x ∈ Σ*.
Deterministically check whether [...]”

NTMs and DTMs

● Theorem: If L ∈ RE, then there is an
NTM for L.

● Proof Sketch: Every deterministic TM
(DTM) can be thought of as an NTM with
no nondeterminism, so if L is the
language of a DTM, it's also the language
of an NTM. ■

NTMs and DTMs

● Theorem: If L is the language of an NTM,
then L ∈ RE.

● Proof Sketch: Let N be an NTM for L. Then
we can prove that this is a verifier for L:

V = “On input ⟨w, T⟩, where T is a sequence of
 transitions:

· Run N on w, following transitions in the order
· specified in T.
· If any of the transitions in T are invalid or
· can't be followed, reject.
· If after following the transitions N accepts w,
· accept; otherwise reject.

V = “On input ⟨w, T⟩, where T is a sequence of
 transitions:

· Run N on w, following transitions in the order
· specified in T.
· If any of the transitions in T are invalid or
· can't be followed, reject.
· If after following the transitions N accepts w,
· accept; otherwise reject.

Three Views of RE

TM Verifier

NTM

Certificate is number of steps

Try all certificates

All TMs are NTMs
Certificate is sequence

of transitions to use

Why This Matters

● We now have three perspectives on the RE
languages:
● They're languages where a TM can search for proof that a

string in the language.
● They're languages where a verifier can check a proof that

a string is in the language.
● They're languages where an NTM can guess a proof that a

string is in the language.

● All of this comes back to the notion of proving strings
in the language: you might not be able to determine
whether a string is in an RE language, but if a string
is in an RE language, there is some way to prove it.

New Stuff!

Finding Non-RE Languages

Self-Reference and RE

● Self-reference is the main technique we'll use to
find non-RE languages.

● However, things are a bit more complicated
when finding non-RE languages than finding
non-R languages.

● Why?
● When talking about deciders, we assume we have a

magic subroutine that always produces the answer
we want.

● RE is the class of problems with recognizers, NTMs,
and verifiers. These are much harder to reason about.

The Unhalting Problem

● Consider this problem:

Given a TM M and a string w,
does M loop on w?

● As a formal language:

LOOP = { ⟨M, w⟩ | M is a TM that
loops on w }

● How hard of a problem is this to solve?

The Unhalting Problem

● Intuitively, would we expect this language to
belong to class R?
● No: The only general way to figure out what a TM

will do is to run it.
● Can formalize this by building a program that asks if

it will loop and does the opposite.

● Intuitively, would we expect this language to
belong to class RE?
● No: If you were convinced that a TM will go into an

infinite loop, what could you do to prove this to me?

Self-Reference and Verifiers

● Assume for the sake of contradiction that LOOP ∈ RE.
● This means that there's a verifier for LOOP.
● In software, that would be a function like this one:

 bool imConvincedWillLoop(string program,
 string input,
 string certificate)

This function is our verifier:
● If program loops on input, then there is some choice of
certificate that causes this function to return true.

● If program halts on input, this function always returns false,
regardless of what certificate is.

● The function always returns a value.

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

bool imConvincedWillLoop(string program,
 string input,
 string certificate) {

/* … implementation … */
}

int main() {
 string me = mySource();
 string input = getInput();

 for (i = 0 to infinity) {
 for (each string c of length i) {
 if (imConvincedWillLoop(me, input, c)) {
 accept();
 }
 }
 }
}

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

What happens if...

… this program loops on its input?
There is a certificate that proves it loops.
So the program halts after it finds that certificate!

… this program halts on its input?
There is no certificate that proves it loops.
So the program loops infinitely!

Self-Reference and RE

● The proof template for showing undecidability via
self-reference is the following:
● Build a machine that asks what it is about to do.
● Based on the answer, have the machine do the exact

opposite.

● The proof template for showing unrecognizability
via self-reference is the following:
● Build a machine that tries to prove it will do something.
● If it proves that it will, have it do the opposite.
● If it can't prove that it will, it will loop infinitely. Design

the machine so that looping infinitely causes it to behave
incorrectly.

Theorem: LOOP ∉ RE.

Proof: By contradiction; assume that LOOP ∈ RE. Then there is
some verifier V for LOOP. This verifier has the property that
if M is a TM that loops on some string w, there is a certificate
c such that V accepts ⟨M, w, c⟩, and if M halts on w, V will
never accept ⟨M, w, c⟩ for any certificate c.

Given this, we could then construct the following TM:

M = “On input w:
 Have M obtain its own description, ⟨M⟩.

 For all strings c:
 If V accepts ⟨M, w, c⟩, accept.

Choose any string w and trace through the execution of the
machine. If V ever accepts ⟨M, w, c⟩, we are guaranteed that
M loops on w, but in this case we find that M accepts w, a
contradiction. If V never accepts ⟨M, w, c⟩, then we are
guaranteed that M halts on w, but in this case we find that M
loops infinitely on w, a contradiction.

In both cases we reach a contradiction, so our assumption
must have been wrong. Therefore, LOOP ∉ RE. ■

Regular
Languages CFLs

All Languages

R RE

LD

ATM

HALT

LOOP

LOOP ∉ RE

● The fact that LOOP ∉ RE gives us a
powerful intuition:

There is no general way to prove that
a TM will loop on a particular input.

● This is a really useful intuition going
forward – it will help you get a better
sense for when a problem is likely to be
unrecognizable.

Non-RE Languages

● If a problem is not in RE, then there must be
instances of the problem where the answer
is “yes,” but there is no way to prove that
the answer is “yes.”

● Not only will rational thought not always
discover the truth, rational thought is not
powerful enough to even confirm the truth.

There are true statements
that are not provable!

Where We Stand

● We've just done a crazy, whirlwind tour of computability
theory:
● The Church-Turing thesis tells us that TMs give us a

mechanism for studying computation in the abstract.
● Universal computers – computers as we know them – are not

just a stroke of luck. The existence of the universal TM ensures
that such computers must exist.

● Self-reference is an inherent consequence of computational
power.

● Undecidable problems exist partially as a consequence of the
above and indicate that there are statements whose truth can't
be determined by computational processes.

● Unrecognizable problems also exist partially through self-
reference and indicate that there are limits to mathematical
proof.

Where We've Been

● The class R represents problems that can be
solved by a computer.

● The class RE represents problems where “yes”
answers can be verified by a computer.

The mapping reduction can be used to find
connections between problems.

Where We're Going

● The class P represents problems that can be
solved efficiently by a computer.

● The class NP represents problems where “yes”
answers can be verified efficiently by a
computer.

It may be that since one is customarily
concerned with existence, […] finiteness,
and so forth, one is not inclined to take
seriously the question of the existence of a
better-than-finite algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”

It may be that since one is customarily
concerned with existence, […] finiteness,
and so forth, one is not inclined to take
seriously the question of the existence of a
better-than-finite algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”

It may be that since one is customarily
concerned with existence, […] finiteness,
and so forth, one is not inclined to take
seriously the question of the existence of a
better-than-finite algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”

It may be that since one is customarily
concerned with existence, […] decidability,
and so forth, one is not inclined to take
seriously the question of the existence of a
better-than-decidable algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”

A Decidable Problem
● Presburger arithmetic is a logical system for reasoning

about arithmetic.

● ∀x. x + 1 ≠ 0

● ∀x. ∀y. (x + 1 = y + 1 → x = y)

● ∀x. x + 0 = x

● ∀x. ∀y. (x + y) + 1 = x + (y + 1)

● ∀x. ((P(0) ∧ ∀y. (P(y) → P(y + 1))) → ∀x. P(x)

● Given a statement, it is decidable whether that statement can
be proven from the laws of Presburger arithmetic.

● Any Turing machine that decides whether a statement in
Presburger arithmetic is true or false has to move the tape
head at least times on some inputs of length n (for some
fixed constant c).

22cn

For Reference

● Assume c = 1.

220

=2

221

=4

222

=16

223

=256

224

=65536

225

=18446744073709551616

226

=340282366920938463463374607431768211456

For Reference

● Assume c = 1.

220

=2

221

=4

222

=16

223

=256

224

=65536

225

=18446744073709551616

226

=340282366920938463463374607431768211456

For Reference

● Assume c = 1.

220

=2

221

=4

222

=16

223

=256

224

=65536

225

=18446744073709551616

226

=340282366920938463463374607431768211456

For Reference

● Assume c = 1.

220

=2

221

=4

222

=16

223

=256

224

=65536

225

=18446744073709551616

226

=340282366920938463463374607431768211456

For Reference

● Assume c = 1.

220

=2

221

=4

222

=16

223

=256

224

=65536

225

=18446744073709551616

226

=340282366920938463463374607431768211456

For Reference

● Assume c = 1.

220

=2

221

=4

222

=16

223

=256

224

=65536

225

=18446744073709551616

226

=340282366920938463463374607431768211456

For Reference

● Assume c = 1.

220

=2

221

=4

222

=16

223

=256

224

=65536

225

=18446744073709551616

226

=340282366920938463463374607431768211456

The Limits of Decidability

● The fact that a problem is decidable does not
mean that it is feasibly decidable.

● In computability theory, we ask the question

What problems can be solved by a computer?
● In complexity theory, we ask the question

What problems can be solved efficiently by a
computer?

● In the remainder of this course, we will
explore this question in more detail.

Regular
Languages CFLs

All Languages

R RE

 All Languages

RERegular
Languages CFLs R

 Undecidable Languages

Regular
Languages CFLs R

Efficiently
Decidable

Languages

Time-Out for Announcements!

Midterm Grading

● You're done with midterms for CS103!
Hooray!

● The TAs will be grading the second
midterm over the long weekend. We'll
have it graded and will release solutions
and stats on Wednesday.

Your Questions

“It seems like every quarter has this
horrible overwhelming part in the middle.

People tell me to just suffer though it
because it'll be over in a few weeks. We're

supposed to be here for several years,
though. How can I make it sustainable?”

You can end up feeling overwhelmed if

· you have too many things to do,
· you have to do all of them well,
· you don't enjoy them,
· you have limited time to do them, and
· this process repeats.

Try addressing each of these independently. If you
can address the root causes of each, you will
probably end up a lot happier.

You can end up feeling overwhelmed if

· you have too many things to do,
· you have to do all of them well,
· you don't enjoy them,
· you have limited time to do them, and
· this process repeats.

Try addressing each of these independently. If you
can address the root causes of each, you will
probably end up a lot happier.

“I read an article about artificial
intelligence that said that within the

century we will probably develop AI that is
smarter than us, and by self-improvement

we will end up with superintelligent
machines that can change everything. Is

this possible?”

I don't see any reason why this
couldn't happen. I doubt this will
happen any time soon, though.

I don't see any reason why this
couldn't happen. I doubt this will
happen any time soon, though.

“How is the final grading going to happen
in this class? The raw percentages on the

assignments and the corresponding
percentiles are very different.”

I use raw scores for everything – I
only curve raw total scores. Only then

do I look at percentiles.

I use raw scores for everything – I
only curve raw total scores. Only then

do I look at percentiles.

“CANDIDATE FOR CUTEST ANIMAL”

Slow Loris are
awesome. ☺

Slow Loris are
awesome. ☺

https://www.youtube.com/watch?v=18-xvIjH8T4

Back to CS103!

The Setup

● In order to study computability, we
needed to answer these questions:
● What is “computation?”
● What is a “problem?”
● What does it mean to “solve” a problem?

● To study complexity, we need to answer
these questions:
● What does “complexity” even mean?
● What is an “efficient” solution to a problem?

Measuring Complexity

● Suppose that we have a decider D for some language L.
● How might we measure the complexity of D?

● Number of states.
● Size of tape alphabet.
● Size of input alphabet.
● Amount of tape required.
● Number of steps required.
● Number of times a given state is entered.
● Number of times a given symbol is printed.
● Number of times a given transition is taken.
● (Plus a whole lot more...)

Measuring Complexity

● Suppose that we have a decider D for some language L.
● How might we measure the complexity of D?

● Number of states.
● Size of tape alphabet.
● Size of input alphabet.
● Amount of tape required.
● Amount of time required.
● Number of times a given state is entered.
● Number of times a given symbol is printed.
● Number of times a given transition is taken.
● (Plus a whole lot more...)

Measuring Complexity

● Suppose that we have a decider D for some language L.
● How might we measure the complexity of D?

Number of states.

Size of tape alphabet.

Size of input alphabet.

Amount of tape required.
● Amount of time required.

Number of times a given state is entered.

Number of times a given symbol is printed.

Number of times a given transition is taken.

(Plus a whole lot more...)

What is an efficient algorithm?

Searching Finite Spaces

● Many decidable problems can be solved by
searching over a large but finite space of
possible options.

● Searching this space might take a
staggeringly long time, but only finite time.

● From a decidability perspective, this is totally
fine.

● From a complexity perspective, this is totally
unacceptable.

A Sample Problem

4 3 11 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

4 3 11 9 7 13 5 6 1 12 2 8 0 10

Goal: Find the length of
the longest increasing
subsequence of this

sequence.

Goal: Find the length of
the longest increasing
subsequence of this

sequence.

A Sample Problem

4 3 11 9 7 13 5 6 1 12 2 8 0 10

Goal: Find the length of
the longest increasing
subsequence of this

sequence.

Goal: Find the length of
the longest increasing
subsequence of this

sequence.

A Sample Problem

4 3 11 9 7 13 5 6 1 12 2 8 0 10

Goal: Find the length of
the longest increasing
subsequence of this

sequence.

Goal: Find the length of
the longest increasing
subsequence of this

sequence.

A Sample Problem

Longest so far:

4 3 11 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

4 3 11 9 7 13 5 6 1 12 2 8 0 10

Longest so far:

A Sample Problem

4 3 11 9 7 13 5 6 1 12 2 8 0 10

Longest so far:

A Sample Problem

4 3 11 9 7 13 5 6 1 12 2 8 0 10

Longest so far: 4

34 3 11 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

4 11 9 7 13 5 6 1 12 2 8 0 10

Longest so far: 4

4 34 3 11 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

11 9 7 13 5 6 1 12 2 8 0 10

Longest so far: 4

4 3 114 3 11 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

9 7 13 5 6 1 12 2 8 0 10

Longest so far: 4

44 3 113 11 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

9 7 13 5 6 1 12 2 8 0 10

Longest so far: 4

44 3 113 11 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

9 7 13 5 6 1 12 2 8 0 10

Longest so far: 4 11

4 34 3 1111 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

9 7 13 5 6 1 12 2 8 0 10

Longest so far: 4 11

44 33 1111 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

9 7 13 5 6 1 12 2 8 0 10

Longest so far: 4 11

4 3 11 94 3 11 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

7 13 5 6 1 12 2 8 0 10

Longest so far: 4 11

44 3 11 93 11 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

7 13 5 6 1 12 2 8 0 10

Longest so far: 4 11

4 34 3 11 911 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

7 13 5 6 1 12 2 8 0 10

Longest so far: 4 11

44 33 11 911 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

7 13 5 6 1 12 2 8 0 10

Longest so far: 4 11

4 3 114 3 11 99 7 13 5 6 1 12 2 8 0 10

A Sample Problem

7 13 5 6 1 12 2 8 0 10

Longest so far: 4 11

44 3 113 11 99 7 13 5 6 1 12 2 8 0 10

A Sample Problem

7 13 5 6 1 12 2 8 0 10

Longest so far: 4 11

4 34 3 1111 99 7 13 5 6 1 12 2 8 0 10

A Sample Problem

7 13 5 6 1 12 2 8 0 10

Longest so far: 4 11

44 33 1111 99 7 13 5 6 1 12 2 8 0 10

A Sample Problem

7 13 5 6 1 12 2 8 0 10

Longest so far: 4 11

4 3 11 9 74 3 11 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

13 5 6 1 12 2 8 0 10

Longest so far: 4 11

4 3 11 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

Longest so far: 4 11

4 3 11 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

Longest so far: 4 11

4 3 11 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

Longest so far: 4 11

4 3 11 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

Longest so far: 4 11

How many different
subsequences are there in a
sequence of n elements? 2n

How long does it take to check
each subsequence? O(n) time.

Runtime is around O(n · 2n).

How many different
subsequences are there in a
sequence of n elements? 2n

How long does it take to check
each subsequence? O(n) time.

Runtime is around O(n · 2n).

4 3 11 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

Longest so far: 4 11

How many different
subsequences are there in a
sequence of n elements? 2n

How long does it take to check
each subsequence? O(n) time.

Runtime is around O(n · 2n).

How many different
subsequences are there in a
sequence of n elements? 2n

How long does it take to check
each subsequence? O(n) time.

Runtime is around O(n · 2n).

4 3 11 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

Longest so far: 4 11

How many different
subsequences are there in a
sequence of n elements? 2n

How long does it take to check
each subsequence? O(n) time.

Runtime is around O(n · 2n).

How many different
subsequences are there in a
sequence of n elements? 2n

How long does it take to check
each subsequence? O(n) time.

Runtime is around O(n · 2n).

4 3 11 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

Longest so far: 4 11

How many different
subsequences are there in a
sequence of n elements? 2n

How long does it take to check
each subsequence? O(n) time.

Runtime is around O(n · 2n).

How many different
subsequences are there in a
sequence of n elements? 2n

How long does it take to check
each subsequence? O(n) time.

Runtime is around O(n · 2n).

4 3 11 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

Longest so far: 4 11

How many different
subsequences are there in a
sequence of n elements? 2n

How long does it take to check
each subsequence? O(n) time.

Runtime is around O(n · 2n).

How many different
subsequences are there in a
sequence of n elements? 2n

How long does it take to check
each subsequence? O(n) time.

Runtime is around O(n · 2n).

4 3 11 9 7 13 5 6 1 12 2 8 0 104 3 11 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

44 3 11 9 7 13 5 6 1 12 2 8 0 103 11 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

44 3 11 9 7 13 5 6 1 12 2 8 0 103 11 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

1

4 34 3 11 9 7 13 5 6 1 12 2 8 0 1011 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

1

4 34 3 11 9 7 13 5 6 1 12 2 8 0 1011 9 7 13 5 6 1 12 2 8 0 10

A Sample Problem

1 1

3 114 34 11 9 7 13 5 6 1 12 2 8 0 109 7 13 5 6 1 12 2 8 0 10

A Sample Problem

1 1

3 114 34 11 9 7 13 5 6 1 12 2 8 0 109 7 13 5 6 1 12 2 8 0 10

A Sample Problem

1 1 2

11 93 114 34 9 7 13 5 6 1 12 2 8 0 107 13 5 6 1 12 2 8 0 10

A Sample Problem

1 1 2

11 93 114 34 9 7 13 5 6 1 12 2 8 0 107 13 5 6 1 12 2 8 0 10

A Sample Problem

1 1 2 2

9 711 93 114 34 7 13 5 6 1 12 2 8 0 1013 5 6 1 12 2 8 0 10

A Sample Problem

1 1 2 2

9 711 93 114 34 7 13 5 6 1 12 2 8 0 1013 5 6 1 12 2 8 0 10

A Sample Problem

1 1 2 2 2

7 139 711 93 114 34 13 5 6 1 12 2 8 0 105 6 1 12 2 8 0 10

A Sample Problem

1 1 2 2 2

131379 711 93 114 34 5 6 1 12 2 8 0 105 6 1 12 2 8 0 10

A Sample Problem

1 1 2 2 2 3

13 51379 711 93 114 34 5 6 1 12 2 8 0 106 1 12 2 8 0 10

A Sample Problem

1 1 2 2 2 3

13 51379 711 93 114 34 5 6 1 12 2 8 0 106 1 12 2 8 0 10

A Sample Problem

1 1 2 2 2 3 2

5 613 51379 711 93 114 34 6 1 12 2 8 0 101 12 2 8 0 10

A Sample Problem

1 1 2 2 2 3 2

5 613 51379 711 93 114 34 6 1 12 2 8 0 101 12 2 8 0 10

A Sample Problem

1 1 2 2 2 3 2 3

131379 711 93 114 34 5 6 1 12 2 8 0 105 6 1 12 2 8 0 10

A Sample Problem

1 1 2 2 2 3 32 3 1 4 2 4 1 5

3 5 6 8 10131379 711 93 1144 5 6 1 12 2 8 0 101 12 2 0

A Sample Problem

1 1 2 2 2 3 32 3 1 4 2 4 1 5

3 5 6 8 10131379 711 93 1144 5 6 1 12 2 8 0 101 12 2 0

A Sample Problem

1 1 2 2 2 3 32 3 1 4 2 4 1 5

How many elements of the
sequence do we have to look at

when considering the kth
element of the sequence? k – 1

Total runtime is
1 + 2 + … + (n – 1) + n = O(n2)

How many elements of the
sequence do we have to look at

when considering the kth
element of the sequence? k – 1

Total runtime is
1 + 2 + … + (n – 1) + n = O(n2)

3 5 6 8 10131379 711 93 1144 5 6 1 12 2 8 0 101 12 2 0

A Sample Problem

1 1 2 2 2 3 32 3 1 4 2 4 1 5

How many elements of the
sequence do we have to look at

when considering the kth
element of the sequence? k – 1

Total runtime is
1 + 2 + … + (n – 1) + n = O(n2)

How many elements of the
sequence do we have to look at

when considering the kth
element of the sequence? k – 1

Total runtime is
1 + 2 + … + (n – 1) + n = O(n2)

3 5 6 8 10131379 711 93 1144 5 6 1 12 2 8 0 101 12 2 0

A Sample Problem

1 1 2 2 2 3 32 3 1 4 2 4 1 5

How many elements of the
sequence do we have to look at

when considering the kth
element of the sequence? k – 1

Total runtime is
1 + 2 + … + (n – 1) = O(n2)

How many elements of the
sequence do we have to look at

when considering the kth
element of the sequence? k – 1

Total runtime is
1 + 2 + … + (n – 1) = O(n2)

Another Problem

E

A

F

C

D

B

Another Problem

E

A

F

C

D

B

To

From

Another Problem

E

A

F

C

D

B

To

From

Goal: Determine the
length of the shortest
path from A to F in

this graph.

Goal: Determine the
length of the shortest
path from A to F in

this graph.

Another Problem

E

A

F

C

D

B

To

From

A

A B

A C

A D

A E

A F

A B C

A B D

…

Another Problem

E

A

F

C

D

B

To

From

Number of possible
ways to order a

subset of n nodes is
O(n · n!)

Time to check a
path is O(n).

Runtime: O(n2 · n!)

Number of possible
ways to order a

subset of n nodes is
O(n · n!)

Time to check a
path is O(n).

Runtime: O(n2 · n!)

Another Problem

E

A

F

C

D

B

To

From

Number of possible
ways to order a

subset of n nodes is
O(n · n!)

Time to check a
path is O(n).

Runtime: O(n2 · n!)

Number of possible
ways to order a

subset of n nodes is
O(n · n!)

Time to check a
path is O(n).

Runtime: O(n2 · n!)

Another Problem

E

A

F

C

D

B

To

From

Number of possible
ways to order a

subset of n nodes is
O(n · n!)

Time to check a
path is O(n).

Runtime: O(n2 · n!)

Number of possible
ways to order a

subset of n nodes is
O(n · n!)

Time to check a
path is O(n).

Runtime: O(n2 · n!)

Another Problem

E

A

F

C

D

B

To

From

Another Problem

E

A

F

C

D

B

To

From

0

Another Problem

E

A

F

C

D

B

To

From

0

Another Problem

E

A

F

C

D

B

To

From

0

Another Problem

E

A

F

C

D

B

To

From

0

E

Another Problem

E

A

F

C

D

B

To

From

0

1

Another Problem

E

A

F

C

D

B

To

From

0

1

Another Problem

E

A

F

C

D

B

To

From

0

1

C D

Another Problem

E

A

F

C

D

B

To

From

0

1

D

2

Another Problem

E

A

F

C

D

B

To

From

0

1

2

2

Another Problem

E

A

F

C

D

B

To

From

0

1

2

2

Another Problem

E

A

F

C

D

B

To

From

0

1

2

2 B F

Another Problem

E

A

F

C

D

B

To

From

0

1

2

2 F

3

Another Problem

E

A

F

C

D

B

To

From

0

1

2

2

3

3

Another Problem

E

A

F

C

D

B

To

From

0

1

2

2

3

3

With a precise
analysis, runtime

is O(n + m),
where n is the

number of nodes
and m is the

number of edges.

With a precise
analysis, runtime

is O(n + m),
where n is the

number of nodes
and m is the

number of edges.

For Comparison

● Longest increasing
subsequence:
● Naive: O(n · 2n)
● Fast: O(n2)

● Shortest path
problem:
● Naive: O(n2 · n!)
● Fast: O(n + m),

where n is the
number of nodes
and m the number
of edges. (Take
CS161 for details!)

Defining Efficiency

● When dealing with problems that search
for the “best” object of some sort, there
are often at least exponentially many
possible options.

● Brute-force solutions tend to take at least
exponential time to complete.

● Clever algorithms often run in time O(n),
or O(n2), or O(n3), etc.

Polynomials and Exponentials

● An algorithm runs in polynomial time if
its runtime is some polynomial in n.
● That is, time O(nk) for some constant k.

● Polynomial functions “scale well.”
● Small changes to the size of the input do not

typically induce enormous changes to the
overall runtime.

● Exponential functions scale terribly.
● Small changes to the size of the input induce

huge changes in the overall runtime.

The Cobham-Edmonds Thesis

A language L can be decided efficiently if
there is a TM that decides it in polynomial time.

Equivalently, L can be decided efficiently iff
it can be decided in time O(nk) for some k ∈ ℕ.

Like the Church-Turing thesis, this is
not a theorem!

It's an assumption about the nature of
efficient computation, and it is

somewhat controversial.

Like the Church-Turing thesis, this is
not a theorem!

It's an assumption about the nature of
efficient computation, and it is

somewhat controversial.

The Cobham-Edmonds Thesis

● Efficient runtimes:
● 4n + 13
● n3 – 2n2 + 4n
● n log log n

● “Efficient” runtimes:
● n1,000,000,000,000

● 10500

● Inefficient runtimes:
● 2n

● n!
● nn

● “Inefficient” runtimes:
● n0.0001 log n

● 1.000000001n

Why Polynomials?

● Polynomial time somewhat captures efficient
computation, but has a few edge cases.

● However, polynomials have very nice mathematical
properties:
● The sum of two polynomials is a polynomial. (Running one

efficient algorithm after the other gives an efficient
algorithm.)

● The product of two polynomials is a polynomial. (Running
one efficient algorithm a “reasonable” number of times
gives an efficient algorithm.)

● The composition of two polynomials is a polynomial.
(Using the output of one efficient algorithm as the input to
another efficient algorithm gives an efficient algorithm.)

The Complexity Class P

● The complexity class P (for polynomial
time) contains all problems that can be
solved in polynomial time.

● Formally:

P = { L | There is a polynomial-time
decider for L }

● Assuming the Cobham-Edmonds thesis, a
language is in P if it can be decided
efficiently.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169

