
  

P and NP



  

Recap from Last Time



  

The Limits of Decidability

● In computability theory, we ask the 
question

What problems can be solved by a 
computer?

● In complexity theory, we ask the question

What problems can be solved efficiently 
by a computer?

● In the remainder of this course, we will 
explore this question in more detail.
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What is an efficient algorithm?



  

For Comparison

● Longest increasing 
subsequence:
● Naive: O(n · 2n)
● Fast: O(n2)

● Shortest path 
problem:
● Naive: O(n2 · n!)
● Fast: O(n + m), 

where n is the 
number of nodes 
and m the number 
of edges. (Take 
CS161 for details!)



  

Polynomials and Exponentials

● An algorithm runs in polynomial time if 
its runtime is some polynomial in n.
● That is, time O(nk) for some constant k.

● Polynomial functions “scale well.”
● Small changes to the size of the input do not 

typically induce enormous changes to the 
overall runtime.

● Exponential functions scale terribly.
● Small changes to the size of the input induce 

huge changes in the overall runtime.



  

The Cobham-Edmonds Thesis

A language L can be decided efficiently if
there is a TM that decides it in polynomial time.

Equivalently, L can be decided efficiently iff
it can be decided in time O(nk) for some k ∈ ℕ.

Like the Church-Turing thesis, this is 
not a theorem!

 

It's an assumption about the nature of 
efficient computation, and it is 

somewhat controversial.

Like the Church-Turing thesis, this is 
not a theorem!

 

It's an assumption about the nature of 
efficient computation, and it is 

somewhat controversial.



  

The Cobham-Edmonds Thesis

● Efficient runtimes:
● 4n + 13
● n3 – 2n2 + 4n
● n log log n

● “Efficient” runtimes:
● n1,000,000,000,000

● 10500

● Inefficient runtimes:
● 2n

● n!
● nn

● “Inefficient” runtimes:
● n0.0001 log n

● 1.000000001n



  

The Complexity Class P

● The complexity class P (for polynomial 
time) contains all problems that can be 
solved in polynomial time.

● Formally:

P = { L | There is a polynomial-time   
decider for L }      

● Assuming the Cobham-Edmonds thesis, a 
language is in P if it can be decided 
efficiently.



  

New Stuff!



  

Examples of Problems in P

● All regular languages are in P.
● All have linear-time TMs.

● All CFLs are in P.
● Requires a more nuanced argument (the 

CYK algorithm or Earley's algorithm.)

● Many other problems are in P.
● More on that in a second.
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Problems in P

● Graph connectivity:

Given a graph G and nodes s and t,     
is there a path from s to t?      

● Primality testing:

Given a number p, is p prime?  (Best known TM 
for this takes time O(n37).)

● Maximum matching:

Given a set of tasks and workers who can perform 
those tasks, if each worker performs exactly one 

task, can at least n tasks be performed?



  

Problems in P

● Remoteness testing:

Given a graph G, are all of the nodes in G
within distance at most k of one another?

● Linear programming:

Given a linear set of constraints
and linear objective function, is the

optimal solution at least n?  

● Edit distance:

Given two strings, can the strings be 
transformed into one another in at most n 

single-character edits? 



  

What can't you do in polynomial time?



  

start

end

How many simple 
paths are there 
from the start 
node to the end 

node?

How many simple 
paths are there 
from the start 
node to the end 

node?



  

, , ,

How many 
subsets of this 
set are there?

How many 
subsets of this 
set are there?



  

An Interesting Observation

● There are (at least) exponentially many 
objects of each of the preceding types.

● However, each of those objects is not very 
large.
● Each simple path has length no longer than the 

number of nodes in the graph.
● Each subset of a set has no more elements than 

the original set.

● This brings us to our next topic...



  

NPN P



  

What if you could magically
guess which element of the
search space was the one

you wanted?



  

A Sample Problem
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M = “On input ⟨S, k⟩, where S is a sequence
of numbers and k is a natural number:

 

· Nondeterministically guess a subsequence
  of S.

 

· If it is an ascending subsequence of length
  at least k, accept.

 

· Otherwise, reject.”
 

 

M = “On input ⟨S, k⟩, where S is a sequence
of numbers and k is a natural number:

 

· Nondeterministically guess a subsequence
  of S.

 

· If it is an ascending subsequence of length
  at least k, accept.

 

· Otherwise, reject.”
 



  

Another Problem

E

A

F

C

D

B

 

M = “On input ⟨G, u, v, k⟩, where G is a graph,
u and v are nodes in G, and k ∈ ℕ:

 

· Nondeterministically guess a permutation
  of at most k nodes from G.

 

· If the permutation is a path from u to v,
  accept.

 

· Otherwise, reject.
 

 

M = “On input ⟨G, u, v, k⟩, where G is a graph,
u and v are nodes in G, and k ∈ ℕ:

 

· Nondeterministically guess a permutation
  of at most k nodes from G.

 

· If the permutation is a path from u to v,
  accept.

 

· Otherwise, reject.
 



  

How do we measure NTM efficiency?



  

Analyzing NTMs

● When discussing deterministic TMs, the notion of 
time complexity is (reasonably)
straightforward.

● Recall: One way of thinking about 
nondeterminism is as a tree.

● In a deterministic computation,
the tree is a straight line.

● The time complexity is the
height of that straight line.



  

Analyzing NTMs

● When discussing deterministic TMs, the notion of time 
complexity is (reasonably) straightforward.

● Recall: One way of thinking about nondeterminism is 
as a tree.

● The time complexity is the height of the
tree (the length of the longest possible
choice we could make).

● Intuition: If you ran all possible
branches in parallel, how long would
it take before all branches completed?



  

The Size of the Tree



  

From NTMs to TMs

● Theorem: For any NTM with time 
complexity f(n), there is a TM with time 
complexity 2O(f(n)).

● It is unknown whether it is possible 
to do any better than this in the 
general case.

● NTMs are capable of exploring multiple 
options in parallel; this “seems” 
inherently faster than deterministic 
computation.



  

The Complexity Class NP

● The complexity class NP 
(nondeterministic polynomial time) 
contains all problems that can be solved in 
polynomial time by an NTM.

● Formally:

  NP = { L | There is an NTM that
          decides L in non-deterministic

       polynomial time. }
● What types of problems are in NP?



  

A Problem in NP
● Does an n2 × n2 Sudoku grid have a solution?

● M = “On input ⟨S⟩, an encoding of a Sudoku puzzle:
– Nondeterministically guess how to fill in all the squares.

– Deterministically check whether the guess is correct.

– If so, accept; if not, reject.” 2
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For an arbitrary n2 × n2 grid:
 

Total number of cells in the grid: n4

 

Total time to fill in the grid: O(n4)
 

Total number of rows, columns, and 
boxes to check: O(n2)
 

Total time required to check each 
row/column/box: O(n2)
 

Total runtime: O(n4)

For an arbitrary n2 × n2 grid:
 

Total number of cells in the grid: n4

 

Total time to fill in the grid: O(n4)
 

Total number of rows, columns, and 
boxes to check: O(n2)
 

Total time required to check each 
row/column/box: O(n2)
 

Total runtime: O(n4)



  

A Problem in NP

● A k-coloring of an undirected graph G is a way of 
assigning one if k colors to each node in G such that 
no two nodes joined by an edge have the same color.
● Applications in compilers, cell phone towers, etc.

● Question: Given a graph G and a number k, is graph 
G k-colorable?

● M = “On input ⟨G, k⟩:
● Nondeterministically guess a k-coloring of the nodes of G.
● Deterministically check whether it is legal.
● If so, accept; if not, reject.”



  

Other Problems in NP

● Subset sum:

Given a set S of natural numbers and a target 
number n, is there a subset of S that sums to n?

● Longest path:

Given a graph G, a pair of nodes u and v, and a 
number k, is there a simple path from u to v of 

length at least k? 

● Job scheduling:

Given a set of jobs J, a number of workers k, and 
a time limit t, can the k workers, working in 
parallel complete all jobs in J within time t?



  

Problems and Languages
● Abstract question: does a Sudoku grid 

have a solution?
● Formalized as a language:

SUDOKU = { ⟨S⟩ | S is a solvable
                               Sudoku grid. }

● In other words:

S is solvable iff ⟨S⟩ ∈ SUDOKU  



  

Problems and Languages
● Abstract question: can a graph be 

colored with k colors?
● Formalized as a language:

COLOR = { ⟨G, k⟩ | G is an undirected
                              graph, k ∈ ℕ, and
                               G is k-colorable. }

● In other words:

G is k-colorable iff ⟨G, k⟩ ∈ COLOR  



  

An Intuition for NP

● Intuitively, a language L is in NP if for 
every w ∈ L, there is an efficient way to 
prove to someone that w ∈ L.

● Analogous to the verifier intuition for RE, 
except that we need to be able to 
efficiently prove strings are in the 
language.



  

A Problem in NP
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A Problem in NP
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4 3 11 9 7 13 5 6 1 12 2 8 0 109 3 11 4 2 13 5 6 1 12 7 8 0 10

A Problem in NP

Is there an ascending subsequence of 
length at least 7?



  

A Problem in NP

Is there a simple path that goes 
through every node exactly once?

1

2

5

4

6
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Verifiers

● Recall that a verifier for L is a 
deterministic TM V such that
● V halts on all inputs.
● w ∈ L    iff    ∃c ∈ Σ*. V accepts ⟨w, c⟩.

● Theorem: L ∈ RE iff there is a verifier 
for L.



  

Polynomial-Time Verifiers

● A polynomial-time verifier for L is a 
deterministic TM V such that
● V halts on all inputs.
● w ∈ L    iff    ∃c ∈ Σ*. V accepts ⟨w, c⟩.
● V's runtime is a polynomial in |w|.

● Theorem: L ∈ NP iff there is a 
polynomial-time verifier for L.



  

A Problem in NP

● Does a Sudoku grid 
have a solution?
● M = “On input 

⟨S, A⟩, an encoding 
of a Sudoku puzzle 
and an alleged 
solution to it:
– Deterministically 

check whether A is 
a solution to S.

– If so, accept; if not, 
reject.”
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A Problem in NP

● M = “On input ⟨⟨G, k⟩, C⟩, where C is an alleged 
coloring:

● Deterministically check whether C is a legal k-
coloring of G.

● If so, accept; if not, reject.”



  

The Verifier Definition of NP

● Theorem: If there is a polynomial-time 
verifier V for L, then L ∈ NP.

● Proof idea: Build an NTM that 
nondeterministically guesses a certificate, 
then deterministically runs the verifier to 
check it. Then, argue that the NTM runs in 
nondeterministic polynomial time. ■



  

The Verifier Definition of NP

● Theorem: If L ∈ NP, there is a 
polynomial-time verifier for it.

● Proof sketch: Use the general 
construction that turns an NTM into a 
verifier, and argue that the overall 
construction runs in polynomial time. ■



  

The
 

Most Important Question
 

in
 

Theoretical Computer Science



  

What is the connection between P and NP?



  

       P = { L | There is a polynomial-time
                       decider for L }

 NP = { L | There is a nondeterministic
                   polynomial-time decider for L }

P ⊆ NP



  

Does P = NP?



  

P  ≟ NP

● The P ≟ NP question is the most important question in 
theoretical computer science.

● With the verifier definition of NP, one way of phrasing 
this question is

If a solution to a problem can be checked efficiently,
can that problem be solved efficiently?

● An answer either way will give fundamental insights 
into the nature of computation.



  

Why This Matters

● The following problems are known to be efficiently 
verifiable, but have no known efficient solutions:

● Determining whether an electrical grid can be built to link up 
some number of houses for some price (Steiner tree problem).

● Determining whether a simple DNA strand exists that multiple 
gene sequences could be a part of (shortest common 
supersequence).

● Determining the best way to assign hardware resources in a 
compiler (optimal register allocation).

● Determining the best way to distribute tasks to multiple 
workers to minimize completion time (job scheduling).

● And many more.

● If P = NP, all of these problems have efficient solutions.

● If P ≠ NP, none of these problems have efficient solutions.



  

Why This Matters

● If P = NP:
● A huge number of seemingly difficult problems 

could be solved efficiently.
● Our capacity to solve many problems will scale 

well with the size of the problems we want to 
solve.

● If P ≠ NP:
● Enormous computational power would be required 

to solve many seemingly easy tasks.
● Our capacity to solve problems will fail to keep up 

with our curiosity.



  

What We Know

● Resolving P  ≟ NP has proven extremely difficult.

● In the past 43 years:
● Not a single correct proof either way has been 

found.
● Many types of proofs have been shown to be 

insufficiently powerful to determine whether 
P ≟ NP.

● A majority of computer scientists believe P ≠ NP, 
but this isn't a large majority.

● Interesting read: Interviews with leading thinkers 
about P  ≟ NP:

● http://web.ing.puc.cl/~jabaier/iic2212/poll-1.pdf

http://web.ing.puc.cl/~jabaier/iic2212/poll-1.pdf


  

The Million-Dollar Question

The Clay Mathematics Institute has offered 
a $1,000,000 prize to anyone who proves 

or disproves P = NP.



  

Time-Out for Announcements!



  

Problem Sets

● Problem Set Seven was due at the start of class 
today.
● Want to use a late day? Turn it in tomorrow by 

12:50PM.
● Want to use two late days? Turn it in on Friday by 

12:50PM.

● Problem Set Eight goes out now, is due one 
week from today at 12:50PM.
● Explore the limits of RE languages, the P vs. NP 

question, and the Big Picture.
● No late days may be used on this assignment. 

It's university policy; sorry about that!



  

Your Questions



  

“How much math do I need for the different 
areas of CS? Should I take linear algebra? 
Partial differential equations? (I've heard 

they're used in graphics?) Statistics (for ML)? 
Game theory (also for ML)? Real analysis?”

It really depends on the field you're in. Everyone needs linear algebra 
– it's really useful! Math 51 does a bit of this, but courses like Math 

104, EE103, CS205A, and Math 113 would all be good here.
 

If you're thinking about doing AI, I'd recommend getting a lot of 
background in linear algebra and statistics. If you want to do graphics, 
take more linear algebra, geometry, and topology. For crypto, take 
number theory and abstract algebra. For algorithms, combinatorics is 
quite useful. Convex optimization is also a really nice tool to have. 
Game theory and real analysis are probably only important if you 

specifically want to use them; you probably don't need them for AI.

It really depends on the field you're in. Everyone needs linear algebra 
– it's really useful! Math 51 does a bit of this, but courses like Math 

104, EE103, CS205A, and Math 113 would all be good here.
 

If you're thinking about doing AI, I'd recommend getting a lot of 
background in linear algebra and statistics. If you want to do graphics, 
take more linear algebra, geometry, and topology. For crypto, take 
number theory and abstract algebra. For algorithms, combinatorics is 
quite useful. Convex optimization is also a really nice tool to have. 
Game theory and real analysis are probably only important if you 

specifically want to use them; you probably don't need them for AI.



  

“Where do you see yourself in 5 years?”

That's a tough one. I'm not 
sure! Probably keeping up 

academics in some way, shape, or 
form. I'd like to keep teaching, 
but there's a part of me that 

thinks I might try out a Ph.D if I 
can stomach missing out on 

teaching.

That's a tough one. I'm not 
sure! Probably keeping up 

academics in some way, shape, or 
form. I'd like to keep teaching, 
but there's a part of me that 

thinks I might try out a Ph.D if I 
can stomach missing out on 

teaching.



  

“Where do you see yourself in 30 years?”

Uh... no 
idea.

Uh... no 
idea.



  

“With the quarter winding down, it's hard to 
stay motivated while classes start cramming 
in material. What are some ways to keep our 
momentum, for this class and in general?”

For starters, hang in there!
 

For CS103, we're just about done with new topics, even though it 
doesn't look like it. You're at a really cool point now where you can 

look back over everything we've done and start to see a bigger 
picture at work. All of these topics connect and interrelate in 

interesting and surprising ways. Think about the overarching questions 
for the class – do you see how they led us here?

 

For other courses – assuming the course content is not chosen 
randomly, there's likely a similar story at work. See if you can thread a 
narrative through what you're learning. How does everything relate? 
Why are you learning it? And what comes next? Having a sense of 

where you're going can make things a lot more interesting.

For starters, hang in there!
 

For CS103, we're just about done with new topics, even though it 
doesn't look like it. You're at a really cool point now where you can 

look back over everything we've done and start to see a bigger 
picture at work. All of these topics connect and interrelate in 

interesting and surprising ways. Think about the overarching questions 
for the class – do you see how they led us here?

 

For other courses – assuming the course content is not chosen 
randomly, there's likely a similar story at work. See if you can thread a 
narrative through what you're learning. How does everything relate? 
Why are you learning it? And what comes next? Having a sense of 

where you're going can make things a lot more interesting.



  

“Your previous talks on nixtamalization and 
orangeries were fantastic, and really 

brightened our days! Week nine isn't always 
easy, but it would be a little easier if you 

spoke again about something that fascinates 
you. Please?”

This is a good question, but I 
don't think we have time for it 

right now. Ask me again on Friday!

This is a good question, but I 
don't think we have time for it 

right now. Ask me again on Friday!



  

Back to CS103!



  

What do we know about P  ≟ NP?



  

Reducibility



  

Maximum Matching

● Given an undirected graph G, a matching in G is a 
set of edges such that no two edges share an 
endpoint.

● A maximum matching is a matching with the 
largest number of edges.

A matching, but 
not a maximum 

matching.

A matching, but 
not a maximum 

matching.



  

Maximum Matching

● Given an undirected graph G, a matching in G is a 
set of edges such that no two edges share an 
endpoint.

● A maximum matching is a matching with the 
largest number of edges.

A maximum 
matching.

A maximum 
matching.



  

Maximum Matching

● Given an undirected graph G, a matching in G is a 
set of edges such that no two edges share an 
endpoint.

● A maximum matching is a matching with the 
largest number of edges.

Maximum matchings 
are not necessarily 

unique.

Maximum matchings 
are not necessarily 

unique.



  

Maximum Matching

● Jack Edmonds' paper “Paths, Trees, and 
Flowers” gives a polynomial-time 
algorithm for finding maximum 
matchings.
● (This is the same Edmonds as in “Cobham-

Edmonds Thesis.)

● Using this fact, what other problems can 
we solve?



  

Domino Tiling



  

A Domino Tiling Reduction

● Let MATCHING be the language defined as 
follows:

MATCHING = { ⟨G, k⟩ | G is an undirected graph 
with a matching of size at least k }

● Theorem (Edmonds): MATCHING ∈ P.
● Let DOMINO be this language:

DOMINO = { ⟨D, k⟩ | D is a grid and k 
nonoverlapping dominoes can be placed on D. }

● We'll use the fact that MATCHING ∈ P to 
prove that DOMINO ∈ P.



  

Solving Domino Tiling



  

Solving Domino Tiling



  

Solving Domino Tiling



  

The Setup

● To determine whether you can place at 
least k dominoes on a crossword grid, do 
the following:
● Convert the grid into a graph: each empty 

cell is a node, and any two adjacent empty 
cells have an edge between them.

● Ask whether that graph has a matching of 
size k or greater.

● Return whatever answer you get.



  

In Pseudocode

boolean canPlaceDominos(Grid G, int k) {

 return hasMatching(gridToGraph(G), k);

}



  

Why This Works

● This overall construction gives a polynomial-
time algorithm for the domino tiling problem.

● It takes on polynomial time to convert the grid 
into a graph (we'll hand-wave these details 
away.)

● Once we have that new graph, it takes only 
polynomial time to check if there's a 
sufficiently large matching.

● Overall, this only requires polynomial time.
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