

P and NP

Recap from Last Time

The Limits of Decidability

● In computability theory, we ask the
question

What problems can be solved by a
computer?

● In complexity theory, we ask the question

What problems can be solved efficiently
by a computer?

● In the remainder of this course, we will
explore this question in more detail.

 Undecidable Languages

Regular
Languages CFLs R

Efficiently
Decidable

Languages

What is an efficient algorithm?

For Comparison

● Longest increasing
subsequence:
● Naive: O(n · 2n)
● Fast: O(n2)

● Shortest path
problem:
● Naive: O(n2 · n!)
● Fast: O(n + m),

where n is the
number of nodes
and m the number
of edges. (Take
CS161 for details!)

Polynomials and Exponentials

● An algorithm runs in polynomial time if
its runtime is some polynomial in n.
● That is, time O(nk) for some constant k.

● Polynomial functions “scale well.”
● Small changes to the size of the input do not

typically induce enormous changes to the
overall runtime.

● Exponential functions scale terribly.
● Small changes to the size of the input induce

huge changes in the overall runtime.

The Cobham-Edmonds Thesis

A language L can be decided efficiently if
there is a TM that decides it in polynomial time.

Equivalently, L can be decided efficiently iff
it can be decided in time O(nk) for some k ∈ ℕ.

Like the Church-Turing thesis, this is
not a theorem!

It's an assumption about the nature of
efficient computation, and it is

somewhat controversial.

Like the Church-Turing thesis, this is
not a theorem!

It's an assumption about the nature of
efficient computation, and it is

somewhat controversial.

The Cobham-Edmonds Thesis

● Efficient runtimes:
● 4n + 13
● n3 – 2n2 + 4n
● n log log n

● “Efficient” runtimes:
● n1,000,000,000,000

● 10500

● Inefficient runtimes:
● 2n

● n!
● nn

● “Inefficient” runtimes:
● n0.0001 log n

● 1.000000001n

The Complexity Class P

● The complexity class P (for polynomial
time) contains all problems that can be
solved in polynomial time.

● Formally:

P = { L | There is a polynomial-time
decider for L }

● Assuming the Cobham-Edmonds thesis, a
language is in P if it can be decided
efficiently.

New Stuff!

Examples of Problems in P

● All regular languages are in P.
● All have linear-time TMs.

● All CFLs are in P.
● Requires a more nuanced argument (the

CYK algorithm or Earley's algorithm.)

● Many other problems are in P.
● More on that in a second.

 Undecidable Languages

Regular
Languages CFLs RP

Problems in P

● Graph connectivity:

Given a graph G and nodes s and t,
is there a path from s to t?

● Primality testing:

Given a number p, is p prime? (Best known TM
for this takes time O(n37).)

● Maximum matching:

Given a set of tasks and workers who can perform
those tasks, if each worker performs exactly one

task, can at least n tasks be performed?

Problems in P

● Remoteness testing:

Given a graph G, are all of the nodes in G
within distance at most k of one another?

● Linear programming:

Given a linear set of constraints
and linear objective function, is the

optimal solution at least n?

● Edit distance:

Given two strings, can the strings be
transformed into one another in at most n

single-character edits?

What can't you do in polynomial time?

start

end

How many simple
paths are there
from the start
node to the end

node?

How many simple
paths are there
from the start
node to the end

node?

, , ,

How many
subsets of this
set are there?

How many
subsets of this
set are there?

An Interesting Observation

● There are (at least) exponentially many
objects of each of the preceding types.

● However, each of those objects is not very
large.
● Each simple path has length no longer than the

number of nodes in the graph.
● Each subset of a set has no more elements than

the original set.

● This brings us to our next topic...

NPN P

What if you could magically
guess which element of the
search space was the one

you wanted?

A Sample Problem

4 3 11 9 7 13 5 6 1 12 2 8 0 10

M = “On input ⟨S, k⟩, where S is a sequence
of numbers and k is a natural number:

· Nondeterministically guess a subsequence
 of S.

· If it is an ascending subsequence of length
 at least k, accept.

· Otherwise, reject.”

M = “On input ⟨S, k⟩, where S is a sequence
of numbers and k is a natural number:

· Nondeterministically guess a subsequence
 of S.

· If it is an ascending subsequence of length
 at least k, accept.

· Otherwise, reject.”

Another Problem

E

A

F

C

D

B

M = “On input ⟨G, u, v, k⟩, where G is a graph,
u and v are nodes in G, and k ∈ ℕ:

· Nondeterministically guess a permutation
 of at most k nodes from G.

· If the permutation is a path from u to v,
 accept.

· Otherwise, reject.

M = “On input ⟨G, u, v, k⟩, where G is a graph,
u and v are nodes in G, and k ∈ ℕ:

· Nondeterministically guess a permutation
 of at most k nodes from G.

· If the permutation is a path from u to v,
 accept.

· Otherwise, reject.

How do we measure NTM efficiency?

Analyzing NTMs

● When discussing deterministic TMs, the notion of
time complexity is (reasonably)
straightforward.

● Recall: One way of thinking about
nondeterminism is as a tree.

● In a deterministic computation,
the tree is a straight line.

● The time complexity is the
height of that straight line.

Analyzing NTMs

● When discussing deterministic TMs, the notion of time
complexity is (reasonably) straightforward.

● Recall: One way of thinking about nondeterminism is
as a tree.

● The time complexity is the height of the
tree (the length of the longest possible
choice we could make).

● Intuition: If you ran all possible
branches in parallel, how long would
it take before all branches completed?

The Size of the Tree

From NTMs to TMs

● Theorem: For any NTM with time
complexity f(n), there is a TM with time
complexity 2O(f(n)).

● It is unknown whether it is possible
to do any better than this in the
general case.

● NTMs are capable of exploring multiple
options in parallel; this “seems”
inherently faster than deterministic
computation.

The Complexity Class NP

● The complexity class NP
(nondeterministic polynomial time)
contains all problems that can be solved in
polynomial time by an NTM.

● Formally:

 NP = { L | There is an NTM that
 decides L in non-deterministic

 polynomial time. }
● What types of problems are in NP?

A Problem in NP
● Does an n2 × n2 Sudoku grid have a solution?

● M = “On input ⟨S⟩, an encoding of a Sudoku puzzle:
– Nondeterministically guess how to fill in all the squares.

– Deterministically check whether the guess is correct.

– If so, accept; if not, reject.” 2

4

3

6

7

8

1

5

9

5

9

8

4

1

3

6

7

2

7

1

6

5

9

2

3

8

4

9

8

1

7

5

6

2

4

3

6

7

2

3

4

1

5

9

8

4

3

5

2

8

9

7

6

1

1

6

9

8

3

5

4

2

7

8

5

4

1

2

7

9

3

6

3

2

7

9

6

4

8

1

5

For an arbitrary n2 × n2 grid:

Total number of cells in the grid: n4

Total time to fill in the grid: O(n4)

Total number of rows, columns, and
boxes to check: O(n2)

Total time required to check each
row/column/box: O(n2)

Total runtime: O(n4)

For an arbitrary n2 × n2 grid:

Total number of cells in the grid: n4

Total time to fill in the grid: O(n4)

Total number of rows, columns, and
boxes to check: O(n2)

Total time required to check each
row/column/box: O(n2)

Total runtime: O(n4)

A Problem in NP

● A k-coloring of an undirected graph G is a way of
assigning one if k colors to each node in G such that
no two nodes joined by an edge have the same color.
● Applications in compilers, cell phone towers, etc.

● Question: Given a graph G and a number k, is graph
G k-colorable?

● M = “On input ⟨G, k⟩:
● Nondeterministically guess a k-coloring of the nodes of G.
● Deterministically check whether it is legal.
● If so, accept; if not, reject.”

Other Problems in NP

● Subset sum:

Given a set S of natural numbers and a target
number n, is there a subset of S that sums to n?

● Longest path:

Given a graph G, a pair of nodes u and v, and a
number k, is there a simple path from u to v of

length at least k?

● Job scheduling:

Given a set of jobs J, a number of workers k, and
a time limit t, can the k workers, working in
parallel complete all jobs in J within time t?

Problems and Languages
● Abstract question: does a Sudoku grid

have a solution?
● Formalized as a language:

SUDOKU = { ⟨S⟩ | S is a solvable
 Sudoku grid. }

● In other words:

S is solvable iff ⟨S⟩ ∈ SUDOKU

Problems and Languages
● Abstract question: can a graph be

colored with k colors?
● Formalized as a language:

COLOR = { ⟨G, k⟩ | G is an undirected
 graph, k ∈ ℕ, and
 G is k-colorable. }

● In other words:

G is k-colorable iff ⟨G, k⟩ ∈ COLOR

An Intuition for NP

● Intuitively, a language L is in NP if for
every w ∈ L, there is an efficient way to
prove to someone that w ∈ L.

● Analogous to the verifier intuition for RE,
except that we need to be able to
efficiently prove strings are in the
language.

A Problem in NP

3

6

8

1

5

1

7

7

5

2

3

4

1

2

4

6

3

1

8

3

5

7

1

9

8

5

7

5

2

2

7

9

4

8

A Problem in NP

2

4

3

6

7

8

1

5

9

5

9

8

4

1

3

6

7

2

7

1

6

5

9

2

3

8

4

9

8

1

7

5

6

2

4

3

6

7

2

3

4

1

5

9

8

4

3

5

2

8

9

7

6

1

1

6

9

8

3

5

4

2

7

8

5

4

1

2

7

9

3

6

3

2

7

9

6

4

8

1

5

4 3 11 9 7 13 5 6 1 12 2 8 0 109 3 11 4 2 13 5 6 1 12 7 8 0 10

A Problem in NP

Is there an ascending subsequence of
length at least 7?

A Problem in NP

Is there a simple path that goes
through every node exactly once?

1

2

5

4

6

3

Verifiers

● Recall that a verifier for L is a
deterministic TM V such that
● V halts on all inputs.
● w ∈ L iff ∃c ∈ Σ*. V accepts ⟨w, c⟩.

● Theorem: L ∈ RE iff there is a verifier
for L.

Polynomial-Time Verifiers

● A polynomial-time verifier for L is a
deterministic TM V such that
● V halts on all inputs.
● w ∈ L iff ∃c ∈ Σ*. V accepts ⟨w, c⟩.
● V's runtime is a polynomial in |w|.

● Theorem: L ∈ NP iff there is a
polynomial-time verifier for L.

A Problem in NP

● Does a Sudoku grid
have a solution?
● M = “On input

⟨S, A⟩, an encoding
of a Sudoku puzzle
and an alleged
solution to it:
– Deterministically

check whether A is
a solution to S.

– If so, accept; if not,
reject.”

3

6

8

1

5

1

7

7

5

2

3

4

1

2

4

6

3

1

8

3

5

7

1

9

8

5

7

5

2

2

7

9

4

8

A Problem in NP

● M = “On input ⟨⟨G, k⟩, C⟩, where C is an alleged
coloring:

● Deterministically check whether C is a legal k-
coloring of G.

● If so, accept; if not, reject.”

The Verifier Definition of NP

● Theorem: If there is a polynomial-time
verifier V for L, then L ∈ NP.

● Proof idea: Build an NTM that
nondeterministically guesses a certificate,
then deterministically runs the verifier to
check it. Then, argue that the NTM runs in
nondeterministic polynomial time. ■

The Verifier Definition of NP

● Theorem: If L ∈ NP, there is a
polynomial-time verifier for it.

● Proof sketch: Use the general
construction that turns an NTM into a
verifier, and argue that the overall
construction runs in polynomial time. ■

The

Most Important Question

in

Theoretical Computer Science

What is the connection between P and NP?

 P = { L | There is a polynomial-time
 decider for L }

 NP = { L | There is a nondeterministic
 polynomial-time decider for L }

P ⊆ NP

Does P = NP?

P ≟ NP

● The P ≟ NP question is the most important question in
theoretical computer science.

● With the verifier definition of NP, one way of phrasing
this question is

If a solution to a problem can be checked efficiently,
can that problem be solved efficiently?

● An answer either way will give fundamental insights
into the nature of computation.

Why This Matters

● The following problems are known to be efficiently
verifiable, but have no known efficient solutions:

● Determining whether an electrical grid can be built to link up
some number of houses for some price (Steiner tree problem).

● Determining whether a simple DNA strand exists that multiple
gene sequences could be a part of (shortest common
supersequence).

● Determining the best way to assign hardware resources in a
compiler (optimal register allocation).

● Determining the best way to distribute tasks to multiple
workers to minimize completion time (job scheduling).

● And many more.

● If P = NP, all of these problems have efficient solutions.

● If P ≠ NP, none of these problems have efficient solutions.

Why This Matters

● If P = NP:
● A huge number of seemingly difficult problems

could be solved efficiently.
● Our capacity to solve many problems will scale

well with the size of the problems we want to
solve.

● If P ≠ NP:
● Enormous computational power would be required

to solve many seemingly easy tasks.
● Our capacity to solve problems will fail to keep up

with our curiosity.

What We Know

● Resolving P ≟ NP has proven extremely difficult.

● In the past 43 years:
● Not a single correct proof either way has been

found.
● Many types of proofs have been shown to be

insufficiently powerful to determine whether
P ≟ NP.

● A majority of computer scientists believe P ≠ NP,
but this isn't a large majority.

● Interesting read: Interviews with leading thinkers
about P ≟ NP:

● http://web.ing.puc.cl/~jabaier/iic2212/poll-1.pdf

http://web.ing.puc.cl/~jabaier/iic2212/poll-1.pdf

The Million-Dollar Question

The Clay Mathematics Institute has offered
a $1,000,000 prize to anyone who proves

or disproves P = NP.

Time-Out for Announcements!

Problem Sets

● Problem Set Seven was due at the start of class
today.
● Want to use a late day? Turn it in tomorrow by

12:50PM.
● Want to use two late days? Turn it in on Friday by

12:50PM.

● Problem Set Eight goes out now, is due one
week from today at 12:50PM.
● Explore the limits of RE languages, the P vs. NP

question, and the Big Picture.
● No late days may be used on this assignment.

It's university policy; sorry about that!

Your Questions

“How much math do I need for the different
areas of CS? Should I take linear algebra?
Partial differential equations? (I've heard

they're used in graphics?) Statistics (for ML)?
Game theory (also for ML)? Real analysis?”

It really depends on the field you're in. Everyone needs linear algebra
– it's really useful! Math 51 does a bit of this, but courses like Math

104, EE103, CS205A, and Math 113 would all be good here.

If you're thinking about doing AI, I'd recommend getting a lot of
background in linear algebra and statistics. If you want to do graphics,
take more linear algebra, geometry, and topology. For crypto, take
number theory and abstract algebra. For algorithms, combinatorics is
quite useful. Convex optimization is also a really nice tool to have.
Game theory and real analysis are probably only important if you

specifically want to use them; you probably don't need them for AI.

It really depends on the field you're in. Everyone needs linear algebra
– it's really useful! Math 51 does a bit of this, but courses like Math

104, EE103, CS205A, and Math 113 would all be good here.

If you're thinking about doing AI, I'd recommend getting a lot of
background in linear algebra and statistics. If you want to do graphics,
take more linear algebra, geometry, and topology. For crypto, take
number theory and abstract algebra. For algorithms, combinatorics is
quite useful. Convex optimization is also a really nice tool to have.
Game theory and real analysis are probably only important if you

specifically want to use them; you probably don't need them for AI.

“Where do you see yourself in 5 years?”

That's a tough one. I'm not
sure! Probably keeping up

academics in some way, shape, or
form. I'd like to keep teaching,
but there's a part of me that

thinks I might try out a Ph.D if I
can stomach missing out on

teaching.

That's a tough one. I'm not
sure! Probably keeping up

academics in some way, shape, or
form. I'd like to keep teaching,
but there's a part of me that

thinks I might try out a Ph.D if I
can stomach missing out on

teaching.

“Where do you see yourself in 30 years?”

Uh... no
idea.

Uh... no
idea.

“With the quarter winding down, it's hard to
stay motivated while classes start cramming
in material. What are some ways to keep our
momentum, for this class and in general?”

For starters, hang in there!

For CS103, we're just about done with new topics, even though it
doesn't look like it. You're at a really cool point now where you can

look back over everything we've done and start to see a bigger
picture at work. All of these topics connect and interrelate in

interesting and surprising ways. Think about the overarching questions
for the class – do you see how they led us here?

For other courses – assuming the course content is not chosen
randomly, there's likely a similar story at work. See if you can thread a
narrative through what you're learning. How does everything relate?
Why are you learning it? And what comes next? Having a sense of

where you're going can make things a lot more interesting.

For starters, hang in there!

For CS103, we're just about done with new topics, even though it
doesn't look like it. You're at a really cool point now where you can

look back over everything we've done and start to see a bigger
picture at work. All of these topics connect and interrelate in

interesting and surprising ways. Think about the overarching questions
for the class – do you see how they led us here?

For other courses – assuming the course content is not chosen
randomly, there's likely a similar story at work. See if you can thread a
narrative through what you're learning. How does everything relate?
Why are you learning it? And what comes next? Having a sense of

where you're going can make things a lot more interesting.

“Your previous talks on nixtamalization and
orangeries were fantastic, and really

brightened our days! Week nine isn't always
easy, but it would be a little easier if you

spoke again about something that fascinates
you. Please?”

This is a good question, but I
don't think we have time for it

right now. Ask me again on Friday!

This is a good question, but I
don't think we have time for it

right now. Ask me again on Friday!

Back to CS103!

What do we know about P ≟ NP?

Reducibility

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

A matching, but
not a maximum

matching.

A matching, but
not a maximum

matching.

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

A maximum
matching.

A maximum
matching.

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

Maximum matchings
are not necessarily

unique.

Maximum matchings
are not necessarily

unique.

Maximum Matching

● Jack Edmonds' paper “Paths, Trees, and
Flowers” gives a polynomial-time
algorithm for finding maximum
matchings.
● (This is the same Edmonds as in “Cobham-

Edmonds Thesis.)

● Using this fact, what other problems can
we solve?

Domino Tiling

A Domino Tiling Reduction

● Let MATCHING be the language defined as
follows:

MATCHING = { ⟨G, k⟩ | G is an undirected graph
with a matching of size at least k }

● Theorem (Edmonds): MATCHING ∈ P.
● Let DOMINO be this language:

DOMINO = { ⟨D, k⟩ | D is a grid and k
nonoverlapping dominoes can be placed on D. }

● We'll use the fact that MATCHING ∈ P to
prove that DOMINO ∈ P.

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

The Setup

● To determine whether you can place at
least k dominoes on a crossword grid, do
the following:
● Convert the grid into a graph: each empty

cell is a node, and any two adjacent empty
cells have an edge between them.

● Ask whether that graph has a matching of
size k or greater.

● Return whatever answer you get.

In Pseudocode

boolean canPlaceDominos(Grid G, int k) {

 return hasMatching(gridToGraph(G), k);

}

Why This Works

● This overall construction gives a polynomial-
time algorithm for the domino tiling problem.

● It takes on polynomial time to convert the grid
into a graph (we'll hand-wave these details
away.)

● Once we have that new graph, it takes only
polynomial time to check if there's a
sufficiently large matching.

● Overall, this only requires polynomial time.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77

