NP-Completeness

Part One



Recap from Last Time



The Limits of Efficient Computation




P and NP Refresher

 The class P consists of all problems
solvable in deterministic polynomial time.

 The class NP consists of all problems
solvable in nondeterministic polynomial
time.

 Equivalently, NP consists of all problems
for which there is a deterministic,
polynomial-time verifier for the problem.



Reducibility



Maximum Matching

* Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

« A maximum matching is a matching with the
largest number of edges.
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Maximum Matching

e Jack Edmonds' paper “Paths, Trees, and
Flowers” gives a polynomial-time
algorithm for finding maximum
matchings.

e (This is the same Edmonds as in “Cobham-
Edmonds Thesis.)

« Using this fact, what other problems can
we solve?
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The Setup

« To determine whether you can place at least k
dominoes on a crossword grid, do the following:

« Convert the grid into a graph: each empty cell is a
node, and any two adjacent empty cells have an
edge between them.

« Ask whether that graph has a matching of size k or
greater.

« Return whatever answer you get.
« Claim: This runs in polynomial time.



In Pseudocode

boolean canPlaceKDominos(Grid G, int k) {
return hasMatching(gridToGraph(G), k);



Another Example



Reachability

« Consider the following problem:

Given an directed graph G and nodes s and ¢
in G, is there a path from s to t?

» As a formal language:

REACHABILITY =
{ (G, s, t) | G is a directed graph, s and t are
nodes in G, and there's a path from
stot}

e« Theorem: REACHABILITY € P.

* Given that we can solve the reachability problem in
polynomial time, what other problems can we solve in
polynomial time?



Converter Conundrums

« Suppose that you want to plug your laptop into a
projector.

* Your laptop only has a VGA output, but the
projector needs HDMI input.

* You have a box of connectors that convert various
types of input into various types of output (for
example, VGA to DVI, DVI to DisplayPort, etc.)

* Question: Can you plug your laptop into the
projector?
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Connectors
RGB to USB
VGA to DisplayPort
DB13W3 to CATV
DisplayPort to RGB
DB13W3 to HDMI
DVI to DB13W3
S-Video to DVI
FireWire to SDI
VGA to RGB
DVI to DisplayPort
USB to S-Video
SDI to HDMI
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Converter Conundrums

* Given a a list of plug converters, here's a
algorithm for determining whether you can plug
your computer into the projector:

« Create a graph with one node per connector type
and an edge from one type of connector to another if
there's a converter from the first type to the second.

« Use the reachability algorithm to see whether you
can get from VGA to HDMI.

« Return whatever the result of that algorithm is.
 Claim: This runs in polynomial time.



In Pseudocode

boolean canPlugIn(List<Plug> plugs) {

return isReachable(plugsToGraph(plugs),
VGA, HDMI);



A Commonality

« Both of the solutions to our previous problems
had the following form:

boolean solveProblemA(input) {
return solveProblemB(transform(input));
}

 Important observation: Assuming that we
already have a solver for problem B, the only
work done here is transforming the input to
problem A into an input to problem B.

« All the “hard” work is done by the solver for B;
we just turn one input into another.



Mathematically Modeling this Idea



Polynomial-Time Reductions

 Let A and B be languages.

A polynomial-time reduction from A to
B is a function f : 2X* — 2* such that

« Forany w € 2*, w € A iff f(w) € B.

 The function f can be computed in
polynomial time.

« What does this mean?



Polynomial-Time Reductions

 If fis a polynomial-time reduction from A
to B, then

Vwe 2*, (we Ao f(w) €B)

« If you want to know whether w € A,
you can instead ask whether f(w) € B.

« Every w € A maps to some f(w) € B.
« Every w ¢ A maps to some f(w) ¢ B.
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Reductions, Programmatically

« Suppose we have a solver for problem B that's
defined in terms of problem A in this specific
way:

boolean solveProblemA(input) {
return solveProblemB(transform(input));

}

 The reduction from A to B is the function
transform in the above setup: it maps “yes”
answers to A to “yes” answers to B and “no”
answers to A to “no” answers to B.



Reducibility among Problems

 Suppose that A and B are languages
where there's a polynomial-time
reduction from A to B.

 We'll denote this by writing
A= B

* You can read this aloud as “A polynomial-
time reduces to B” or “A poly-time
reduces to B.”



Reductions and P

« Theorem: If A <, Band B € P, then A € P.

« Proof sketch: Show that this pseudocode runs in
polynomial time:

boolean solveProblemA(input) {
return solveProblemB(transform(input));

}

Calling transform only takes polynomial time. Since it
runs in polynomial time, the transform function can
only produce an output that's polynomially larger than
its input. Feeding that into a polynomial-time function
solveProblemB then only takes polynomial time. Overall,
this is a polynomial-time algorithm for A, so A € P. B



Time-Out for Announcements!



Please evaluate this course in Axess.

Your feedback does make a difference.



Your Questions!



“What's the best way to become a stronger
coder? The summer seems like a great time
to take advantage of before the next school
year. Seems like classes like CS 107 reward
experience which is hard to compete with
when you haven't coded for years!”

Find something fun thal you want fo work on, then go
work on it, You'll have a lot more fun if you actually
enjoy what you're doing.

And don't worry aboul CS107, People freak out way too
much aboul tThal course, You don't need to prepare for
months in advance before faking if, There aren't fhat
many students in the course that have a huge headstart
over everyone, Just be prepared 1o put in a decent
amount of time and be strafegic.




“I'm sticking around campus for summer -
any suggestions on what to put on my
summer bucket list?”

Rent a car (you get a discount tor being a Stantord
sfudent) and drive up Skyline and walk around the open
space preserves, IT's beaufiful fhere,

Then go fo Pescadero and visit a world—class goat dairy
farm while eafing arfichoke—garlic bread,

Go To the Mission in SF, Do something totally hipsterish
(Urban Putt, Mission Cheese, Dandelion Chocolate) and
something more local (get pupusas).




“After your teaser during Wednesday's
lecture and 2 days of waiting, we're even
more excited for you to speak on something
that fascinates you. We'd also like to thank
you for answering these questions with

such enthusiasm throughout the quarter.
Go!”






Back to CS103!



Reductions and NP



boolean solveProblemA(input) {
return solveProblemB(transform(input));

¥

What happens if transform runs in
deterministic polynomial time,
but solveProblemB runs in
nondeterministic polynomial time?




Reductions and NP

« We can reduce problems in NP to one another
using polynomial-time reductions.

 The reduction itself must be computable in
deterministic polynomial time.

« The output of that reduction is then fed in as
input to a nondeterministic, polynomial-
time algorithm.

« Remember - the goal of the reduction is to
transform the problem, not solve it!



A Sample Reduction



Satisfiability

« A propositional logic formula ¢ is called
satisfiable if there is some assignment to
its variables that makes it evaluate to true.

D A ¢ is satisfiable.
 p A —p is unsatisfiable.
« p— (g N —q) is satisfiable.
« An assignment of true and false to the

variables of ¢ that makes it evaluate to
true is called a satisfying assignment.



SAT

« The boolean satisfiability problem
(SAT) is the following:

Given a propositional logic
formula @, is @ satisfiable?

 Formally:

SAT = { (@) | @ is a satisfiable PL
formula }

« Claim: SAT € NP.

* (Do you see why?)



What other problems can we solve with a
solver for SAT?



Pertect Matchings

A perfect maitching in a graph G is a matching
where every node is adjacent to some edge in
the matching.

Nt N

 Claim: We can reduce the problem of
determining whether a graph has a perfect
matching to the boolean satisfiability problem.
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Notice that this formula is the many-way AND of lots of smaller
formulas of the form

(1 vIizv ...V In)

where each Ik is either a variable or its negation. Each Ik is
called a literal, and the multi-way OR of literals is called a
clause.

To satisty this formula, we need to choose truth values so that
every clause has at least one true literal.
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The Reduction

« Suppose we have a graph with n nodes.

« For each of the n nodes, we introduce a clause of at most
n literals to force each node to be adjacent to at least
one chosen edge.

« Total size: O(n2)

« For each of the n nodes, we introduce O(n2) clauses with
two literals each to force each node to be adjacent to at
most one chosen edge.

« Total size: O(n3)
« Total size of the generated formula: at most O(ns3).

e Unsubstantiated but true claim: This can be
computed in polynomial time.



The Reduction

boolean hasPerfectMatching(Graph G) {
return isSatisfiable(graphToFormula(G));

¥



Reductions and NP

« Theorem: If A <, B and B € NP, then A € NP.

 Proof sketch: Show that this pseudocode runs in
nondeterministic polynomial time:

boolean solveProblemA(input) {
return solveProblemB(transform(input));

}

Calling transform only takes polynomial time. The
transform function can only produce an output that's
polynomially larger than its input. Feeding that into a
polynomial-time function solveProblemB then only takes
nondeterministic polynomial time. Overall, this is a
nondeterministic polynomial-time algorithm for A, so
A€ENP. B



Reducibility, Summarized

* A polynomial-time reduction is a way of
transforming inputs to problem A into inputs to
problem B that preserves the correct answer.

 If there is a polynomial-time reduction from A
to B, we denote this by writing A </ B.

« Two major theorems:
« Theorem: 1t B € Pand A <, B, then A € P.
« Theorem: It B € NP and A <, B, then A € NP.



NP-Hardness and NP-Completeness



Polynomial-Time Reductions

« IfL. =, L and L, € P, then L, € P.



Polynomial-Time Reductions

« IfL. =, L and L, € P, then L, € P.



Polynomial-Time Reductions

« IfL. =, L and L, € P, then L, € P.



Polynomial-Time Reductions

« IfL. =, L and L, € P, then L, € P.
« If L. =, L, and L, € NP, then L, € NP.



Polynomial-Time Reductions

It L =, L,and L, € P,thenL, € P.
- If L, =, L, and L, € NP, then L, € NP.

%
NP
¥ ¥



Polynomial-Time Reductions

It L =, L,and L, € P,thenL, € P.
- If L, =, L, and L, € NP, then L, € NP.




Polynomial-Time Reductions

It L =, L,and L, € P,thenL, € P.
- If L, =, L, and L, € NP, then L, € NP.

ko %
NP
% ¥



NP-Hardness

A language L is called NP-hard if for every L' € NP, we

have L' <, L.
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NP-Hardness

« A language L is called NP-hard if for every L' € NP, we
have L' =, L.

Intuitively: L has to be at least as
hard as every problem in NP, since
an algorithm for L can be used to
decide all problems in NP.
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What's in here?
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The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L. € P. Now consider
any arbitrary NP problem X. Since L is NP-complete, we know
that X = L. Since L € Pand X = L, we see that X € P. Since

our choice of X was arbitrary, this means that NP C P, so
P=NP. B



The Tantalizing Truth

Theorem: If any NP-complete language is not in P, then P # NP.

Proof: Suppose that L is an NP-complete language not in P. Since
L is NP-complete, we know that L € NP. Therefore, we know
that Le NPand L ¢ P,so P # NP. B

NP
A
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A Feel for NP-Completeness

 If a problem is NP-complete, then under the
assumption that P # NP, there cannot be an
efficient algorithm for it.

* In a sense, NP-complete problems are the
hardest problems in NP.

« All known NP-complete problems are
enormously hard to solve:

« All known algorithms for NP-complete problems
run in worst-case exponential time.

 Most algorithms for NP-complete problems are
infeasible for reasonably-sized inputs.



How do we even know NP-complete
problems exist in the first place?



Satisfiability

« A propositional logic formula ¢ is called
satisfiable if there is some assignment to
its variables that makes it evaluate to true.

D A ¢ is satisfiable.
 p A —p is unsatisfiable.
« p— (g N —q) is satisfiable.
« An assignment of true and false to the

variables of ¢ that makes it evaluate to
true is called a satisfying assignment.



SAT

« The boolean satisfiability problem
(SAT) is the following:

Given a propositional logic
formula ¢, is ¢ satisfiable?

« Formally:

SAT = { (@) | @ is a satisfiable PL
formula }



Theorem (Cook-Levin): SAT is NP-complete.

Proof: Take CS154!



Finding Additional NP-Complete Problems
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