NP-Completeness

Part One

Recap from Last Time

The Limits of Efficient Computation

P and NP Refresher

 The class P consists of all problems
solvable in deterministic polynomial time.

 The class NP consists of all problems
solvable in nondeterministic polynomial
time.

 Equivalently, NP consists of all problems
for which there is a deterministic,
polynomial-time verifier for the problem.

Reducibility

Maximum Matching

* Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

« A maximum matching is a matching with the
largest number of edges.

Maximum Matching

« Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

« A maximum matching is a matching with the
largest number of edges.

-
@ <
D -

Maximum Matching

« Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

« A maximum matching is a matching with the
largest number of edges.

A mafching, buf
not a maximum
mafching.,

Maximum Matching

« Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

« A maximum matching is a matching with the
largest number of edges.

N\

A maximum \\
mafching, \< j i j

Maximum Matching

* Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an

endpoint.

« A maximum matching is a matching with the
largest number of edges.

Maximum Matching

Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an

endpoint.

« A maximum matching is a matching with the
largest number of edges.

Maximum Matching

* Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an

endpoint.

« A maximum matching is a matching with the
largest number of edges.

Maximum Matching

* Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an

endpoint.

« A maximum matching is a matching with the
largest number of edges.

Maximum matchings
are not necessarily
Unigue ,

Maximum Matching

e Jack Edmonds' paper “Paths, Trees, and
Flowers” gives a polynomial-time
algorithm for finding maximum
matchings.

e (This is the same Edmonds as in “Cobham-
Edmonds Thesis.)

« Using this fact, what other problems can
we solve?

Domino Tiling

Domino Tiling

Domino Tiling

Domino Tiling

Domino Tiling

Domino Tiling

|

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

|

The Setup

« To determine whether you can place at least k
dominoes on a crossword grid, do the following:

« Convert the grid into a graph: each empty cell is a
node, and any two adjacent empty cells have an
edge between them.

« Ask whether that graph has a matching of size k or
greater.

« Return whatever answer you get.
« Claim: This runs in polynomial time.

In Pseudocode

boolean canPlaceKDominos(Grid G, int k) {
return hasMatching(gridToGraph(G), k);

Another Example

Reachability

« Consider the following problem:

Given an directed graph G and nodes s and ¢
in G, is there a path from s to t?

» As a formal language:

REACHABILITY =
{ (G, s, t) | G is a directed graph, s and t are
nodes in G, and there's a path from
stot}

e« Theorem: REACHABILITY € P.

* Given that we can solve the reachability problem in
polynomial time, what other problems can we solve in
polynomial time?

Converter Conundrums

« Suppose that you want to plug your laptop into a
projector.

* Your laptop only has a VGA output, but the
projector needs HDMI input.

* You have a box of connectors that convert various
types of input into various types of output (for
example, VGA to DVI, DVI to DisplayPort, etc.)

* Question: Can you plug your laptop into the
projector?

Converter Conundrums

Connectors
RGB to USB
VGA to DisplayPort
DB13W3 to CATV
DisplayPort to RGB
DB13W3 to HDMI
DVI to DB13W3
S-Video to DVI
FireWire to SDI
VGA to RGB
DVI to DisplayPort
USB to S-Video
SDI to HDMI

Converter Conundrums

Connectors
RGB to USB

VGA to DisplayPort
DB13W3 to CATV

DisplayPort to RGB
DB13W3 to HDMI

DVI to DB13W3
S-Video to DVI

[HDMI]4 DVI }—[S-Video

FireWire to SDI

VGA to RGB
DVI to DisplayPort
USB to S-Video
SDI to HDMI

Y
N

[FireWire} SDI J

Converter Conundrums

(o (e ()

‘ A
—
[DlsplayPortJ« DBlT3w3 J—»[CATV J
[HDMI]4 DVI }—[S-VideoJJ
| N

N

[FireWire} SDI J

Converter Conundrums

e ()

‘ A
—
[DisplayPortJ« DB13W3 J—»[CATV J
A
|
%[HDMI]4 DVI }—[S-VideoJJ
L N

N

[FireWire} SDI J

Converter Conundrums

-

L
[DisplayPortJ« DB13W3]—»[CATV J
A
|
%[HDMI]4 DVI]44[S-V’1deo
L

N

[FireWire} P[SDI J

Converter Conundrums

* Given a a list of plug converters, here's a
algorithm for determining whether you can plug
your computer into the projector:

« Create a graph with one node per connector type
and an edge from one type of connector to another if
there's a converter from the first type to the second.

« Use the reachability algorithm to see whether you
can get from VGA to HDMI.

« Return whatever the result of that algorithm is.
 Claim: This runs in polynomial time.

In Pseudocode

boolean canPlugIn(List<Plug> plugs) {

return isReachable(plugsToGraph(plugs),
VGA, HDMI);

A Commonality

« Both of the solutions to our previous problems
had the following form:

boolean solveProblemA(input) {
return solveProblemB(transform(input));
}

 Important observation: Assuming that we
already have a solver for problem B, the only
work done here is transforming the input to
problem A into an input to problem B.

« All the “hard” work is done by the solver for B;
we just turn one input into another.

Mathematically Modeling this Idea

Polynomial-Time Reductions

 Let A and B be languages.

A polynomial-time reduction from A to
B is a function f : 2X* — 2* such that

« Forany w € 2*, w € A iff f(w) € B.

 The function f can be computed in
polynomial time.

« What does this mean?

Polynomial-Time Reductions

 If fis a polynomial-time reduction from A
to B, then

Vwe 2*, (we Ao f(w) €B)

« If you want to know whether w € A,
you can instead ask whether f(w) € B.

« Every w € A maps to some f(w) € B.
« Every w ¢ A maps to some f(w) ¢ B.

Polynomial-Time Reductions

 If fis a polynomial-time reduction from A
to B, then

Vwe 2*, (we Ao f(w) €B)

z* z*

Polynomial-Time Reductions

 If fis a polynomial-time reduction from A
to B, then

Vwe 2*, (we Ao f(w) €B)

z*

Polynomial-Time Reductions

 If fis a polynomial-time reduction from A
to B, then

Vwe 2*, (we Ao f(w) €B)

z*

flw)

flw)

Reductions, Programmatically

« Suppose we have a solver for problem B that's
defined in terms of problem A in this specific
way:

boolean solveProblemA(input) {
return solveProblemB(transform(input));

}

 The reduction from A to B is the function
transform in the above setup: it maps “yes”
answers to A to “yes” answers to B and “no”
answers to A to “no” answers to B.

Reducibility among Problems

 Suppose that A and B are languages
where there's a polynomial-time
reduction from A to B.

 We'll denote this by writing
A= B

* You can read this aloud as “A polynomial-
time reduces to B” or “A poly-time
reduces to B.”

Reductions and P

« Theorem: If A <, Band B € P, then A € P.

« Proof sketch: Show that this pseudocode runs in
polynomial time:

boolean solveProblemA(input) {
return solveProblemB(transform(input));

}

Calling transform only takes polynomial time. Since it
runs in polynomial time, the transform function can
only produce an output that's polynomially larger than
its input. Feeding that into a polynomial-time function
solveProblemB then only takes polynomial time. Overall,
this is a polynomial-time algorithm for A, so A € P. B

Time-Out for Announcements!

Please evaluate this course in Axess.

Your feedback does make a difference.

Your Questions!

“What's the best way to become a stronger
coder? The summer seems like a great time
to take advantage of before the next school
year. Seems like classes like CS 107 reward
experience which is hard to compete with
when you haven't coded for years!”

Find something fun thal you want fo work on, then go
work on it, You'll have a lot more fun if you actually
enjoy what you're doing.

And don't worry aboul CS107, People freak out way too
much aboul tThal course, You don't need to prepare for
months in advance before faking if, There aren't fhat
many students in the course that have a huge headstart
over everyone, Just be prepared 1o put in a decent
amount of time and be strafegic.

“I'm sticking around campus for summer -
any suggestions on what to put on my
summer bucket list?”

Rent a car (you get a discount tor being a Stantord
sfudent) and drive up Skyline and walk around the open
space preserves, IT's beaufiful fhere,

Then go fo Pescadero and visit a world—class goat dairy
farm while eafing arfichoke—garlic bread,

Go To the Mission in SF, Do something totally hipsterish
(Urban Putt, Mission Cheese, Dandelion Chocolate) and
something more local (get pupusas).

“After your teaser during Wednesday's
lecture and 2 days of waiting, we're even
more excited for you to speak on something
that fascinates you. We'd also like to thank
you for answering these questions with

such enthusiasm throughout the quarter.
Go!”

Back to CS103!

Reductions and NP

boolean solveProblemA(input) {
return solveProblemB(transform(input));

¥

What happens if transform runs in
deterministic polynomial time,
but solveProblemB runs in
nondeterministic polynomial time?

Reductions and NP

« We can reduce problems in NP to one another
using polynomial-time reductions.

 The reduction itself must be computable in
deterministic polynomial time.

« The output of that reduction is then fed in as
input to a nondeterministic, polynomial-
time algorithm.

« Remember - the goal of the reduction is to
transform the problem, not solve it!

A Sample Reduction

Satisfiability

« A propositional logic formula ¢ is called
satisfiable if there is some assignment to
its variables that makes it evaluate to true.

D A ¢ is satisfiable.
 p A —p is unsatisfiable.
« p— (g N —q) is satisfiable.
« An assignment of true and false to the

variables of ¢ that makes it evaluate to
true is called a satisfying assignment.

SAT

« The boolean satisfiability problem
(SAT) is the following:

Given a propositional logic
formula @, is @ satisfiable?

 Formally:

SAT = { (@) | @ is a satisfiable PL
formula }

« Claim: SAT € NP.

* (Do you see why?)

What other problems can we solve with a
solver for SAT?

Pertect Matchings

A perfect maitching in a graph G is a matching
where every node is adjacent to some edge in
the matching.

Nt N

 Claim: We can reduce the problem of
determining whether a graph has a perfect
matching to the boolean satisfiability problem.

Pertect Matchings

A perfect maitching in a graph G is a matching
where every node is adjacent to some edge in

the matching.

 Claim: We can reduce the problem of
determining whether a graph has a perfect
matching to the boolean satisfiability problem.

For each edge {u, v}, we'll introduce a propositional variable p
meaning “edge {u, v} is included in the perfect matching.”

For each edge {u, v}, we'll introduce a propositional variable p
meaning “edge {u, v} is included in the perfect matching.”

OO 0O000 0 O
S
g

For each edge {u, v}, we'll introduce a propositional variable p
meaning “edge {u, v} is included in the perfect matching.”

We need to enforce the following:
- Every node is adjacent to at least one edge. (“perfect”)

OO 0O000 0 O
S
g

For each edge {u, v}, we'll introduce a propositional variable p
meaning “edge {u, v} is included in the perfect matching.”

We need to enforce the following:
- Every node is adjacent to at least one edge. (“perfect”)

(pab v pad)

OO 0O000 0 O
S
g

For each edge {u, v}, we'll introduce a propositional variable p

meaning “edge {u, v} is included in the perfect matching.”

We need to enforce the following:
- Every node is adjacent to at least one edge. (“perfect”)

(P, V P NPy, V Py V Py

OO 0O000 0 O

For each edge {u, v}, we'll introduce a propositional variable p

meaning “edge {u, v} is included in the perfect matching.”

We need to enforce the following:
- Every node is adjacent to at least one edge. (“perfect”)

(pab v pad) A (pab v pbc v pbd) A (pbc v pce v pcf)

OO 0O000 0 O

For each edge {u, v}, we'll introduce a propositional variable p

meaning “edge {u, v} is included in the perfect matching.”

We need to enforce the following:
- Every node is adjacent to at least one edge. (“perfect”)

(pab v pad) A (pab v pbc v pbd) A (pbc v pce v pcf) A
(Pag V Ppg V Pge)

OO 0O000 0 O

For each edge {u, v}, we'll introduce a propositional variable p

meaning “edge {u, v} is included in the perfect matching.”

We need to enforce the following:
- Every node is adjacent to at least one edge. (“perfect”)

(pab v pad) A (pab v pbc v pbd) A (pbc v pce v pcf) A
(pad v pbd v pde) A (pce v pde v pef)

OO 0O000 0 O

For each edge {u, v}, we'll introduce a propositional variable p

meaning “edge {u, v} is included in the perfect matching.”

We need to enforce the following:
- Every node is adjacent to at least one edge. (“perfect”)

(pab v pad) A (pab v pbc v pbd) A (pbc v pce v pcf) A
(Pag V Pog V Pge) N (Pee V Pge V Pep) A (P V D)

OO 0O000 0 O

For each edge {u, v}, we'll introduce a propositional variable p

meaning “edge {u, v} is included in the perfect matching.”

We need to enforce the following:
- Every node is adjacent to at least one edge. (“perfect”)

- Every node is adjacent to at most one edge. (“matching”)

(pab v pad) A (pab v pbc v pbd) A (pbc v pce v pcf) A
(pad v pbd v pde) A (pce v pde v pef) A (pcfv pef)

OO 0O000 0 O

For each edge {u, v}, we'll introduce a propositional variable p

meaning “edge {u, v} is included in the perfect matching.”

We need to enforce the following:
- Every node is adjacent to at least one edge. (“perfect”)

- Every node is adjacent to at most one edge. (“matching”)

(pab v pad) A (pab v pbc v pbd) A (pbc v pce v pcf) A
(Pog V Py V Pg) NP V Py VP, NP,V D) A
_I(pab A pad)

OO 0O000 0 O

For each edge {u, v}, we'll introduce a propositional variable p

meaning “edge {u, v} is included in the perfect matching.”

We need to enforce the following:
- Every node is adjacent to at least one edge. (“perfect”)

- Every node is adjacent to at most one edge. (“matching”)

(P, V Pag) A (D V Py V Pyg) A (Dye VD, V D) A
(Pog V Py V Pg) NP V Py VP, NP,V D) A
(P A Pyg) A

(D, A Pp) A (D, A D) A (D, A D)

OO 0O000 0 O

For each edge {u, v}, we'll introduce a propositional variable p
meaning “edge {u, v} is included in the perfect matching.”
We need to enforce the following:

- Every node is adjacent to at least one edge. (“perfect”)
- Every node is adjacent to at most one edge. (“matching”)

(Pup V Dag) N (Dgy V Py V Pyg) N (D V P V D A
(Pog V Py V Pg) NP V Py VP, NP,V D) A
(P A Pyg) A
(D, A Py) A (D A D) A (D, A Dyy) A

—(p,, A P.,) N 2 (p,. AP AN —(p, NP

OO 0O000 0 O
S
g

For each edge {u, v}, we'll introduce a propositional variable p
meaning “edge {u, v} is included in the perfect matching.”

We need to enforce the following:
- Every node is adjacent to at least one edge. (“perfect”)
- Every node is adjacent to at most one edge. (“matching”)

(Pap V Pag) N (Pgp V Ppe V Pyg) A (Do V Pee V Pop) A
(Pog V Py V Pg) NP V Py VP, NP,V D) A
(P A Pyg) A
(P, NP, N (P, APy A (P, A D) A
—(p,, A P,) N~ (p,. AP, AN—(p, NP A

(P N Py) N (P APy NPy A D)

OO 0O000 0 O
S
g

For each edge {u, v}, we'll introduce a propositional variable p
meaning “edge {u, v} is included in the perfect matching.”
We need to enforce the following:

- Every node is adjacent to at least one edge. (“perfect”)
- Every node is adjacent to at most one edge. (“matching”)

(Pap V Pag) N (Pgp V Ppe V Pyg) A (Do V Pee V Pop) A
(Pog V Py V Pg) NP V Py VP, NP,V D) A
(P A Pyg) A
(P, NP, N (P, APy A (P, A D) A
—(p,, A P,) N~ (p,. AP, AN—(p, NP A
(D N Py) N (P APy NPy APy A

-(p,, N P;) AN ~(p, AP, A (D, AP,

OO 0O000 0 O
S
g

For each edge {u, v}, we'll introduce a propositional variable p

meaning “edge {u, v} is included in the perfect matching.”

We need to enforce the following:

- Every node is adjacent to at least one edge. (“perfect”)

- Every node is adjacent to at most one edge. (“matching”)

(Pap V Pag) N (Pgp V Ppe V Pyg) A (Do V Pee V Pop) A
(Pog V Py V Pg) NP V Py VP, NP,V D) A
(P A Pyg) A
—(p, A P,) AN (p, AP, AN(p,, ADy,) A
—(p,. N P,,) N ~(p,. AP A (P, ANDp, A
(P NPy N (P, APy NPy, AD,) A
—(p,, N Pg) N (P, AP, A (P, AD,) A
(P N D)

OO 0O000 0 O

For each edge {u, v}, we'll introduce a propositional variable p
meaning “edge {u, v} is included in the perfect matching.”

We need to enforce the following:
- Every node is adjacent to at least one edge. (“perfect”)
- Every node is adjacent to at most one edge. (“matching”)

(Pup V Dug) A (Dyy V Py V Dy N (D V D V D) A
(Pog V Py V Pg) NP V Py VP, NP,V D) A
(—p, V 7P, A
(—=p, VvV 7p,) AN (=p, VvV —-p) AP,V P, A
(—-p,. vV 7p,) A (—p,.V P, A(mp,V P A
(=p, vV 7P,) AN (P, VvV P,) AP,V TD,) A
(—-p, VvV 7 p,) A (—p,V —p,) A (=D, VP, A
(=P V —P9)

OO 0O000 0 O
S
g

4 AN A

Notice that this formula is the many-way AND of lots of smaller
formulas of the form

(1 vIizv ...V In)

where each Ik is either a variable or its negation. Each Ik is
called a literal, and the multi-way OR of literals is called a
clause.

To satisty this formula, we need to choose truth values so that
every clause has at least one true literal.

(Pup V Dug) A (Dyy V Py V Dy N (D V D V D) A
(Pog V Py V Pg) NP V Py VP, NP,V D) A
(—p, V 7P, A
(—=p, VvV 7p,) AN (=p, VvV —-p) AP,V P, A
(—-p,. vV 7p,) A (—p,.V P, A(mp,V P A
(=p, vV 7P,) AN (P, VvV P,) AP,V TD,) A
(—-p, VvV 7 p,) A (—p,V —p,) A (=D, VP, A
(=P V —P9)

OO 0O000 0 O
S
g

For each edge {u, v}, we'll introduce a propositional variable p
meaning “edge {u, v} is included in the perfect matching.”

We need to enforce the following:
- Every node is adjacent to at least one edge. (“perfect”)
- Every node is adjacent to at most one edge. (“matching”)

(Pup V Dug) A (Dyy V Py V Dy N (D V D V D) A
(Pog V Py V Pg) NP V Py VP, NP,V D) A
(—p, V 7P, A
(—=p, VvV 7p,) AN (=p, VvV —-p) AP,V P, A
(—-p,. vV 7p,) A (—p,.V P, A(mp,V P A
(=p, vV 7P,) AN (P, VvV P,) AP,V TD,) A
(—-p, VvV 7 p,) A (—p,V —p,) A (=D, VP, A
(=P V —P9)

OO 0O000 0 O
S
g

For each edge {u, v}, we'll introduce a propositional variable p
meaning “edge {u, v} is included in the perfect matching.”

We need to enforce the following:
- Every node is adjacent to at least one edge. (“perfect”)
- Every node is adjacent to at most one edge. (“matching”)

(Pup V Dug) A (Dyy V Py V Dy N (D V D V D) A
(Pog V Py V Pg) NP V Py VP, NP,V D) A
(—p, V 7P, A
(—=p, VvV 7p,) AN (=p, VvV —-p) AP,V P, A
(—-p,. vV 7p,) A (—p,.V P, A(mp,V P A
(=p, vV 7P,) AN (P, VvV P,) AP,V TD,) A
(—-p, VvV 7 p,) A (—p,V —p,) A (=D, VP, A
(=P V —P9)

OO 0O000 0 O
S
g

For each edge {u, v}, we'll introduce a propositional variable p

meaning “edge {u, v} is included in the perfect matching.”

We need to enforce the following:

- Every node is adjacent to at least one edge. (“perfect”)

- Every node is adjacent to at most one edge. (“matching”)

() A () A (
() A (
() A

() A () A (
() A () A (
() A () A (
() A () A (

OO 0O000 0 O

For each edge {u, v}, we'll introduce a propositional variable p
meaning “edge {u, v} is included in the perfect matching.”

We need to enforce the following:
- Every node is adjacent to at least one edge. (“perfect”)
- Every node is adjacent to at most one edge. (“matching”)

() A () A () A
() A () A () A
() A
() A () A () A
() A () A () A
() A () A () A
() A () A () A

o I B s B s R s e s
=

For each edge {u, v}, we'll introduce a propositional variable p
meaning “edge {u, v} is included in the perfect matching.”

We need to enforce the following:
- Every node is adjacent to at least one edge. (“perfect”)
- Every node is adjacent to at most one edge. (“matching”)

(D,) A (P,) A (Pep) N T pg,
(Pae) A (Pge) A (D V) A L o

(TP, A F Py
(D) A “Pye) A (7P,) A F' Dy
(=D,) A (=D,) A (=D,) A F p,
(=D,) A (=D,) A (P,) A T py
(=D,) A (=P,) A (TP A T Py

(—p,) F

00000000
O

S 8 8 8 8 B 3 %
Q QA
B I e B E S SR T

(
(pad

(_Ipab
(
(

(_Ipce

p.g) A Py,) A (D,

) A (P A (
(=P,) A
) A (P,) A (
—p_) A (—p) A (=P,
=D, A —p.) A (—p,,
) A (—p,,) A (—p,,

(=P,)

B B s B s B s I e B 5

(Do) N (Ppe) A (D,) A

(P) A (P A (Pe) A
(=P,) A

(=P,) A (—p,) A (TP, A

(—p.) A (—p.) A (—p,) A

(D) A -p,) N (—p,,) A

(—p,,) A (—p,,) A (—p,,) A

)

(=P

B B s B s B s I e B 5

(Pag) N (Ppe) A (D,) A F p,,
(D4) A (Do) A (Pep) A T Dy
(=P,) A T Py,

(=D,) A (7D,) A (TPpg) A F Py
(P A (=P A (=P,) A F p,
(D) A Pge) N (TP,) A F p
(=P,) A (=D,) A (7D,) A F Dy,
(P) T p,

The Reduction

« Suppose we have a graph with n nodes.

« For each of the n nodes, we introduce a clause of at most
n literals to force each node to be adjacent to at least
one chosen edge.

« Total size: O(n2)

« For each of the n nodes, we introduce O(n2) clauses with
two literals each to force each node to be adjacent to at
most one chosen edge.

« Total size: O(n3)
« Total size of the generated formula: at most O(ns3).

e Unsubstantiated but true claim: This can be
computed in polynomial time.

The Reduction

boolean hasPerfectMatching(Graph G) {
return isSatisfiable(graphToFormula(G));

¥

Reductions and NP

« Theorem: If A <, B and B € NP, then A € NP.

 Proof sketch: Show that this pseudocode runs in
nondeterministic polynomial time:

boolean solveProblemA(input) {
return solveProblemB(transform(input));

}

Calling transform only takes polynomial time. The
transform function can only produce an output that's
polynomially larger than its input. Feeding that into a
polynomial-time function solveProblemB then only takes
nondeterministic polynomial time. Overall, this is a
nondeterministic polynomial-time algorithm for A, so
A€ENP. B

Reducibility, Summarized

* A polynomial-time reduction is a way of
transforming inputs to problem A into inputs to
problem B that preserves the correct answer.

 If there is a polynomial-time reduction from A
to B, we denote this by writing A </ B.

« Two major theorems:
« Theorem: 1t B € Pand A <, B, then A € P.
« Theorem: It B € NP and A <, B, then A € NP.

NP-Hardness and NP-Completeness

Polynomial-Time Reductions

« IfL. =, L and L, € P, then L, € P.

Polynomial-Time Reductions

« IfL. =, L and L, € P, then L, € P.

Polynomial-Time Reductions

« IfL. =, L and L, € P, then L, € P.

Polynomial-Time Reductions

« IfL. =, L and L, € P, then L, € P.
« If L. =, L, and L, € NP, then L, € NP.

Polynomial-Time Reductions

It L =, L,and L, € P,thenL, € P.
- If L, =, L, and L, € NP, then L, € NP.

%
NP
¥ ¥

Polynomial-Time Reductions

It L =, L,and L, € P,thenL, € P.
- If L, =, L, and L, € NP, then L, € NP.

Polynomial-Time Reductions

It L =, L,and L, € P,thenL, € P.
- If L, =, L, and L, € NP, then L, € NP.

ko %
NP
% ¥

NP-Hardness

A language L is called NP-hard if for every L' € NP, we

have L' <, L.

NP

NP-Hardness

« A language L is called NP-hard if for every L' € NP, we

NP-Hardness

« A language L is called NP-hard if for every L' € NP, we
have L' =, L.

NP-Hardness

« A language L is called NP-hard if for every L' € NP, we
have L' =, L.

Intuitively: L has to be at least as
hard as every problem in NP, since
an algorithm for L can be used to
decide all problems in NP.

NP-Hardness

« A language L is called NP-hard if for every L' € NP, we
have L' =, L.

NP-Hardness

« A language L is called NP-hard if for every L' € NP, we

What's in here?

NP-Hardness

« A language L is called NP-hard if for every L' € NP, we
have L' =, L.

« A language in L is called NP-complete if L. is NP-hard and
L € NP.

 The class NPC is the set of NP-complete problems.

NP-Hardness

« A language L is called NP-hard if for every L' € NP, we
have L' =, L.

« A language in L is called NP-complete if L. is NP-hard and
L € NP.

 The class NPC is the set of NP-complete problems.

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

) *
A* *P:NP

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L. € P. Now consider
any arbitrary NP problem X. Since L is NP-complete, we know
that X = L. Since L € Pand X = L, we see that X € P. Since

our choice of X was arbitrary, this means that NP C P, so
P=NP. B

The Tantalizing Truth

Theorem: If any NP-complete language is not in P, then P # NP.

Proof: Suppose that L is an NP-complete language not in P. Since
L is NP-complete, we know that L € NP. Therefore, we know
that Le NPand L ¢ P,so P # NP. B

NP
A

A
A

A Feel for NP-Completeness

 If a problem is NP-complete, then under the
assumption that P # NP, there cannot be an
efficient algorithm for it.

* In a sense, NP-complete problems are the
hardest problems in NP.

« All known NP-complete problems are
enormously hard to solve:

« All known algorithms for NP-complete problems
run in worst-case exponential time.

 Most algorithms for NP-complete problems are
infeasible for reasonably-sized inputs.

How do we even know NP-complete
problems exist in the first place?

Satisfiability

« A propositional logic formula ¢ is called
satisfiable if there is some assignment to
its variables that makes it evaluate to true.

D A ¢ is satisfiable.
 p A —p is unsatisfiable.
« p— (g N —q) is satisfiable.
« An assignment of true and false to the

variables of ¢ that makes it evaluate to
true is called a satisfying assignment.

SAT

« The boolean satisfiability problem
(SAT) is the following:

Given a propositional logic
formula ¢, is ¢ satisfiable?

« Formally:

SAT = { (@) | @ is a satisfiable PL
formula }

Theorem (Cook-Levin): SAT is NP-complete.

Proof: Take CS154!

Finding Additional NP-Complete Problems

NP-Completeness

Theorem: Let L1 and L2 be languages. If
L1 =, L2 and L1 is NP-hard, then L2 is NP-hard.

NP-Completeness

Theorem: Let L1 and L2 be languages. If
L1 =, L2 and L1 is NP-hard, then L2 is NP-hard.

NP-Completeness

Theorem: Let L1 and L2 be languages. If
L1 =, L2 and L1 is NP-hard, then L2 is NP-hard.

NP-Completeness

Theorem: Let L1 and L2 be languages. If
L1 =, L2 and L1 is NP-hard, then L2 is NP-hard.

NP-Completeness

Theorem: Let L1 and L2 be languages. If
L1 =, L2 and L1 is NP-hard, then L2 is NP-hard.

Theorem: Let L1 and L2 be languages where
L1 € NPCand L2 € NP. If L1 <, L2, then

L> € NPC.

NP-Completeness

Theorem: Let L1 and L2 be languages. If
L1 =, L2 and L1 is NP-hard, then L2 is NP-hard.

Theorem: Let L1 and L2 be languages where
L1 € NPCand L2 € NP. If L1 <, L2, then

L> € NPC.

NP-Completeness

Theorem: Let L1 and L2 be languages. If
L1 =, L2 and L1 is NP-hard, then L2 is NP-hard.

Theorem: Let L1 and L2 be languages where
L1 € NPCand L2 € NP. If L1 <, L2, then

L> € NPC.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136

