NP-Completeness Part II

Outline for Today

- Recap from Last Time
- What is NP-completeness again, anyway?
- 3SAT
- A simple, canonical NP-complete problem.
- Independent Sets
- Discovering a new NP-complete problem.
- Gadget-Based Reductions
- A common technique in NP reductions.
- 3-Colorability
- A more elaborate NP-completeness reduction.

Recap from Last Time

Polynomial-Time Reductions

- If $L_{1} \leq_{\mathrm{P}} L_{2}$ and $L_{2} \in \mathbf{P}$, then $L_{1} \in \mathbf{P}$.

Polynomial-Time Reductions

- If $L_{1} \leq_{\mathrm{P}} L_{2}$ and $L_{2} \in \mathbf{P}$, then $L_{1} \in \mathbf{P}$.

Polynomial-Time Reductions

- If $L_{1} \leq_{\mathrm{P}} L_{2}$ and $L_{2} \in \mathbf{P}$, then $L_{1} \in \mathbf{P}$.

Polynomial-Time Reductions

- If $L_{1} \leq_{\mathrm{P}} L_{2}$ and $L_{2} \in \mathbf{P}$, then $L_{1} \in \mathbf{P}$.
- If $L_{1} \leq_{\mathrm{p}} L_{2}$ and $L_{2} \in \mathbf{N P}$, then $L_{1} \in \mathbf{N P}$.

Polynomial-Time Reductions

- If $L_{1} \leq_{\mathrm{P}} L_{2}$ and $L_{2} \in \mathbf{P}$, then $L_{1} \in \mathbf{P}$.
- If $L_{1} \leq_{\mathrm{p}} L_{2}$ and $L_{2} \in \mathbf{N P}$, then $L_{1} \in \mathbf{N P}$.

Polynomial-Time Reductions

- If $L_{1} \leq_{\mathrm{P}} L_{2}$ and $L_{2} \in \mathbf{P}$, then $L_{1} \in \mathbf{P}$.
- If $L_{1} \leq_{\mathrm{p}} L_{2}$ and $L_{2} \in \mathbf{N P}$, then $L_{1} \in \mathbf{N P}$.

Polynomial-Time Reductions

- If $L_{1} \leq_{\mathrm{P}} L_{2}$ and $L_{2} \in \mathbf{P}$, then $L_{1} \in \mathbf{P}$.
- If $L_{1} \leq_{\mathrm{p}} L_{2}$ and $L_{2} \in \mathbf{N P}$, then $L_{1} \in \mathbf{N P}$.

NP-Hardness

- A language L is called NP-hard if for every $L^{\prime} \in \mathbf{N P}$, we have $L^{\prime} \leq_{\mathrm{P}} L$.

NP

NP-Hardness

- A language L is called NP-hard if for every $L^{\prime} \in \mathbf{N P}$, we have $L^{\prime} \leq_{\mathrm{P}} L$.

NP
NP-Hard

NP-Hardness

- A language L is called NP-hard if for every $L^{\prime} \in \mathbf{N P}$, we have $L^{\prime} \leq_{\mathrm{p}} L$.

NP

NP-Hard

NP-Hardness

- A language L is called NP-hard if for every $L^{\prime} \in \mathbf{N P}$, we have $L^{\prime} \leq_{\mathrm{P}} L$.

Intuitively: L has to be at least as hard as every problem in NP, since an algorithm for L can be used to decide all problems in NP.

NP
NP-Hard

NP-Hardness

- A language L is called NP-hard if for every $L^{\prime} \in \mathbf{N P}$, we have $L^{\prime} \leq_{\mathrm{p}} L$.

NP

NP-Hard

NP-Hardness

- A language L is called NP-hard if for every $L^{\prime} \in \mathbf{N P}$, we have $L^{\prime} \leq_{\mathrm{p}} L$.

NP What's in here?

NP-Hard

NP-Hardness

- A language L is called NP-hard if for every $L^{\prime} \in \mathbf{N P}$, we have $L^{\prime} \leq_{\mathrm{p}} L$.
- A language in L is called NP-complete if L is NP-hard and $L \in \mathbf{N P}$.
- The class NPC is the set of NP-complete problems.

NP

NP-Hard

NP-Hardness

- A language L is called NP-hard if for every $L^{\prime} \in \mathbf{N P}$, we have $L^{\prime} \leq_{\mathrm{p}} L$.
- A language in L is called NP-complete if L is NP-hard and $L \in \mathbf{N P}$.
- The class NPC is the set of NP-complete problems.

NP

The Tantalizing Truth

Theorem: If any NP-complete language is in \mathbf{P}, then $\mathbf{P}=\mathbf{N P}$.

The Tantalizing Truth

Theorem: If any NP-complete language is in \mathbf{P}, then $\mathbf{P}=\mathbf{N P}$.

The Tantalizing Truth

Theorem: If any NP-complete language is in \mathbf{P}, then $\mathbf{P}=\mathbf{N P}$.

The Tantalizing Truth

Theorem: If any NP-complete language is in \mathbf{P}, then $\mathbf{P}=\mathbf{N P}$.

The Tantalizing Truth

Theorem: If any NP-complete language is in \mathbf{P}, then $\mathbf{P}=\mathbf{N P}$.

The Tantalizing Truth

Theorem: If any NP-complete language is not in \mathbf{P}, then $\mathbf{P} \neq \mathbf{N P}$.

How do we even know NP-complete problems exist in the first place?

Satisfiability

- A propositional logic formula φ is called satisfiable if there is some assignment to its variables that makes it evaluate to true.
- $p \wedge q$ is satisfiable.
- $p \wedge \neg p$ is unsatisfiable.
- $p \rightarrow(q \wedge \neg q)$ is satisfiable.
- An assignment of true and false to the variables of φ that makes it evaluate to true is called a satisfying assignment.

SAT

- The boolean satisfiability problem (SAT) is the following:

Given a propositional logic formula φ, is φ satisfiable?

- Formally:

$$
\begin{aligned}
& S A T=\{\langle\varphi\rangle \mid \underset{\text { formula }}{ }\} \\
& \text { is a satisfiable PL }
\end{aligned}
$$

Theorem (Cook-Levin): SAT is NP-complete.

 Proof: Take CS154!New Stuff!

A Simpler NP-Complete Problem

Literals and Clauses

- A literal in propositional logic is a variable or its negation:
- X
- $\neg y$
- But not $x \wedge y$.
- A clause is a many-way OR (disjunction) of literals.
-($\neg x \vee y \vee \neg z)$
- (x)
- But not $x \vee \neg(y \vee z)$

Conjunctive Normal Form

- A propositional logic formula φ is in conjunctive normal form (CNF) if it is the many-way AND (conjunction) of clauses.
- ($x \vee y \vee z) \wedge(\neg x \vee \neg y) \wedge(x \vee y \vee z \vee \neg w)$
- ($x \vee z$)
- But not $(x \vee(y \wedge z)) \vee(x \vee y)$
- Only legal operators are \neg, v, \wedge.
- No nesting allowed.

The Structure of CNF

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

For this formula to be
satisfiable, each clause must have at least one true literal in it.

The Structure of CNF

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

We should pick at least one true literal from each clause...

The Structure of CNF

$(\underbrace{x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \vee \neg z) ~}$
... but never choose a literal and its negation

3-CNF

- A propositional formula is in 3-CNF if
- it is in CNF, and
- every clause has exactly three literals.
- For example:
- ($x \vee y \vee z) \wedge(\neg x \vee \neg y \vee z)$
- ($x \vee x \vee x) \wedge(y \vee \neg y \vee \neg x) \wedge(x \vee y \vee \neg y)$
- but not $(x \vee y \vee z \vee w) \wedge(x \vee y)$
- The language 3SAT is defined as follows:

3SAT $=\{\langle\varphi\rangle \mid \varphi$ is a satisfiable 3-CNF formula \}

Theorem: 3SAT is NP-Complete

Finding Additional NP-Complete Problems

NP-Completeness

Theorem: Let L_{1} and L_{2} be languages. If $L_{1} \leq_{\mathrm{P}} L_{2}$ and L_{1} is NP-hard, then L_{2} is NP-hard.

NP-Completeness

Theorem: Let L_{1} and L_{2} be languages. If $L_{1} \leq_{\mathrm{P}} L_{2}$ and L_{1} is NP-hard, then L_{2} is NP-hard.

NP-Completeness

Theorem: Let L_{1} and L_{2} be languages. If $L_{1} \leq_{\mathrm{P}} L_{2}$ and L_{1} is NP-hard, then L_{2} is NP-hard.

NP-Completeness

Theorem: Let L_{1} and L_{2} be languages. If $L_{1} \leq_{\mathrm{P}} L_{2}$ and L_{1} is NP-hard, then L_{2} is NP-hard.

NP-Completeness

Theorem: Let L_{1} and L_{2} be languages. If $L_{1} \leq_{\mathrm{p}} L_{2}$ and L_{1} is NP-hard, then L_{2} is NP-hard.

Theorem: Let L_{1} and L_{2} be languages where $L_{1} \in \mathbf{N P C}$ and $L_{2} \in \mathbf{N P}$. If $L_{1} \leq_{\mathrm{p}} L_{2}$, then $L_{2} \in$ NPC.

NP

NP-Completeness

Theorem: Let L_{1} and L_{2} be languages. If $L_{1} \leq_{\mathrm{P}} L_{2}$ and L_{1} is NP-hard, then L_{2} is NP-hard.

Theorem: Let L_{1} and L_{2} be languages where $L_{1} \in \mathbf{N P C}$ and $L_{2} \in \mathbf{N P}$. If $L_{1} \leq_{\mathrm{P}} L_{2}$, then $L_{2} \in$ NPC.

NP

NPC

NP-Completeness

Theorem: Let L_{1} and L_{2} be languages. If $L_{1} \leq_{\mathrm{p}} L_{2}$ and L_{1} is NP-hard, then L_{2} is NP-hard.

Theorem: Let L_{1} and L_{2} be languages where $L_{1} \in \mathbf{N P C}$ and $L_{2} \in \mathbf{N P}$. If $L_{1} \leq_{\mathrm{p}} L_{2}$, then $L_{2} \in$ NPC.

NP

Be Careful!

- To prove that some language L is NP-complete, show that $L \in \mathbf{N P}$, then reduce some known NP-complete problem to L.
- Do not reduce L to a known NP-complete problem.
- We already knew you could do this; every NP problem is reducible to any NP-complete problem!

Be Careful!

- To prove that some language L is NP-complete, show that $L \in \mathbf{N P}$, then reduce some known NP-complete problem to L.
- Do not reduce L to a known NP-complete problem.
- We already knew you could do this; every NP problem is reducible to any NP-complete problem!

Be Careful!

- To prove that some language L is NP-complete, show that $L \in \mathbf{N P}$, then reduce some known NP-complete problem to L.
- Do not reduce L to a known NP-complete problem.
- We already knew you could do this; every NP problem is reducible to any NP-complete problem!

So what other problems are NP-complete?

An independent set in an undirected graph is a set of nodes that have no edges between them.

An independent set in an undirected graph is a set of nodes that have no edges between them.

An independent set in an undirected graph is a set of nodes that have no edges between them.

An independent set in an undirected graph is a set of nodes that have no edges between them.

An independent set in an undirected graph is a set of nodes that have no edges between them.

The Independent Set Problem

- Given an undirected graph G and a natural number n, the independent set problem is
Does G contain an independent set of size at least n ?
- As a formal language:

INDSET $=\{\langle G, n\rangle \mid G$ is an undirected graph with an independent set of size at least $\boldsymbol{n}\}$

$I N D S E T \in \mathbf{N P}$

- The independent set problem is in NP.
- Here is a polynomial-time verifier that checks whether S is an n-element independent set:
$V=$ "On input $\langle G, n, S\rangle$, where G is a graph, $n \in \mathbb{N}$, and S is a set of nodes in G :

If $|S|<n$, reject.
For each edge in G, if both endpoints are in S, reject.
Otherwise, accept."

INDSET $\in \mathbf{N P C}$

- The INDSET problem is NP-complete.
- To prove this, we will find a polynomialtime reduction from 3SAT to INDSET.
- Goal: Given a 3CNF formula φ, build a graph G and number n such that φ is satisfiable iff G has an independent set of size n.
- How can we accomplish this?

The Structure of 3CNF

$$
(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \text { } \vee \neg z)
$$

The Structure of 3CNF

The Structure of 3CNF

$$
(x \vee y \quad \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \vee \neg z)
$$

Each clause must have
at least one true literal in it.

The Structure of 3CNF

$$
(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)
$$

The Structure of 3CNF

$$
(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)
$$

We should pick at least one true literal from each clause

The Structure of 3CNF

$$
(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \vee \neg z)
$$

The Structure of 3CNF

$$
(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \vee \neg z)
$$

The Structure of 3CNF

$$
(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \vee \neg z)
$$

The Structure of 3CNF

$(\underbrace{x \vee y \vee} \neg) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \vee \neg z)$

The Structure of 3CNF

... subject to the constraint
that we never choose a
literal and its negation

From 3SAT to INDSET

- To convert a 3SAT instance φ to an INDSET instance, we need to create a graph G and number n such that an independent set of size at least n in G
- gives us a way to choose which literal in each clause of φ should be true,
- doesn't simultaneously choose a literal and its negation, and
- has size polynomially large in the length of the formula φ.

From 3SAT to INDSET

From 3SAT to INDSET

$$
(x \vee y \vee \vee z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \text { v } \neg z)
$$

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

From 3SAT to INDSET

$(x \vee y v \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

Any independent set in this graph chooses exactly one literal from each clause to be true.

From 3SAT to INDSET

$(x \vee y v \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

Any independent set in this graph chooses exactly one literal from each clause to be true.

From 3SAT to INDSET

$(x \vee y v \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

Any independent set in this graph chooses exactly one literal from each clause to be true.

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

Any independent set in this graph chooses exactly one literal from each clause to be true.

From 3SAT to INDSET

$(x \vee y v \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

Any independent set in this graph chooses exactly one literal from each clause to be true.

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

Any independent set in this graph chooses exactly one literal from each clause to be true.

From 3SAT to INDSET

$(x \vee y v \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

Any independent set in this graph chooses exactly one literal from each clause to be true.

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

Any independent set in this graph chooses exactly one literal from each clause to be true.

From 3SAT to INDSET

$(\underbrace{x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z) ~}$

Any independent set in this graph chooses exactly one literal from each clause to be true.

From 3SAT to INDSET

We need a way to ensure we never pick a literal and its negation.

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

From 3SAT to INDSET

$(x \vee y v \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

No independent set in this graph can choose two nodes labeled \boldsymbol{x} and $\neg \boldsymbol{x}$.

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

From 3SAT to INDSET

$(x \vee y v \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

If this graph has an independent set of size three, the original formula is satisfiable.

From 3SAT to INDSET

$(x \vee y v \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

If this graph has an independent set of size three, the original formula is satisfiable.

From 3SAT to INDSET

$(x \vee y v \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

If this graph has an independent set of size three, the original formula is satisfiable.

From 3SAT to INDSET

$$
x=\text { false, } y=\text { false, } z=\text { false. }
$$

$(x \vee y v \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

If this graph has an independent set of size three, the original formula is satisfiable.

From 3SAT to INDSET

$(x \vee y v \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

If this graph has an independent set of size three, the original formula is satisfiable.

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

If this graph has an independent set of size three, the original formula is satisfiable.

From 3SAT to INDSET

$$
x=\operatorname{true}, y=\text { true, } z=\text { true. }
$$

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \vee \neg z)$

If this graph has an independent set of size three, the original formula is satisfiable.

From 3SAT to INDSET

$(x \vee y v \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

If this graph has an independent set of size three, the original formula is satisfiable.

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

If this graph has an independent set of size three, the original formula is satisfiable.

From 3SAT to INDSET

$$
x=\text { false, } y=? ?, z=\text { false }
$$

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

If this graph has an independent set of size three, the original formula is satisfiable.

From 3SAT to INDSET

$$
x=\text { false, } y=\text { true, } z=\text { false. }
$$

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \vee \neg z)$

If this graph has an independent set of size three, the original formula is satisfiable.

From 3SAT to INDSET

$$
x=\text { false, } y=\text { false, } z=\text { false. }
$$

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

If this graph has an independent set of size three, the original formula is satisfiable.

From 3SAT to INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

From 3SAT to INDSET

$(x \vee y v \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

If the original formula is satisfiable, this graph has an independent set of size three.

From 3SAT to INDSET

$x=$ false, $y=$ true, $z=$ false.
$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \vee \neg z)$

If the original formula is satisfiable, this graph has an independent set of size three.

From 3SAT to INDSET

$x=$ false, $y=$ true, $z=$ false.
$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \vee \neg z)$

If the original formula is satisfiable, this graph has an independent set of size three.

From 3SAT to INDSET

$x=$ false, $y=$ true, $z=$ false.
$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \vee \neg z)$

If the original formula is satisfiable, this graph has an independent set of size three.

From 3SAT to INDSET

- Let $\varphi=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{n}$ be a 3-CNF formula.
- Construct the graph G as follows:
- For each clause $C_{i}=x_{1} \vee x_{2} \vee x_{3}$, where x_{1}, x_{2}, and x_{3} are literals, add three new nodes into G with edges connecting them.
- For each pair of nodes v_{i} and $\neg \nu_{\mathrm{i}}$, where v_{i} is some variable, add an edge connecting v_{i} and $\neg v_{\mathrm{i}}$. (Note that there are multiple copies of these nodes)
- Claim One: This reduction can be computed in polynomial time.
- Claim Two: G has an independent set of size n iff φ is satisfiable.

INDSET $\in \mathbf{N P C}$

- Theorem: INDSET is NP-complete.
- Proof sketch: We just showed that INDSET $\in \mathbf{N P}$ and that $3 S A T \leq_{p}$ INDSET. Therefore, INDSET is NP-complete.

Time-Out For Announcements!

Please evaluate this course in Axess.
Your feedback really makes a difference.

Final Exam Logistics

- The final exam is next Monday, June 8 from 8:30AM-11:30AM.
- Sorry about the time - that was the registrar's decision. Please put down the pitchforks and torches. ©
- Same format as midterms: three hours, closedbook, closed-computer, open one page of notes.
- Topic coverage, roughly:
- About $1 / 3$ on discrete mathematics.
- About $1 / 3$ on regular and context-free languages.
- About $1 / 3$ on $\mathbf{R}, \mathbf{R E}, \mathbf{P}$, and NP.

Practice Final Exam

- We will be holding a practice final exam on Thursday, June 4 from 1:00PM - 4:00PM, location TBA.
- Same format as the practice midterms: show up, give it your best shot, and we'll answer questions afterwards.
- Practice exam will be posted online later that day; solutions will be in the normal filing cabinet.

Extra Practice Problems

- We will release three extra sets of practice problems this week:
- EPP7: Out today, solutions out Wednesday.
- EPP8: Out Wednesday, solutions out Friday.
- EPP9: Out with solutions on Friday.
- These will be cumulative review from across the quarter.
- Have any topics you'd like extra practice with? Let us know!

Your Questions

"Do you think math is hardwired into the universe? Or is it merely a human invention or construct that provides useful tools for problem solving in a myriad of fields?"
"Are languages (regular, context-free, etc.) real? Are they some kind of abstraction stemming from the human mind? Or do they actually exist, whether we ever knew about them or not?"

```
"All models are wrong; some are useful"
```

Personally, I think it's all made up and has little to no bearing on how the universe actually works. It would be astounding if we could somehow figure out something deep and fundamental about the universe given all of our biological limitations. That's just me, though. ()

"Any recommendations for the summer?
 Good books to read, things to do, movies to watch, etc..."

Try to travel if you can. The weather's nice. ;)

Watch "Jiro Dreams of Sushi" with a group and talk about it. It's a great conversation starter, especially if you're talking to other stanford students. Other good movies: "Seven Samurai," "Yojimbo," "Nightcrawler," "Brazil," and "The Babadook."
"Are we sure that $\mathbf{P} \stackrel{2}{=} \mathbf{N P}$ is solvable?"

Actually, no, we're not:
The class RE corresponds to problems where "yes" answers can be proven, and the class NP corresponds to problems where "yes" answers can be proven with a short proof. Therefore, there's a risk that $P \stackrel{?}{=}$ NP actually might not be solvable by any reasonably-sized proof because reasoning about NP requires reasoning about short proofs.

There is also a nontrivial camp of people that believe that the answer to $P \stackrel{?}{=}$ NP might not be provable or disprovable with the standard mathematical axioms. If so, it might be possible to prove that we can't prove it, or it may be impossible to prove that we can't prove it. (Think about that one for a minute...)

"What's on your bucket list?"

> I'd like to go visit Turkey. I'd also like to go to the moon come on, how cool would that be?
> I'd also like to fly around in a blimp for a day, preferably somewhere scenic.

Back to CS103!

Structuring NP-Completeness Reductions

The Shape of a Reduction

- Polynomial-time reductions work by solving one problem with a solver for a different problem.
- Most problems in NP have different pieces that must be solved simultaneously.
- For example, in 3SAT:
- Each clause must be made true,
- but no literal and its complement may be picked.
- In INDSET:
- You can choose any nodes you want to put into the set,
- but no two connected nodes can be added.

Reductions and Gadgets

- Many reductions used to show NPcompleteness work by using gadgets.
- Each piece of the original problem is translated into a "gadget" that handles some particular detail of the problem.
- These gadgets are then connected together to solve the overall problem.

Gadgets in INDSET

$$
(x \vee y \vee \vee z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \vee \neg z)
$$

Gadgets in INDSET

$$
(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \vee \neg z)
$$

Gadgets in INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$
7y
y

Gadgets in INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

Gadgets in INDSET

$(x \vee y v \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

Each of these gadgets is designed to solve one part of the problem:
ensuring each clause is satisfied.

Gadgets in INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

Gadgets in INDSET

$(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

Gadgets in INDSET

$(x \vee y v \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

These connections ensure that the solutions to each gadget are linked to one another.

Gadgets in INDSET

A More Complex Reduction

A 3-coloring of a graph is a way of coloring its nodes one of three colors such that no two connected nodes have the same color.

A 3-coloring of a graph is a way of coloring its nodes one of three colors such that no two connected nodes have the same color.

A 3-coloring of a graph is a way of coloring its nodes one of three colors such that no two connected nodes have the same color.

The 3-Coloring Problem

- The 3-coloring problem is

Given an undirected graph G, is there a legal 3-coloring of its nodes?

- As a formal language:

$$
\begin{aligned}
& \text { 3COLOR }=\{\langle G\rangle \mid G \text { is an undirected } \\
& \text { graph with a legal 3-coloring. }\}
\end{aligned}
$$

- This problem is known to be NP-complete by a reduction from 3SAT.

$3 C O L O R \in \mathbf{N P}$

- We can prove that 3COLOR \in NP by designing a polynomial-time nondeterministic TM for 3COLOR.
- $\mathrm{M}=$ "On input $\langle G\rangle$:
- Nondeterministically guess an assignment of colors to the nodes.
- Deterministically check whether it is a 3coloring.
- If so, accept; otherwise reject."

A Note on Terminology

- Although 3COLOR and 3SAT both have " 3 " in their names, the two are very different problems.
- 3SAT means "there are three literals in every clause." However, each literal can take on only one of two different values.
- 3COLOR means "every node can take on one of three different colors."
- Key difference:
- In 3SAT variables have two choices of value.
- In 3COLOR nodes have three choices of value.

Why Not Two Colors?

- It would seem that 2COLOR (whether a graph has a 2-coloring) would be a better fit.
- Every variable has one of two values.
- Every node has one of two values.
- Interestingly, 2COLOR is known to be in \mathbf{P} and is conjectured not to be NP-complete.
- Though, if you can prove that it is, you've just won $\$ 1,000,000$!

From 3SAT to 3COLOR

- In order to reduce 3SAT to 3COLOR, we need to somehow make a graph that is 3-colorable iff some 3-CNF formula φ is satisfiable.
- Idea: Use a collection of gadgets to solve the problem.
- Build a gadget to assign two of the colors the labels "true" and "false."
- Build a gadget to force each variable to be either true or false.
- Build a series of gadgets to force those variable assignments to satisfy each clause.

Gadget One: Assigning Meanings

Gadget One: Assigning Meanings

These nodes
must all have
different
colors.

Gadget One: Assigning Meanings

These nodes
must all have different colors.

The color assigned to T will be interpreted as "true." The color assigned to F will be interpreted as "false." We do not associate any special meaning with 0 .

Gadget One: Assigning Meanings

These nodes
must all have different colors.

The color assigned to T will be interpreted as "true." The color assigned to F will be interpreted as "false." We do not associate any special meaning with 0 .

Gadget One: Assigning Meanings

These nodes
must all have different colors.

The color assigned to T will be interpreted as "true." The color assigned to F will be interpreted as "false." We do not associate any special meaning with 0 .

Gadget One: Assigning Meanings

These nodes
must all have different colors.

The color assigned to T will be interpreted as "true." The color assigned to F will be interpreted as "false." We do not associate any special meaning with 0 .

Gadget Two: Forcing a Choice

$$
(x \vee y \vee \vee \neg) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \text { v } \neg z)
$$

Gadget Two: Forcing a Choice

$$
(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \vee \neg z)
$$

Gadget Two: Forcing a Choice

$$
(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \vee \neg z)
$$

Gadget Two: Forcing a Choice

$$
(x \vee y \vee \vee z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \vee \neg z)
$$

Gadget Two: Forcing a Choice

$$
(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)
$$

Gadget Two: Forcing a Choice

$$
(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)
$$ F

Gadget Two: Forcing a Choice

$$
(x \vee y \vee \vee z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \vee \neg z)
$$ F

z
ᄀZ

Gadget Two: Forcing a Choice

$$
(x \vee y \vee \vee z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \vee \neg z)
$$ F

Gadget Two: Forcing a Choice

$$
(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)
$$

Gadget Two: Forcing a Choice

$(x \vee y v \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$
$T \quad F$

z
$\neg Z$

Gadget Two: Forcing a Choice

$$
(x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y \text { v } \neg z)
$$

Gadget Two: Forcing a Choice

$(x \vee y v \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge(\neg x \vee y v \neg z)$

Gadget Three: Clause Satisfiability

$$
(x \vee y \vee \neg z)
$$

Gadget Three: Clause Satisfiability

$$
(x \vee y \vee \neg z)
$$

Gadget Three: Clause Satisfiability

$$
\text { (} x \vee y \text { v } \neg z)
$$

Gadget Three: Clause Satisfiability

$$
(x \vee y \vee \neg z)
$$

Gadget Three: Clause Satisfiability

$$
(x \vee y \vee \neg z)
$$

Gadget Three: Clause Satisfiability

$$
(x \vee y \vee \neg z)
$$

Gadget Three: Clause Satisfiability

$$
(x \vee y \vee \neg z)
$$

Gadget Three: Clause Satisfiability

$$
\text { (} x \vee y \vee \neg z)
$$

Gadget Three: Clause Satisfiability

$$
(x \vee y \vee \neg z)
$$

Gadget Three: Clause Satisfiability

$$
(x \vee y \vee \neg z)
$$

Gadget Three: Clause Satisfiability

$$
(x \vee y \vee \neg z)
$$

Gadget Three: Clause Satisfiability

$$
(x \vee y \vee \neg z)
$$

Gadget Three: Clause Satisfiability

$$
(x \vee y \vee \neg z)
$$

Gadget Three: Clause Satisfiability

$$
\text { (} x \vee y \text { v } \neg z)
$$

Gadget Three: Clause Satisfiability

$$
(x \vee y \vee \neg z)
$$

Gadget Three: Clause Satisfiability

Gadget Three: Clause Satisfiability

Putting It All Together

- Construct the first gadget so we have a consistent definition of true and false.
- For each variable v :
- Construct nodes v and $\neg v$.
- Add an edge between v and $\neg v$.
- Add an edge between v and O and between $\neg v$ and 0 .
- For each clause C :
- Construct the earlier gadget from C by adding in the extra nodes and edges.

Putting It All Together

Next Time

- The Big Picture
- How do all of our results relate to one another?
- Where to Go from Here
- What's next in CS theory?

