

NP-Completeness
Part II

Outline for Today

● Recap from Last Time
● What is NP-completeness again, anyway?

● 3SAT
● A simple, canonical NP-complete problem.

● Independent Sets
● Discovering a new NP-complete problem.

● Gadget-Based Reductions
● A common technique in NP reductions.

● 3-Colorability
● A more elaborate NP-completeness reduction.

Recap from Last Time

Polynomial-Time Reductions

● If L1 ≤P L2 and L2 ∈ P, then L1 ∈ P.

● If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

 NPP

NP-Hardness

● A language L is called NP-hard if for every L' ∈ NP, we
have L' ≤P L.

● A language in L is called NP-complete if L is NP-hard and
L ∈ NP.

● The class NPC is the set of NP-complete problems.

P

 NP NP-Hard
NPC

The Tantalizing Truth

 P = NP

Theorem: If any NP-complete language is in P, then
P = NP.

The Tantalizing Truth

 NP

P
NPC

Theorem: If any NP-complete language is not in P,
then P ≠ NP.

How do we even know NP-complete
problems exist in the first place?

Satisfiability

● A propositional logic formula φ is called
satisfiable if there is some assignment to
its variables that makes it evaluate to true.
● p ∧ q is satisfiable.
● p ∧ ¬p is unsatisfiable.
● p → (q ∧ ¬q) is satisfiable.

● An assignment of true and false to the
variables of φ that makes it evaluate to
true is called a satisfying assignment.

SAT

● The boolean satisfiability problem
(SAT) is the following:

Given a propositional logic
formula φ, is φ satisfiable?

● Formally:

SAT = { ⟨φ⟩ | φ is a satisfiable PL
formula }

Theorem (Cook-Levin): SAT is NP-complete.

Proof: Take CS154!

New Stuff!

A Simpler NP-Complete Problem

Literals and Clauses
● A literal in propositional logic is a

variable or its negation:
● x
● ¬y
● But not x ∧ y.

● A clause is a many-way OR (disjunction)
of literals.
● (¬x ∨ y ∨ ¬z)
● (x)
● But not x ∨ ¬(y ∨ z)

Conjunctive Normal Form

● A propositional logic formula φ is in
conjunctive normal form (CNF) if it is
the many-way AND (conjunction) of
clauses.
● (x ∨ y ∨ z) ∧ (¬x ∨ ¬y) ∧ (x ∨ y ∨ z ∨ ¬w)
● (x ∨ z)
● But not (x ∨ (y ∧ z)) ∨ (x ∨ y)

● Only legal operators are ¬, ∨, ∧.
● No nesting allowed.

The Structure of CNF

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

We should pick at least
one true literal from

each clause.

We should pick at least
one true literal from

each clause.

The Structure of CNF

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

. but never choose a literal
and its negation

. but never choose a literal
and its negation

3-CNF

● A propositional formula is in 3-CNF if
● it is in CNF, and
● every clause has exactly three literals.

● For example:
● (x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ z)
● (x ∨ x ∨ x) ∧ (y ∨ ¬y ∨ ¬x) ∧ (x ∨ y ∨ ¬y)
● but not (x ∨ y ∨ z ∨ w) ∧ (x ∨ y)

● The language 3SAT is defined as follows:

 3SAT = { ⟨φ⟩ | φ is a satisfiable 3-CNF
formula }

Theorem: 3SAT is NP-Complete

Finding Additional NP-Complete Problems

NP-Completeness

P

 NP

NPC

Theorem: Let L₁ and L₂ be languages. If
L₁ ≤P L₂ and L₁ is NP-hard, then L₂ is NP-hard.

Theorem: Let L₁ and L₂ be languages where
L₁ ∈ NPC and L₂ ∈ NP. If L₁ ≤P L₂, then
L₂ ∈ NPC.

Be Careful!

● To prove that some language L is NP-complete, show
that L ∈ NP, then reduce some known NP-complete
problem to L.

● Do not reduce L to a known NP-complete problem.

● We already knew you could do this; every NP problem is
reducible to any NP-complete problem!

P

 NP

NPC

So what other problems are NP-complete?

An independent set in an undirected graph
is a set of nodes that have no edges between them.

The Independent Set Problem

● Given an undirected graph G and a
natural number n, the independent set
problem is

Does G contain an independent set
of size at least n?

● As a formal language:

INDSET = { ⟨G, n⟩ | G is an
undirected graph with an

independent set of size at least n }

INDSET ∈ NP

● The independent set problem is in NP.
● Here is a polynomial-time verifier that

checks whether S is an n-element
independent set:

V = “On input ⟨G, n, S⟩, where G is a graph,
 n ∈ ℕ, and S is a set of nodes in G:

 If |S| < n, reject.

 For each edge in G, if both
 endpoints are in S, reject.

 Otherwise, accept.”

INDSET ∈ NPC

● The INDSET problem is NP-complete.
● To prove this, we will find a polynomial-

time reduction from 3SAT to INDSET.
● Goal: Given a 3CNF formula φ, build a

graph G and number n such that φ is
satisfiable iff G has an independent set of
size n.

● How can we accomplish this?

From 3SAT to INDSET

● To convert a 3SAT instance φ to an INDSET
instance, we need to create a graph G and
number n such that an independent set of size
at least n in G
● gives us a way to choose which literal in each

clause of φ should be true,
● doesn't simultaneously choose a literal and its

negation, and
● has size polynomially large in the length of the

formula φ.

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

Any independent set in this graph
chooses exactly one literal from

each clause to be true.

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

We need a way to ensure we never
pick a literal and its negation.

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

If this graph has an independent set of
size three, the original formula is satisfiable.

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x = false, y = false, z = false.

If this graph has an independent set of
size three, the original formula is satisfiable.

x

y

¬z ¬x

¬y

z ¬x

y

¬z

From 3SAT to INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x = false, y = true, z = false.

x

y

¬z ¬x

¬y

z ¬x

y

¬z

If the original formula is satisfiable,
this graph has an independent set of size three.

From 3SAT to INDSET
● Let φ = C1 ∧ C2 ∧ … ∧ Cn be a 3-CNF formula.

● Construct the graph G as follows:
● For each clause Ci = x1 ∨ x2 ∨ x3, where x1, x2, and x3

are literals, add three new nodes into G with edges
connecting them.

● For each pair of nodes vi and ¬vi, where vi is some
variable, add an edge connecting vi and ¬vi. (Note
that there are multiple copies of these nodes)

● Claim One: This reduction can be computed in
polynomial time.

● Claim Two: G has an independent set of size n
iff φ is satisfiable.

INDSET ∈ NPC

● Theorem: INDSET is NP-complete.
● Proof sketch: We just showed that

INDSET ∈ NP and that 3SAT ≤p INDSET.
Therefore, INDSET is NP-complete. ■

Time-Out For Announcements!

Please evaluate this course in Axess.
Your feedback really makes a difference.

Final Exam Logistics

● The final exam is next Monday, June 8 from
8:30AM – 11:30AM.
● Sorry about the time – that was the registrar's decision.

Please put down the pitchforks and torches. ☺

● Same format as midterms: three hours, closed-
book, closed-computer, open one page of notes.

● Topic coverage, roughly:
● About 1/3 on discrete mathematics.
● About 1/3 on regular and context-free languages.
● About 1/3 on R, RE, P, and NP.

Practice Final Exam

● We will be holding a practice final exam on
Thursday, June 4 from 1:00PM – 4:00PM,
location TBA.

● Same format as the practice midterms:
show up, give it your best shot, and we'll
answer questions afterwards.

● Practice exam will be posted online later
that day; solutions will be in the normal
filing cabinet.

Extra Practice Problems

● We will release three extra sets of practice
problems this week:
● EPP7: Out today, solutions out Wednesday.
● EPP8: Out Wednesday, solutions out Friday.
● EPP9: Out with solutions on Friday.

● These will be cumulative review from across
the quarter.

● Have any topics you'd like extra practice with?
Let us know!

Your Questions

“Do you think math is hardwired into the
universe? Or is it merely a human invention or

construct that provides useful tools for problem
solving in a myriad of fields?”

“Are languages (regular, context-free, etc.) real?
Are they some kind of abstraction stemming from

the human mind? Or do they actually exist,
whether we ever knew about them or not?”

“All models are wrong; some are useful”

Personally, I think it's all made up and has little to no
bearing on how the universe actually works. It would be

astounding if we could somehow figure out something deep
and fundamental about the universe given all of our
biological limitations. That's just me, though. ☺

“All models are wrong; some are useful”

Personally, I think it's all made up and has little to no
bearing on how the universe actually works. It would be

astounding if we could somehow figure out something deep
and fundamental about the universe given all of our
biological limitations. That's just me, though. ☺

“Any recommendations for the summer?
Good books to read, things to do, movies to

watch, etc...”

Try to travel if you can. The weather's nice. ☺

Watch “Jiro Dreams of Sushi” with a group and talk about it.
It's a great conversation starter, especially if you're talking

to other Stanford students. Other good movies: “Seven
Samurai,” “Yojimbo,” “Nightcrawler,” “Brazil,” and “The

Babadook.”

Try to travel if you can. The weather's nice. ☺

Watch “Jiro Dreams of Sushi” with a group and talk about it.
It's a great conversation starter, especially if you're talking

to other Stanford students. Other good movies: “Seven
Samurai,” “Yojimbo,” “Nightcrawler,” “Brazil,” and “The

Babadook.”

“Are we sure that P ≟ NP is solvable?”

Actually, no, we're not!

The class RE corresponds to problems where “yes” answers can be
proven, and the class NP corresponds to problems where “yes” answers

can be proven with a short proof. Therefore, there's a risk that
P ≟ NP actually might not be solvable by any reasonably-sized proof
because reasoning about NP requires reasoning about short proofs.

There is also a nontrivial camp of people that believe that the answer
to P ≟ NP might not be provable or disprovable with the standard

mathematical axioms. If so, it might be possible to prove that we can't
prove it, or it may be impossible to prove that we can't prove it.

(Think about that one for a minute.)

Actually, no, we're not!

The class RE corresponds to problems where “yes” answers can be
proven, and the class NP corresponds to problems where “yes” answers

can be proven with a short proof. Therefore, there's a risk that
P ≟ NP actually might not be solvable by any reasonably-sized proof
because reasoning about NP requires reasoning about short proofs.

There is also a nontrivial camp of people that believe that the answer
to P ≟ NP might not be provable or disprovable with the standard

mathematical axioms. If so, it might be possible to prove that we can't
prove it, or it may be impossible to prove that we can't prove it.

(Think about that one for a minute.)

“What's on your bucket list?”

I'd like to go visit Turkey. I'd
also like to go to the moon –

come on, how cool would that be?

I'd also like to fly around in a
blimp for a day, preferably

somewhere scenic.

I'd like to go visit Turkey. I'd
also like to go to the moon –

come on, how cool would that be?

I'd also like to fly around in a
blimp for a day, preferably

somewhere scenic.

Back to CS103!

Structuring NP-Completeness Reductions

The Shape of a Reduction

● Polynomial-time reductions work by solving one
problem with a solver for a different problem.

● Most problems in NP have different pieces that
must be solved simultaneously.

● For example, in 3SAT:
● Each clause must be made true,
● but no literal and its complement may be picked.

● In INDSET:
● You can choose any nodes you want to put into the set,
● but no two connected nodes can be added.

Reductions and Gadgets

● Many reductions used to show NP-
completeness work by using gadgets.

● Each piece of the original problem is
translated into a “gadget” that handles
some particular detail of the problem.

● These gadgets are then connected
together to solve the overall problem.

Gadgets in INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

Each of these gadgets is designed
to solve one part of the problem:
ensuring each clause is satisfied.

Gadgets in INDSET

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x

y

¬z ¬x

¬y

z ¬x

y

¬z

These connections ensure that the solutions
to each gadget are linked to one another.

Gadgets in INDSET

¬x

x

¬x

y

¬y

A More Complex Reduction

A 3-coloring of a graph is a way of coloring its
nodes one of three colors such that no two connected

nodes have the same color.

The 3-Coloring Problem

● The 3-coloring problem is

Given an undirected graph G,
is there a legal 3-coloring of its

nodes?
● As a formal language:

3COLOR = { ⟨G⟩ | G is an undirected
graph with a legal 3-coloring. }

● This problem is known to be NP-complete
by a reduction from 3SAT.

3COLOR ∈ NP

● We can prove that 3COLOR ∈ NP by
designing a polynomial-time
nondeterministic TM for 3COLOR.

● M = “On input ⟨G⟩:
● Nondeterministically guess an assignment

of colors to the nodes.
● Deterministically check whether it is a 3-

coloring.
● If so, accept; otherwise reject.”

A Note on Terminology

● Although 3COLOR and 3SAT both have “3” in
their names, the two are very different
problems.
● 3SAT means “there are three literals in every

clause.” However, each literal can take on only
one of two different values.

● 3COLOR means “every node can take on one of
three different colors.”

● Key difference:
● In 3SAT variables have two choices of value.
● In 3COLOR nodes have three choices of value.

Why Not Two Colors?
● It would seem that 2COLOR (whether a graph

has a 2-coloring) would be a better fit.
● Every variable has one of two values.
● Every node has one of two values.

● Interestingly, 2COLOR is known to be in P and
is conjectured not to be NP-complete.
● Though, if you can prove that it is, you've just

won $1,000,000!

From 3SAT to 3COLOR

● In order to reduce 3SAT to 3COLOR, we need
to somehow make a graph that is 3-colorable
iff some 3-CNF formula φ is satisfiable.

● Idea: Use a collection of gadgets to solve the
problem.
● Build a gadget to assign two of the colors the

labels “true” and “false.”
● Build a gadget to force each variable to be either

true or false.
● Build a series of gadgets to force those variable

assignments to satisfy each clause.

Gadget One: Assigning Meanings

T F

O
These nodes
must all have
different
colors.

The color assigned to T will be interpreted as “true.”
The color assigned to F will be interpreted as “false.”

We do not associate any special meaning with O.

Gadget Two: Forcing a Choice

(x ∨ y ∨ ¬z) (¬x ∨ ¬y ∨ z)∧ ∧ (¬x ∨ y ∨ ¬z)

x ¬x y ¬y z ¬z

T F

O

Gadget Three: Clause Satisfiability

(x ∨ y ∨ ¬z)

x y ¬zT F

This node is
colorable iff one of
the inputs is the
same color as T

This node is
colorable iff one of
the inputs is the
same color as T

Gadget Three: Clause Satisfiability

(x ∨ y ∨ ¬z)

x y ¬zT F

This node cannot
be colored

This node cannot
be colored

Gadget Three: Clause Satisfiability

(x ∨ y ∨ ¬z)

x y ¬zT F

Every other
combination of inputs
can give this a color

Every other
combination of inputs
can give this a color

Putting It All Together

● Construct the first gadget so we have a
consistent definition of true and false.

● For each variable v:
● Construct nodes v and ¬v.
● Add an edge between v and ¬v.
● Add an edge between v and O and between ¬v

and O.

● For each clause C:
● Construct the earlier gadget from C by adding in

the extra nodes and edges.

Putting It All Together

C
1

C
2

… C
n

T F

O

x
1

¬x
1 x

k
¬x

k

Next Time

● The Big Picture
● How do all of our results relate to one

another?

● Where to Go from Here
● What's next in CS theory?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

