

The Big Picture

Announcements

● Problem Set 8 due right now. We'll release solutions
right after lecture.

– Congratulations – you're done with CS103
problem sets!

● Please evaluate this course on Axess! Your
feedback really does make a difference.

● There's a fun and completely optional handout
“Timeline of CS103 Results” up on the CS103
website. It details the history of all the results from
this course.

Final Exam Logistics

● Final exam is Monday, June 8 from 8:30AM –
11:30AM.

● Locations divvied up by last (family) name:
– Aba – Leo: Go to 420-040 (here!)

– Leu – Zoc: Go to Hewlett 200
● Practice final exam is Thursday (tomorrow)

from 1PM – 4PM, location TBA.
● EPP7 solutions released, EPP8 goes out today.

The Big Picture

The Big Picture

Cantor's Theorem: |S| < | (℘ S)|

Corollary: Unsolvable problems exist.

What problems can
be solved by computers?

First, we need to learn how to prove
results with certainty.

Otherwise, how can we know for
sure that we're right about anything?

Now, we need to learn how to prove things
about processes that proceed step-by-step.

So let's learn induction.

We also should be sure we have some
rules about reasoning itself.

Let's add some logic into the mix.

Finally, let's study a few common discrete
structures.

That way, we know how to model
connected structures and relationships.

Okay! So now we're ready to go!

What problems are unsolvable?

Well, first we need a
definition of a computer!

q
0

q
1

q
2

q
3

0

 1

0

1

0

1 1

0

start

q
2

Cool! Now we have a model of a computer!

We're not quite sure what we can solve at
this point, but that's okay for now.

Let's call the languages we can capture
this way the regular languages.

I wonder what other
machines we can make?

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

Wow! Those new machines are
way cooler than our old ones!

I wonder if they're more powerful?

q
1

q
0

start
q

2

q
3

0 1

ε

q
4

0 q
5

0 q
5

q
2

0

1

q
03

start
q

14

0

q

1

q
5

0

q
2

1

q
2

q
5

q
1

 0

1 0

q
3

 1

 0
1

q
4 0

 10
1

0, 1

Wow! I guess not. That's surprising!

So now we have a new way of modeling
computers with finite memory!

I wonder how we can combine
these machines together?

start

ε

ε

ε

start

Cool! Since we can glue
machines together, we can glue

languages together as well.

How are we going to do that?

a+(.a+)*@a+(.a+)+

Wow! We've got a new way
of describing languages.

So what sorts of languages
can we describe this way?

q
s

q
f

q
f

q
1

q
2

R
12

R
21

R
11

R
22

start ε ε

ε R
11

* R
12

Awesome! We got back the
exact same class of languages.

It seems like all our models give us the
same power! Did we get every language?

xw ∈ L
yw ∉ L

Wow, I guess not.

But we did learn something cool:

We have just explored what problems
can be solved with finite memory.

So what else is out there?

Can we describe languages another way?

S → aX
X → b | C
C → Cc | ε

Awesome!

So, did we get every language yet?

Hmmm... guess not.

So what if we make our
memory a little better?

Clear a
1

Clear a
1

Go to
end

Check
for 0

Go to
end

Check
for 0

Go to
start
Go to
start

start

0 → , R☐
 0 → 0, R
 1 → 1, R

 → ☐ ☐, L

1 → , L☐
0 → 0, L
1 → 1, L

 → ☐ ☐, R

q
acc

q
acc

 → ☐ ☐, R

q
acc

q
rej

1 → , R☐

 → ☐ ☐, R
0 → 0, R

Cool! Can we make these
more powerful?

Guess
Split

0 → 0, R
1 → 1, R

0 → ×, R 1 → ×, R

 0 → 0, R
 1 → 1, R

0 → 0, R
1 → 1, R

 → ☐ ☐, L

 → ☐ ☐, L

0 → ×, L

 1 → ×, L

start

0 1 0 0 1 0 ……

To end

0 → 0, R
1 → 1, R

0 → ×, R 1 → ×, R

 0 → 0, R
 1 → 1, R

0 → 0, R
1 → 1, R

 → ☐ ☐, L

 → ☐ ☐, L

0 → ×, L

 1 → ×, L

start

× 1 0 0 1 0 ……

To end

To endMatch
0

Match
1

Check
split

Guess
Split

To endMatch
0

Match
1

Check
split

V = “On input ⟨w, T⟩, where T is a sequence of
 transitions:

· Run N on w, following transitions in the order
 specified in T.
· If any of the transitions in T are invalid or
 can't be followed, reject.
· If after following the transitions N accepts w,
 accept; otherwise reject.

V = “On input ⟨w, T⟩, where T is a sequence of
 transitions:

· Run N on w, following transitions in the order
 specified in T.
· If any of the transitions in T are invalid or
 can't be followed, reject.
· If after following the transitions N accepts w,
 accept; otherwise reject.

Wow! Looks like we can't
get any more powerful.

(The Church-Turing thesis says
that this is not a coincidence!)

So why is that?

UTM = “On input ⟨M, w⟩, where M is a TM and w ∈ Σ*:
 Set up the initial configuration of M running on w.
 while (true) {
 If M accepted w, then UTM accepts ⟨M, w⟩.
 If M rejected w, then UTM rejects ⟨M, w⟩.
 Otherwise, simulate one more step of M on w.
 }”

UTM = “On input ⟨M, w⟩, where M is a TM and w ∈ Σ*:
 Set up the initial configuration of M running on w.
 while (true) {
 If M accepted w, then UTM accepts ⟨M, w⟩.
 If M rejected w, then UTM rejects ⟨M, w⟩.
 Otherwise, simulate one more step of M on w.
 }”

Wow! Our machines can
simulate one another!

This is a theoretical justification
for why all these models are
equivalent to one another.

So... can we solve everything yet?

#include <iostream>
#include <string>
#include <vector>
using namespace std;

const vector<string> kToPrint = {
 /* … */
};

void printProgramInQuotes() {
 for (string line: kToPrint) {
 cout << " \"";
 for (char ch: line) {
 if (ch == '\"') cout << "\\\"";
 else if (ch == '\\') cout << "\\\\";
 else cout << ch;
 }
 cout << "\"," << endl;
 }
}

int main() {
 for (string line: kToPrint) {
 if (line == "@") printProgramInQuotes();
 else cout << line << endl;
 }
}

Weird! Programs can gain access
to their own source code!

Why does that matter?

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Crazy! The power of self-reference
immediately limits what TMs can do!

What if we think about solving
problems in a different way?

int main() {
string me = mySource();
string input = getInput();

for (each string c) {
if (imConvincedWillLoop(me, input, c) {

accept();
}

}
}

int main() {
string me = mySource();
string input = getInput();

for (each string c) {
if (imConvincedWillLoop(me, input, c) {

accept();
}

}
}

No No Acc Acc No …

Acc Acc Acc Acc Acc …

Acc Acc Acc Acc Acc …

No Acc Acc Acc Acc …

Acc No Acc No No …

No No Acc Acc No …

… … … … … …

No No No Acc No Acc …

M
1

M
2

M
0

M
3

M
4

M
5

w
0

w
1

w
2

w
3

w
4

w
5 …

…

Acc

Acc

Acc

No

Acc

No

…

⟨M
0
⟩ ⟨M

1
⟩ ⟨M

2
⟩ ⟨M

3
⟩ ⟨M

4
⟩ ⟨M

5
⟩ …

Oh great. Some problems
are impossible to solve.

But look what we learned along the way!

R

CFL

REG

RE

Wow. That's pretty deep.

So... what can we do efficiently?

PP

NPN P

So... how are you two related again?

No clue.

But what do we know about them?

P

 NP NP-Hard
NPC

Congratulations on making it this far!

What's next in CS theory?

What problems can
be solved by computers?

Regular languages
Context-Free Languages

R and RE
P and NP

DFAs
NFAs

Regular Expressions
Context-Free Grammars

Recognizers
Deciders
Verifiers
NTMs

Poly-time TMs/NTMs/Verifiers

Formal languages

What problems can
be solved by computers?

Interactive proof systems (CS254)
Approximation algorithms (CS261/361)

Average-case efficiency (CS264)
Randomized algorithms (CS265/254)
Parameterized complexity (CS266)

Communication complexity (CS369E)

Oracle machines (CS154)
Space-Bounded TMs (CS154/254)

Machines with Advice (CS254/354)
Streaming algorithms (CS263)
μ-Recursive functions (CS258)
Quantum computers (CS259Q)

Circuit complexity (CS354)

Function problems (CS254)
Counting problems (CS254)

How do we actually get the computer to
effectively solve problems?

DFA design intuitions
Guess-and-check

Massive parallelism
Myhill-Nerode lower bounds

Verification
Polynomial-time reductions

How do we actually get the computer to
effectively solve problems?

Algorithm design (CS161)
Efficient data structures (CS166)

Modern algorithmic techniques (CS168)
Approximation algorithms (CS261)

Average-case efficient algorithms (CS264)
Randomized algorithms (CS265)

Parameterized algorithms (CS266)
Geometric algorithms (CS268)

Game-theoretic algorithms (CS364A/B)

Where does CS theory meet CS practice?

Finite state machines
Regular expressions

CFGs and programming languages
Password-checking

Autograding
“This program is not responding”

Polynomial-time reducibility
NP-hardness and NP-completeness

Where does CS theory meet CS practice?

Compilers (CS143)
Computational logic (CS157)

Program optimization (CS243)
Data mining (CS246)

Cryptography (CS255)
Programming languages (CS258)

Network protocol analysis (CS259)
Techniques in big data (CS263)

Graph algorithms (CS267)
Computational geometry (CS268)
Algorithmic game theory (CS364)

A Whole World of Theory Awaits!

What's being done here at Stanford?

Hardness results for easy problems
(Virginia Williams)

Algorithms ∩ Game theory
(Tim Roughgarden)

Learning patterns in randomness
(Greg Valiant)

Optimizing programs... randomly
(Alex Aiken)

Computing on encrypted data
(Dan Boneh)

Interpreting structure from shape
(Leonidas Guibas)

Lower bounds from upper bounds
(Ryan Williams)

So many options – what to do next?

Interested in trying out CS?
Continue on to CS109!

Really enjoyed this class?
Give CS154 a try!

Want to see this material come to life?
Check out CS143!

Want to just go write code?
Take CS107!

Keep on exploring! There's
so much more to learn!

A Final “Your Questions”

“All our proofs that prove
undecidability/unrecognizabili ty so far have
relied on self-referential Turing machines.
Could it be the case that, say, the halting
problem restricted to non-self-referential

machines is decidable? Is that even
provable?”

Self-reference is sneaky and inherent to
computation itself. It's impossible to eliminate it
without destroying the ability for the computer

to solve interesting problems.

Self-reference is sneaky and inherent to
computation itself. It's impossible to eliminate it
without destroying the ability for the computer

to solve interesting problems.

“About equivalent TMs, you said something
like 'This problem is unrecognizable, which

is why we need section leaders to grade
your code!' What makes section leaders
inherently different than computers?”

We ultimately want to solve problems for a
reason. Putting humans in the loop lets us make
judgment calls and factor in concerns that we

just can't program into the machine.

We ultimately want to solve problems for a
reason. Putting humans in the loop lets us make
judgment calls and factor in concerns that we

just can't program into the machine.

“Please tell us a CS joke.”

Why didn't the brakes
on the programmer's

Segway work?

Why didn't the brakes
on the programmer's

Segway work?

“What's one piece of advice you would give
someone at Stanford?”

Stay happy.
Stay healthy.

Stay happy.
Stay healthy.

“Thanks for answering all our questions
Keith! Now, what is one question you would

ask us?”

It's a multipart
question. I'm going
to save it for the
end of today.

It's a multipart
question. I'm going
to save it for the
end of today.

Anything else?

CS theory is all about asking what's
possible in computer science.

There are more problems to
solve than there are programs

capable of solving them.

There is so much more to explore and so
many big questions to ask – many of

which haven't been asked yet!

What We've Covered
● Sets

● Proof Techniques

● Induction

● Graphs

● Logic

● Pigeonhole Principle

● Functions

● Relations

● DFAs

● NFAs

● Regular Expressions

● Closure Properties

● Nonregular Languages

● CFGs

● Turing Machines

● R and RE

● The Recursion Theorem

● NTMs and Verifiers

● Unsolvable Problems

● Reductions

● Time Complexity

● P

● NP

● NP-Completeness

Final Thoughts

You now know what problems we can solve,
what problems we can't solve, and what

problems we believe we can't solve
efficiently.

My questions to you:

What problems will you choose to solve?
Why do those problems matter to you?
And how are you going to solve them?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108

