
  

The Big Picture



  

Announcements

● Problem Set 8 due right now. We'll release solutions 
right after lecture.

– Congratulations – you're done with CS103 
problem sets!

● Please evaluate this course on Axess! Your 
feedback really does make a difference.

● There's a fun and completely optional handout 
“Timeline of CS103 Results” up on the CS103 
website. It details the history of all the results from 
this course.



  

Final Exam Logistics

● Final exam is Monday, June 8 from 8:30AM – 
11:30AM.

● Locations divvied up by last (family) name:
– Aba – Leo: Go to 420-040 (here!)

– Leu – Zoc: Go to Hewlett 200
● Practice final exam is Thursday (tomorrow) 

from 1PM – 4PM, location TBA.
● EPP7 solutions released, EPP8 goes out today.
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The Big Picture



  

Cantor's Theorem: |S| < | (℘ S)|

Corollary: Unsolvable problems exist.



  

What problems can
be solved by computers?



  

First, we need to learn how to prove
results with certainty.

 

Otherwise, how can we know for
sure that we're right about anything?



  

Now, we need to learn how to prove things 
about processes that proceed step-by-step.

 

So let's learn induction.



  

We also should be sure we have some
rules about reasoning itself.

 

Let's add some logic into the mix.



  

Finally, let's study a few common discrete 
structures.

 

That way, we know how to model 
connected structures and relationships.



  

Okay!  So now we're ready to go!
 

What problems are unsolvable?



  

Well, first we need a
definition of a computer!
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Cool!  Now we have a model of a computer!



  

We're not quite sure what we can solve at
this point, but that's okay for now.

 

Let's call the languages we can capture
this way the regular languages.



  

I wonder what other
machines we can make?
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Wow! Those new machines are
way cooler than our old ones!



  

I wonder if they're more powerful?
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Wow! I guess not. That's surprising!
 

So now we have a new way of modeling
computers with finite memory!



  

I wonder how we can combine
these machines together?
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Cool! Since we can glue
machines together, we can glue

languages together as well.



  

How are we going to do that?



  

a+(.a+)*@a+(.a+)+



  

Wow! We've got a new way
of describing languages.



  

So what sorts of languages
can we describe this way?
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Awesome! We got back the
exact same class of languages.



  

It seems like all our models give us the
same power! Did we get every language?



  

xw ∈ L
yw ∉ L



  

Wow, I guess not.



  

But we did learn something cool:
 

We have just explored what problems 
can be solved with finite memory.



  

So what else is out there?



  

Can we describe languages another way?



  

S → aX
X → b | C
C → Cc | ε



  

Awesome!



  

So, did we get every language yet?



  

Hmmm... guess not.



  

So what if we make our
memory a little better?
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Cool! Can we make these
more powerful?
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V = “On input ⟨w, T⟩, where T is a sequence of
    transitions:

· Run N on w, following transitions in the order
  specified in T.
· If any of the transitions in T are invalid or
  can't be followed, reject.
· If after following the transitions N accepts w,
  accept; otherwise reject.

V = “On input ⟨w, T⟩, where T is a sequence of
    transitions:

· Run N on w, following transitions in the order
  specified in T.
· If any of the transitions in T are invalid or
  can't be followed, reject.
· If after following the transitions N accepts w,
  accept; otherwise reject.



  

Wow! Looks like we can't
get any more powerful.

 

(The Church-Turing thesis says
that this is not a coincidence!)



  

So why is that?



  

UTM = “On input ⟨M, w⟩, where M is a TM and w ∈ Σ*:
              Set up the initial configuration of M running on w.
              while (true) {
                   If M accepted w, then UTM accepts ⟨M, w⟩.
                   If M rejected w, then UTM rejects ⟨M, w⟩.
                   Otherwise, simulate one more step of M on w.
              }”

UTM = “On input ⟨M, w⟩, where M is a TM and w ∈ Σ*:
              Set up the initial configuration of M running on w.
              while (true) {
                   If M accepted w, then UTM accepts ⟨M, w⟩.
                   If M rejected w, then UTM rejects ⟨M, w⟩.
                   Otherwise, simulate one more step of M on w.
              }”



  

Wow! Our machines can
simulate one another!

 

This is a theoretical justification
for why all these models are
equivalent to one another.



  

So... can we solve everything yet?



  

#include <iostream>
#include <string>
#include <vector>
using namespace std;
  

const vector<string> kToPrint = {
  /* … */
};
  

void printProgramInQuotes() {
  for (string line: kToPrint) {
    cout << "  \"";
    for (char ch: line) {
      if (ch == '\"') cout << "\\\"";
      else if (ch == '\\') cout << "\\\\";
      else cout << ch;
    }
    cout << "\"," << endl;
  }
}
  

int main() {
  for (string line: kToPrint) {
    if (line == "@") printProgramInQuotes();
    else cout << line << endl;
  }
}



  

Weird! Programs can gain access
to their own source code!



  

Why does that matter?



  

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}



  

Crazy! The power of self-reference 
immediately limits what TMs can do!



  

What if we think about solving
problems in a different way?



  

int main() {
string me = mySource();
string input = getInput();

for (each string c) {
if (imConvincedWillLoop(me, input, c) {

accept();
}

}
}

int main() {
string me = mySource();
string input = getInput();

for (each string c) {
if (imConvincedWillLoop(me, input, c) {

accept();
}

}
}
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Oh great. Some problems
are impossible to solve.



  

But look what we learned along the way!
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Wow. That's pretty deep.



  

So... what can we do efficiently?
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NPN P



  

So... how are you two related again?



  

No clue.



  

But what do we know about them?
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Congratulations on making it this far!



  

What's next in CS theory?



  

What problems can
be solved by computers?

Regular languages
Context-Free Languages

R and RE
P and NP

DFAs
NFAs

Regular Expressions
Context-Free Grammars

Recognizers
Deciders
Verifiers
NTMs

Poly-time TMs/NTMs/Verifiers

Formal languages



  

What problems can
be solved by computers?

Interactive proof systems (CS254)
Approximation algorithms (CS261/361)

Average-case efficiency (CS264)
Randomized algorithms (CS265/254)
Parameterized complexity (CS266)

Communication complexity (CS369E)

Oracle machines (CS154)
Space-Bounded TMs (CS154/254)

Machines with Advice (CS254/354)
Streaming algorithms (CS263)
μ-Recursive functions (CS258)
Quantum computers (CS259Q)

Circuit complexity (CS354)

Function problems (CS254)
Counting problems (CS254)



  

How do we actually get the computer to 
effectively solve problems?

DFA design intuitions
Guess-and-check

Massive parallelism
Myhill-Nerode lower bounds

Verification
Polynomial-time reductions



  

How do we actually get the computer to 
effectively solve problems?

Algorithm design (CS161)
Efficient data structures (CS166)

Modern algorithmic techniques (CS168)
Approximation algorithms (CS261)

Average-case efficient algorithms (CS264)
Randomized algorithms (CS265)

Parameterized algorithms (CS266)
Geometric algorithms (CS268)

Game-theoretic algorithms (CS364A/B)



  

Where does CS theory meet CS practice?

Finite state machines
Regular expressions

CFGs and programming languages
Password-checking

Autograding
“This program is not responding”

Polynomial-time reducibility
NP-hardness and NP-completeness



  

Where does CS theory meet CS practice?

Compilers (CS143)
Computational logic (CS157)

Program optimization (CS243)
Data mining (CS246)

Cryptography (CS255)
Programming languages (CS258)

Network protocol analysis (CS259)
Techniques in big data (CS263)

Graph algorithms (CS267)
Computational geometry (CS268)
Algorithmic game theory (CS364)



  

A Whole World of Theory Awaits!



  

What's being done here at Stanford?



  

Hardness results for easy problems
(Virginia Williams)



  

Algorithms ∩ Game theory
(Tim Roughgarden)



  

Learning patterns in randomness
(Greg Valiant)



  

Optimizing programs... randomly
(Alex Aiken)



  

Computing on encrypted data
(Dan Boneh)



  

Interpreting structure from shape
(Leonidas Guibas)



  

Lower bounds from upper bounds
(Ryan Williams)



  

So many options – what to do next?



  

Interested in trying out CS?
Continue on to CS109!



  

Really enjoyed this class?
Give CS154 a try!



  

Want to see this material come to life?
Check out CS143!



  

Want to just go write code?
Take CS107!



  

Keep on exploring! There's
so much more to learn!



  

A Final “Your Questions”



  

“All our proofs that prove 
undecidability/unrecognizabili ty so far have 
relied on self-referential Turing machines. 
Could it be the case that, say, the halting 
problem restricted to non-self-referential 

machines is decidable? Is that even 
provable?”

Self-reference is sneaky and inherent to 
computation itself. It's impossible to eliminate it 
without destroying the ability for the computer 

to solve interesting problems.

Self-reference is sneaky and inherent to 
computation itself. It's impossible to eliminate it 
without destroying the ability for the computer 

to solve interesting problems.



  

“About equivalent TMs, you said something 
like 'This problem is unrecognizable, which 

is why we need section leaders to grade 
your code!' What makes section leaders 
inherently different than computers?”

We ultimately want to solve problems for a 
reason. Putting humans in the loop lets us make 
judgment calls and factor in concerns that we 

just can't program into the machine.

We ultimately want to solve problems for a 
reason. Putting humans in the loop lets us make 
judgment calls and factor in concerns that we 

just can't program into the machine.



  

“Please tell us a CS joke.”

Why didn't the brakes 
on the programmer's 

Segway work?

Why didn't the brakes 
on the programmer's 

Segway work?



  

“What's one piece of advice you would give 
someone at Stanford?”

Stay happy.
Stay healthy.

Stay happy.
Stay healthy.



  

“Thanks for answering all our questions 
Keith! Now, what is one question you would 

ask us?”

It's a multipart 
question. I'm going 
to save it for the 
end of today.

It's a multipart 
question. I'm going 
to save it for the 
end of today.



  

Anything else?



  



  

CS theory is all about asking what's 
possible in computer science.



  

There are more problems to
solve than there are programs

capable of solving them.



  

There is so much more to explore and so 
many big questions to ask – many of 

which haven't been asked yet!



  

What We've Covered
● Sets

● Proof Techniques

● Induction

● Graphs

● Logic

● Pigeonhole Principle

● Functions

● Relations

● DFAs

● NFAs

● Regular Expressions

● Closure Properties

● Nonregular Languages

● CFGs

● Turing Machines

● R and RE

● The Recursion Theorem

● NTMs and Verifiers

● Unsolvable Problems

● Reductions

● Time Complexity

● P

● NP

● NP-Completeness



  

Final Thoughts



  

You now know what problems we can solve, 
what problems we can't solve, and what 

problems we believe we can't solve 
efficiently.



  

My questions to you:

What problems will you choose to solve?
Why do those problems matter to you?
And how are you going to solve them?
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