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Guide to Proofs
Thanks to Michael Kim for writing some of the proofs used in this handout.

What makes a proof a “good proof?” It's hard to answer this question directly – it's like asking what
makes an essay a “good essay.” There are many traits that good essays have in common, and there
are many traits that bad essays have in common, but no hard and fast rules governing how to write
essays.

In this handout, we've compiled several different proofs that are similar to the proofs that have been
submitted in past quarters. We've annotated each of them with our feedback about what we like
about them and ways in which they could be improved. Our hope is that by giving you various exam-
ples of good proofs, you'll have a better sense for what we're looking for.

If you'd like some additional resources on good proofwriting, we suggest checking out Chapter 2.4
of the online course reader (which has some general style and design tips for proofs), or looking at
these links, which have useful information about how to write proofs:

• Mathematical Writing by Knuth, Larrabee, and Roberts, which you can find online by visit-
ing http://jmlr.org/reviewing-papers/knuth_mathematical_writing.pdf. This is a set of notes
for a class that Don Knuth taught at Stanford back in 1987. The “Minicourse in Technical
Writing” has great advice if you want a quick summary.

• Some  Remarks  on  Writing  Mathematical  Proofs by  John  M.  Lee  (available  online  at
http://www.math.washington.edu/~lee/Writing/writing-proofs.pdf).  I  often  refer  to  these
notes myself when trying to write mathematical proofs, as they're accessible, clearly-written,
and well-motivated.

Example: Pythagorean Triples
A Pythagorean triple is a triple (a, b, c) where a, b and c are positive integers and a2 + b2 = c2. Here's
a fun fact about Pythagorean triples:

There are no positive integers a and b for which (a, a, b) is a Pythagorean triple.

Here is one sample proof of this result:

Proof: If (a, a, b) is a Pythagorean triple, 2a2 = b2 ⇒ b / a = √2 , which is impossible. ■

This proof is definitely on the short side, but even so it's (somewhat) possible to follow the reason-
ing. Starting with the assumption that (a, a, b) is a Pythagorean triple, we get that 2a2 = b2 (though
you might have to pause for a second to see why). This in turn implies that b / a = √2 , which can't
happen because √2  is irrational.

http://jmlr.org/reviewing-papers/knuth_mathematical_writing.pdf
http://www.math.washington.edu/~lee/Writing/writing-proofs.pdf
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That said, this proof is terse to a fault. Although the reasoning is correct, this proof requires a lot of
work from the reader to rehydrate.  In particular, let's look at three steps:

If (a, a, b) is a Pythagorean triple, 2a2 = b2

b / a = √2
Which is impossible.

Each of these steps, in the context of the preceding steps, is correct. However, unless you already
know why they're valid, it's difficult to determine it from the proof itself. Proofs exist to convey a
line of reasoning to a reader who does not know why the result is true. Consequently, when writing
proofs, it is important to include details that would let a mathematically educated reader understand
why your result is true.

Here is an alternative version of the above proof, in which we've added additional details to clarify
the reasoning:

Proof: By contradiction; assume there exists some positive integers a and b for which (a, a, b) is a
Pythagorean triple. Since (a, a, b) is a Pythagorean triple, we have a2 + a2 = b2, so 2a2 = b2. Be-
cause (a, a, b) is a Pythagorean triple, we have a > 0, so a is nonzero. Because 2a2 = b2, we can
divide both sides by  a2 to get 2 =  b2 /  a2. Taking the square root of both sides gives us that
b / a = √2 . This means we can write √2 = b / a for integers b and a, where a ≠ 0. Thus √2  is
rational. However, as proven earlier, √2  is irrational. We have reached a contradiction, so our
assumption must have been wrong. Thus (a, a, b) cannot be a Pythagorean triple. ■

There are several important differences between this proof and the original:

• The proof gives guideposts to its overall structure. The original proof starts off with the as-
sumption that (a, a, b) is a Pythagorean triple without actually explaining why it's doing so.
This might confuse the reader – if you're trying to prove that (a,  a,  b) can't possibly be a
Pythagorean triple, why are you assuming it? Additionally, it concludes by explaining that
the contradiction that has been reached implies the main result to be proved, which helps ex-
plain the arc of the proof.

• The proof explains how the steps follow from one another.  With some simple arithmetic, it's
easy to see why if (a, a, b) is a Pythagorean triple, then 2a2 = b2. The initial proof omits the
steps necessary to show this, which forces the reader to stop reading the proof, grab a sheet
of paper, and work through the math. This disrupts the narrative flow of the proof, and, in
the event that the reader can't determine how the first part implies the second, the reader
won't fully understand the proof's logic.

• The proof justifies its contradiction. The initial proof concludes by noting that it's impossible
for b / a to be equal to √2 . However, it doesn't explain why this is impossible. Calling back
to the definition of a rational number helps the reader better understand what is going on.

• The proof has better narrative flow. Remember:  treat proofs as essays. The purpose of a
proof is to convey a valid line of reasoning, not to describe a calculation. Therefore, a proof
should function as a piece of writing that, while using mathematical symbols, can still  be
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read with ease. A good test for whether a proof is clear and elegant is whether you can read
it aloud; the original proof fails this test. Try reading the phrase “If (a, a, b) is a Pythagorean
triple, 2a2 = b2 ⇒ b / a = √2 ” aloud; you'll probably get stuck at the comma after “triple”
(does the comma indicate “then” or a continuation of what's being assumed?) and at the ⇒
symbol (which cannot easily be articulated.)

A helpful piece of advice to keep in mind when writing proofs: use mathematical notation to con-
vey facts and English to convey structure. Any proof that (a, a, b) can't be a Pythagorean triple is
ultimately going to have to introduce some mathematical notation to describe the relationship be-
tween a and b, but that doesn't mean that the whole proof should be dense mathematical notation.
The second version of the proof above uses plain English to describe how each step in the proof
flows into the next, but doesn't try to explain that 2a2 = b2 in English.

So is the above proof the “best” proof of the theorem? Not necessarily. Contrast that second proof
with this third proof:

Proof: By contradiction; assume there exists some positive integers a and b for which (a, a, b) is a
Pythagorean triple. Since (a, a, b) is a Pythagorean triple, we see that a2 + a2 = b2. Therefore,
we know that

2a2 = b2. (1)

We know from our initial assumption that a is nonzero. This means that  a2 is nonzero, so we
can divide both sides of equation (1) by a2 to get

2 = b2 / a2. (2)

Taking the square root of both sides of equation (2) yields

√2 = b / a. (3)

Statement (3) tells us that we can express √2 as the ratio of two nonzero integers, or equiva-
lently that √2 is rational. But this is impossible – we already know that √2 is irrational. There-
fore, our assumption must be wrong, so there are no positive integers a and b for which (a, a, b)
is a Pythagorean triple. ■

In our opinion, this proof is much cleaner than the second proof. Here are a few reasons why:

• The proof gives names to intermediary results. It's enlightening to compare the paragraph af-
ter intermediary result (2) with the equivalent step from the previous proof. The above proof
explicitly states what it's doing in this step:  “Taking the square root of both sides of (2)
yields  √2 = b / a.” The previous proof says this instead: “Taking the square root of both
sides gives us that b / a = √2 .” In both cases, the reader needs to look back in the proof to
find something that was written earlier. In the newer proof, the statement to refer back to is
on its own line, clearly labeled, and explicitly referenced. In the older proof, it's clear that
we're supposed to take the square root of both sides of something, but it's not clear what. The
reader has to go backwards through the paragraph – which is already quite dense – to figure
out what's being discussed. In many cases, a complex proof can be made much clearer sim-
ply by giving names to important intermediary results. If you find that your own proofs are
too dense, it may be helpful to expand them out in this way.
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• There is more variation in sentence structure. Read back over the second proof – do you no-
tice anything about the sentence structure? Lots of consecutive sentences  have the same
structure: “Because X, we have Y.” In this newer proof, there's more diversity in the sentence
structure. Some sentences just state facts, while others show how those facts flow together. If
you find that your own proofs feel tough to read, check your sentence structure – you might
be repeating the same pattern over and over again.

• The proof is visually more spread out. When reading a proof, it's not uncommon to have to
pause and think about the argument. Sometimes, it will be necessary to refer back to some-
thing earlier in the proof. When that happens, it can be tough for a reader to jump back to
where they were. Notice how this third proof is physically more spread out than the second –
there's more whitespace, more labeling, and more natural breaks. This makes it easier for the
reader to jump back to a location and find where they were before.

Example: Rational and Irrational Numbers
There are infinitely more irrational numbers than rational numbers, though actually showing a partic-
ular number is irrational might take some effort. Here's an interesting statement to prove:

log₂ 3 is irrational.

Here is one attempted proof of this result:

Proof: Here, we set out to prove that log₂ 3 is irrational. Remember that a rational number is a num-
ber r where there exists integers p and q such that p / q = r. Thus, we need to show that no such
p and q exists for p / q = log₂ 3. Thus, we will proceed by contradiction and a false statement to
prove a true one. If we assume that log₂ 3 = p / q for some integers p and q, then we know by
properties of logs that this means 2log₂ 3 = 2p/q. Thus, we have that 3 = 2p/q.. If we raise each side
to the qth power we see 2p = 3q, which means we have to find p and q to solve this equation. We
see that one such solution is p = 0 and q = 0 and both sides of the equation are 1. But this is not
allowed because we had a q in the denominator, so if q = 0, then log₂ 3 would be infinite or un-
defined and wouldn't make sense. Since we know that we can calculate this value, then it can't
be that q = 0. Thus, we must find another way to prove this fact. To do this, we note the first few
powers of 2 and of 3. These are 2, 4, 8, 16, 32, ... and 3, 9, 27, 81, 243, .... As you can see, the
powers of 2 are always even and the powers of 3 are always odd. It's now clear that even num-
bers are closed under exponentiation and so are the odd ones. Thus, we discover that 2p ≠ 3q for
any p, q that would be legal to choose. Because we discover this, we know that we have reached
a contradiction, so we know it must be false. ■

This is an excellent first draft of a proof. It reads as an exploration of the topic at hand – why it's go-
ing to use a proof by contradiction, what the first powers of two and powers of three are, why q can't
be zero, etc. However, because of this, it's far more verbose than is necessary and contains many
pieces that could be significantly condensed or eliminated. Take this part as an example:



5 / 15

 Here, we set out to prove that log₂ 3 is irrational. Remember that an irrational number
is a number r such that there exists integers p and q such that p / q = r. Thus, we need
to show that no such p and q exists for p / q = log₂ 3. Thus, we will proceed by contra-

diction and a false statement to prove a true one. 

As part of a draft, this is a great line of reasoning to follow. When writing this up as a formal proof,
though, it should probably be restructured:

• Since the proof is a proof by contradiction, the proof should probably start off by announc-
ing itself as such.

• You can assume that the reader knows what a proof by contradiction is, so there's no need to
justify how it works (assuming a false statement to prove a true one). This reminder of how a
proof by contradiction works doesn't add anything of substance to the proof.

• The proof tries to outline how it's going to work – it says that it will show that there aren't
any integers p and q such that p / q = log₂ 3 – but if you look later in the proof, it doesn't ac-
tually directly show this.  This is  problematic,  since the proof is  not making good on its
promises!

Here's how we might start the proof off, using the same core ideas but without as much exposition:

Proof: By contradiction; assume that log₂ 3 is rational. Then there must exist some p, q ∈ ℤ such that
p / q = log₂ 3 and q ≠ 0.  …

Let's look at another part of this proof that could use some cleanup. In the middle of the proof, the
author tries to get a contradiction by noting that if p / q = log₂ 3, then 2p = 3q. I've reprinted part of
this proof below:

If we raise each side to the qth power we see 2p = 3q, which means we have to find p
and q to solve this equation. We see that one such solution is p = 0 and q = 0 and both
sides of the equation are 1. But this is not allowed because we had a q in the denomi-
nator, so if q = 0, then log₂ 3 would be infinite or undefined and wouldn't make sense.

If you'll notice, in the tail end of this section, the author needs to justify why we can't have p = 0 and
q = 0. The author justifies this by saying

But this is not allowed because we had a q in the denominator, so if q = 0, then log₂ 3
would be infinite or undefined and wouldn't make sense.

You might be wondering what the author is talking about. Earlier in the proof, the author assumed
that log₂ 3 is rational, meaning that there's some choice of integers p and q such that p / q = log₂ 3.
We can't have q = 0 if we have q in the denominator of a fraction, since then we'd be dividing by
zero. Looking back over the above sentence from the proof, though, you might not have been able to
figure out why.
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On the one hand, technically speaking, the author is right – if  q were equal to zero, then log₂ 3
would be infinite or undefined because it would be equal to p / 0. On the other hand, the proof does
a poor job of actually explaining why this is true; the reader has to figure this out on his or her own.
The goal of a proof is to convey an argument, and in this case the author has failed to do so.

So how could we clean this up? One way to do so would be to rewrite the section as

If we raise each side to the qth power we see 2p = 3q, which means we have to find p and q to solve
this equation. We see that one such solution is p = 0 and q = 0 and both sides of the equation are 1.
Earlier, we wrote log₂ 3 = p / q, so we know that q isn't zero. Therefore, we need to look for a solu-
tion other than p = 0 and q = 0. …

This works out much better than before – it gives a rigorous justification for why p = 0 and q = 0
isn't a valid solution in this case and motivates the search for another solution.

Here's one last part of the proof that needs to be cleaned up:

We note the first few powers of 2 and of 3. These are 2, 4, 8, 16, 32, ... and 3, 9, 27,
81, 243, ....  As you can see, the powers of 2 are always even and the powers of 3 are
always odd. It's now clear that even numbers are closed under exponentiation and so

are the odd ones.

When exploring why the result is true, it's perfectly reasonable to start listing off powers of two and
powers of three and looking for a trend. The trend the proof notes is that powers of two are always
even (except for 1, which was accounted for earlier in the proof) and powers of three are always
odd, which will cause a problem.

However, the way that this is written could use some work. Writing out the first several powers of
two and powers of three is a good way to see whether there are some patterns (in this case, that pow-
ers of two are even and that powers of three are odd), but that's not in of itself a proof. To be more
rigorous, the proof might note that two is a divisor of 2p for p > 1 but is never a divisor of 3q, could
use induction, etc.

There's actually a small logic hole in this proof. In this discussion, p and q are assumed to be posi-
tive, though it's possible that at least one of p and q are negative. Therefore, it's possible that 2p or 3q

might not be an integer, in which case arguments about whether these numbers are even or odd
would be meaningless. It's worth updating the proof to account for this case.

To summarize our feedback on this proof:

• It's great initially to write out your thoughts, simple examples, basic definitions, etc., but be
sure to clean them up in your final draft.

• Adding precision into definitions of variables makes it easier to reason about them later on
and can save you a lot of time on what might seem like a difficult digression.

• Avoid phrases like “clearly,” “obviously,” or “as you can see.”  Usually, but not always, these
phrases indicate that you are skipping a step or failing to justify a statement.
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Additionally,  the final  proof  should  probably  get  a bit  of a style  cleanup along the lines  of the
Pythagorean Triples example given earlier in this handout. It would be good to label important equa-
tions, to vary the sentence structure, etc.

Example: Pythagorean Triples, Again
Let's look at another sample proof involving Pythagorean triples. Here's something you may have
noticed about Pythagorean triples:

If k is any positive integer and (ka, kb, kc) is a Pythagorean
triple, then (a, b, c) is a Pythagorean triple.

For example, since (6, 8, 10) is a Pythagorean triple and each number has two as a divisor, we can
divide it out to leave (3, 4, 5), which must be a Pythagorean triple. Similarly, since (50, 120, 130) is
a Pythagorean triple and each number has 10 as a divisor, we can divide out the 10 to get (5, 12,
13), which must be a Pythagorean triple.

Here's one possible proof of this result:

Proof: Consider any Pythagorean triple (ka, kb, kc) where k is a positive integer. This means that

(ka)2 + (kb)2 = (kc)2

k2a2 + k2b2 = k2c2

a2 + b2 = c2 (since k2 ≠ 0)

Clearly, neither a, b, nor c can be zero, and so (a, b, c) is a Pythagorean triple. ■

There are a couple of parts of this proof that could use some work. Let's start with the formatting
and structure of the proof. Look at this part:

This means that
(ka)2 + (kb)2 = (kc)2

k2a2 + k2b2 = k2c2

a2 + b2 = c2 (since k2 ≠ 0)

Try reading this out loud as if you were reading an essay. You might run into trouble because you'll
read off “This means that...” as the start of a sentence, but the math that follows it isn't actually a
continuation of that sentence. It starts off as “This means that (ka)2 + (kb)2 = (kc)2,” which is a valid
sentence, but the next line of the proof, “k2a2 + k2b2 = k2c2,” can't be added on to the end of the pre-
vious sentence and isn't a sentence by itself. We can correct this by rewriting the proof so that it
works in complete sentences. Here's an example:
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Proof: Consider any Pythagorean triple (ka, kb, kc) where k is a positive integer. From the definition
of a Pythagorean triple, we see that

(ka)2 + (kb)2 = (kc)2. (1)

Since k is a positive integer, we know that k ≠ 0 and therefore that k2 ≠ 0. Simplifying equation (1)
and dividing both sides by k2 gives the following:

k2a2 + k2b2 = k2c2

a2 + b2 = c2

Clearly, neither a, b, nor c can be zero, and so (a, b, c) is a Pythagorean triple. ■

There's actually now more in this proof (an explanation of why we can divide by k2 that was previ-
ously not explained), and there's another sentence motivating the algebraic simplifications. Addition-
ally, the proof is now more grammatically correct: the sentence stating what manipulations will hap-
pen ends with a colon (ending the previous clause and introducing a justification) rather than trailing
off into some math. Try reading this out loud – a bit easier, isn't it?

However, there is one aspect of this proof that isn't ideal. Look at this last sentence:

Clearly, neither a, b, nor c can be zero, and so (a, b, c) is a Pythagorean triple. ■

We (the CS103 staff) sometimes like to joke that proofs like this are “proof by intimidation;” they
assert that something is true because it's clearly true or obviously true, but without actually backing
it up. If you ever find yourself wanting to justify something by saying that it's “clearly” or “obvi-
ously” true, take the time to make sure you see why it's actually true. You might find that what you
initially thought was “clearly” and “obviously” true is actually false (in which case you've just spotted
a logical flaw in your argument), or you might figure out a way to explain why it is true (in which
case you've deepened your understanding of the math).

In the case of this proof, it's illustrative to rewrite the proof to explain exactly why none of these val-
ues can be zero. Here's one reasonable way to do this:
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Proof: Consider any Pythagorean triple (ka, kb, kc) where k is a positive integer. From the definition
of a Pythagorean triple, we see that

(ka)2 + (kb)2 = (kc)2. (1)

Since k is a positive integer, we know that k ≠ 0 and therefore that k2 ≠ 0. Simplifying equation (1)
and dividing both sides by k2 gives the following:

k2a2 + k2b2 = k2c2

a2 + b2 = c2     (2)

Because (ka, kb, kc) is a Pythagorean triple, we know that ka, kb, and kc are positive. Since k is a
positive integer, this means that a, b, and c are all positive as well. This, combined with equation (2),
means that (a, b, c) is a Pythagorean triple, which is what we needed to show. ■

The end of this proof now actually takes the time to explain why a, b, and c must be positive, which
is necessary for showing that (a, b, c) must be a Pythagorean triple. That's certainly better than say-
ing that it's “clearly” true, since as you can see above there's actually a few details to check.

However, this is probably not an ideal ending to the proof. Reread this new proof from start to fin-
ish. In our opinion, the ending of this proof is a bit abrupt; it switches from a calculation on a, b, and
c to the fact that ka, kb, and kc are positive. Ultimately this leads somewhere – we need that fact to
show that a, b, and c are all positive – but it's not clear where the proof is going until it gets there.
When you have a proof with two or more distinct parts (which will be most of the proofs you write
over the course of this quarter), it's important to give landmarks throughout the proof explaining
what you're going to do and when. That makes it easier for a reader to understand what they're about
to read and how everything ties together. Here's a final proof with guideposts put in:

Proof: Consider any Pythagorean triple (ka, kb, kc) where k is a positive integer. We will prove that
(a, b, c) is also a Pythagorean triple.

First, we'll prove that a2 + b2 = c2. From the definition of a Pythagorean triple, we see that

(ka)2 + (kb)2 = (kc)2. (1)

Since k is a positive integer, we know that k ≠ 0 and therefore that k2 ≠ 0. Simplifying equation (1)
and dividing both sides by k2 gives the following:

k2a2 + k2b2 = k2c2

a2 + b2 = c2     (2)

Next, we'll prove that a, b, and c are positive. Because (ka, kb, kc) is a Pythagorean triple, we know
that ka, kb, and kc are positive. Since k is a positive integer, this means that a, b, and c are all posi-
tive as well.

Since a, b, and c are positive and a2 + b2 = c2, we conclude that (a, b, c) is a Pythagorean triple, as
required. ■
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This proof is much clearer and cleaner than the earlier attempts. It starts off with a lead-in explain -
ing what the big picture is (“We will prove that (a, b, c) is also a Pythagorean triple.”) It then breaks
the proof into two steps, announcing what it will prove and then following through with that prom-
ise. Finally, it aggregates these pieces together to conclude with the statement that needed to be
proven.

Example: Subsets and Differences
Here's a fact about sets that's often useful when manipulating sets:

For any sets A and B: A – B = Ø iff A ⊆ B

Here is one possible proof of this fact:

Proof: Let's assume that A – B = Ø. By definition of set difference, this means that the set of ele-
ments in A that are not in B (that is, A – B) is empty. Thus, there are no elements in A that are
not also in B. In other words, for every element, if x ∈ A, then x ∈ B. We know that a set S is a
subset of T if and only if for every element x ∈ S, x ∈ T as well. Thus, by definition, we conclude
that A – B = Ø if and only if A ⊆ B. ■

Unlike the other proofs in this handout, which are essentially correct but could use some stylistic
corrections, this proof actually contains a serious logic error and does not prove what it needs to
prove. In particular, look at the statement to prove:

For any sets A and B: A – B = Ø iff A ⊆ B

Did this proof actually show this? If you look at the very last line, it seems like it might be the case.
However, there is something flawed with this reasoning. To prove a biconditional statement like this
one, the proof needs to show the following:

If A – B = Ø, then A ⊆ B

If A ⊆ B, then A – B = Ø

Looking at this proof again, you'll notice that it only proves the first of these statements – it starts off
by assuming A – B = Ø, then concludes that A ⊆ B. However, it hasn't proven the other direction of
implication by starting with the assumption that A ⊆ B and concluding A – B = Ø. In other words,
what the proof says is correct, but it's incomplete. To round out this proof, we'd need to prove the
other direction of implication as well.

Before we do that, though, let's look at the writing style of this proof. Here's a little game you can
play – read the sentences of the proof one at a time and stop at the end of each sentence. Ask your-
self this question: is it clear where the proof is going?

You might have noticed that this proof keeps stating facts one after the other. These facts do follow
from one another, but it's unclear where the proof is going. It's important to put guideposts in proofs
that cue the reader into what's going to happen later on, and this proof hasn't done that.
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Here's a rewrite of the above proof with some more guideposts put in. Half of the proof is still miss-
ing (we only proved one direction of implication), but hopefully you can see why this new proof is
cleaner:

Proof: We will prove both directions of implication.

First, we'll prove that if  A –  B = Ø, then we will have A ⊆  B. Let  A and B be arbitrary sets
where A – B = Ø. We'll show A ⊆ B by proving that every element of A is also an element of B.

We know that A – B = Ø, meaning that the set of elements in A that are not in B (that is, A – B)
is empty. Thus, there are no elements in A that are not also in B. Consequently, every element
of A also belongs to B, and therefore A ⊆ B, as required.

(the other direction of implication goes here.) ■

Notice that the proof starts off by announcing how it's going to prove that A is a subset of B: it's go-
ing to prove that every element of A is also an element of B. Once the proof announces it's going to
do this, it's a lot easier to see why the proof chooses to go down the route that it does.

Now, let's think about that other direction of implication. We need to prove for any sets A and B that
if A ⊆ B, we'll have A – B = Ø. We can prove this in lots of different ways, but I think one of the
easier approaches would be to use the contrapositive – let's prove that if A – B ≠ Ø, then A is not a
subset of B. The completed proof is shown here:

Proof: We will prove both directions of implication.

First, we'll prove that if  A –  B = Ø, then we will have A ⊆  B. Let  A and B be arbitrary sets
where A – B = Ø. We'll show A ⊆ B by proving that every element of A is also an element of B.

We know that A – B = Ø, meaning that the set of elements in A that are not in B (that is, A – B)
is empty. Thus, there are no elements in A that are not also in B. Consequently, every element
of A also belongs to B, and therefore A ⊆ B, as required.

Next, we'll prove that if  A ⊆ B, then A – B = Ø. To do so, we'll prove the contrapositive and
show that if A – B ≠ Ø, then A is not a subset of B. If A – B ≠ Ø, then there is at least one ele-
ment x ∈ A – B. Since x ∈ A – B, we know that x ∈ A and that x ∉ B. Therefore, it's not the case
that every element of A is an element of B, so A is not a subset of B, as required. ■

Notice that this proof mixes and matches proof styles – we use a direct proof for one part of the iff
and a proof by contrapositive for the other. This is fairly common; in fact, most interesting proofs
contain elements of all sorts of types of proofs.
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Example: Odd and Even Numbers
Consider the following theorem:

For any natural number n, the number n2 + n is even.

Here's one potential proof:

Proof: By contradiction; assume there is some natural number n where n2 + n is odd. Consider the
parity of n. If n is even, then n2 is even and n is even, so their sum n2 + n must be even as well.
This contradicts that n2 + n is odd. Otherwise,  n is odd. Then n is odd and n2 is odd, so their
sum n2 + n must be even. This again contradicts that  n2 + n is odd. In either case we reach a
contradiction, so our assumption must have been wrong. Thus for any natural number  n, the
number n2 + n is even. ■

This proof is logically sound and stylistically has many nice aspects: it's easy to read and clearly lays
out its argument. But while there's nothing logically wrong with this proof, but there is something
structurally amiss. The argument of this proof is, essentially, the following:

1. Assume n2 + n is odd.

2. If n is even, then n2 + n is even, which is a contradiction.

3. If n is odd, then n2 + n is even, which is a contradiction.

4. Both cases reach a contradiction, so the assumption was wrong.

5. Thus n2 + n is even.

Notice that steps (2) and (3), collectively, form a direct proof that n2 + n is always even. Instead of
structuring it as a proof by contradiction, we could just write it as a direct proof. Compare the above
proof to this simpler proof given here, which uses the same basic argument but omits the proof by
contradiction:

Proof: Let n be an arbitrary integer. If n is even, then n2 is even and n is even, so their sum n2 + n
must be even as well. Otherwise, if n is odd, then n is odd and n2 is odd, so their sum n2 + n
must be even. Therefore, the sum n2 + n must be even. ■

This is much simpler, more compact, and to the point.

Proof by contradiction is often the easiest or simplest way to prove a result. If you want a challenge,
try showing that the square root of two is irrational without using a proof by contradiction. However,
in many cases proof by contradiction obscures a much simpler line of reasoning that could proceed
directly. When writing a proof by contradiction,  it's  worth double-checking your argument after
writing up a draft to see if it's actually necessary. If you can get away with a direct proof, it's often
more elegant to do so.
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Example: Contract Rummy
Contract rummy is a card game for any number of players (usually between three and five) in which
players are dealt a hand of cards and, through several iterations of drawing and discarding cards,
need to accumulate sets and sequences. A set is a collection of three cards of the same value, and a
sequence is a collection of four cards of the same suit that are in ascending order. The game pro-
ceeds in multiple rounds in which players need to accumulate a different number of sets and se-
quences. The rounds are:

• Two sets (six cards)

• One set, one sequence (seven cards)

• Two sequences (eight cards)

• Three sets (nine cards)

• Two sets and a sequence (ten cards)

• One set and two sequences (eleven cards)

• Three sequences (twelve cards)

Notice that in each round, the requirements are such that the number of cards required increases by
one. It's interesting that it's always possible to do this, since the total number of cards must be made
using just combinations of three cards and four cards. In fact, we can prove this theorem:

Any integer greater than five can be written as 3m + 4n for natural numbers m and n.

Let's take a look at an attempted proof of this result:

Proof: Consider any natural number k that's greater than five (equivalently, k is greater than or equal
to six). First, let's consider the case where k is a multiple of three. In that case, we can write k = 3m
for some integer m, as required.

Next, consider the case where k is congruent to one modulo three. In that case, we can express the
number k as k = 3m +1 for some integer m. Clearly m has to be greater than or equal to two, so we
can equivalently write k as k = 3(m – 1) + 4 · 1, as required.

Finally, consider the case where k is congruent to two modulo three. Using similar logic as above,
we can then write k = 3(m – 2) + 4 · 2, as required. ■

This proof is interesting in that it contains all the elements of a complete proof, but has a few issues.
The basic outline of the proof is reasonable: we start with some arbitrary k, split into cases based on
whether k is a multiple of three, is congruent to one modulo three, or is congruent to two modulo
three, then show that in each case we can massage those definitions into something that's of the form
k = 3m + 4n for natural numbers m and n.

That said, the proof is skipping a few important steps that we think would be important to justify.
Let's take a look at the last sentence of the first paragraph:
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In that case, we can write k = 3r for some integer r, as required.

The goal, overall, is to show that there are natural numbers m and n such that k = 3m + 4n. Here, the
proof has shown that there's an  integer m where  k = 3m. This isn't  exactly what's needed in this
proof, since although all the natural numbers are integers, not all the integers are natural numbers.
The proof needs to go one more step and explain why m would have to be nonnegative. This would
probably use the fact that k is greater than or equal to six, meaning that k has to be positive, so m
couldn't be negative.

There's a similar sort of error in the next paragraph, which I've reprinted here:

Next, consider the case where k is congruent to one modulo three. In that case, we can
express the number k as k = 3m +1 for some integer m. Clearly m has to be greater
than or equal to two, so we can equivalently write k as k = 3(m – 1) + 4 · 1, as re-

quired.

The second sentence starts with “clearly,” which is probably an indicator that something's up. Re-
member from before - “clearly” and “obviously” are usually red flags! Here, the fact that m has to be
at least two follows from the fact that k is at least six – if m isn't at least two, then k wouldn't be at
least six. The proof would need to state this somewhere.

There's another problem with this paragraph. The paragraph concludes by saying that it's possible to
write k = 3(m – 1) + 4 · 1. That's great, but remember that the result specifically talks about writing
out k as 3a + 4b for some natural numbers a and b. Here, m – 1 is most definitely a natural number
because m is at least two. However, the readers of this proof have to figure this out for themselves,
since the proof doesn't give any guidance.

For the purposes of CS103, we'd prefer if this proof were written out with some more guidance to
the reader.

Now, let's suppose that the person who wrote the above proof got our feedback and decided to put
in more detail. Here's one possible proof that might come back:

Proof: Consider any natural number k that's greater than five (equivalently, k is greater than or equal
to six). First, let's consider the case where k is a multiple of three. In that case, we can write k = 3m
for some integer m. Because k = 3m and k is positive, we know that m is positive. Every positive in-
teger is a natural number, because each natural number is either 0 or a positive whole number, and
the integers consist of 0, the positive whole numbers, and the negative whole numbers. Therefore,
we can write  k = 3m for some natural number  m. As a further observation, notice that 3m is the
same as 3m + 4·0, and 0 is a natural number. This means that we can choose natural numbers m and
n such that k = 3m + 4n.

[…]

This proof has definitely cleaned up the previous issue (lack of detail), but the pendulum has swung
too far in the opposite direction this time. While the extra justifications do help, in this case the
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proof spends a lot of time justifying statements that, from our perspective, are sufficiently obvious
and don't need to be explained. For example, we think it's fine to just say that a positive integer is a
natural number, and it's okay to leave out the part about 3m + 4 · 0 being the same as 3m. The level
of justification that we're looking for is a lot more along these lines:

Proof: Consider any natural number k that's greater than five (equivalently, k is greater than or equal
to six). First, let's consider the case where k is a multiple of three. In that case, we can write k = 3m
for some integer m. Because k = 3m and k is positive, we know that m is positive, so m is a natural
number. Thus in this case, we can express k as needed.

[…]

This is about all that we'd need – I think this is perfectly fine as written and that the justifications are
given at an appropriate level.

Just for fun, here's one last proof of this result, though it's definitely not something you should sub-
mit in CS103:

Proof: This follows as a special case of the Frobenius coin theorem with two coins, which says that
given natural numbers a and b, all natural numbers greater than ab – a – b can be written as the sum
am + bn for some natural numbers m and n. Here, ab – a – b = 3 · 4 – 3 – 4 = 12 – 7 = 5, so the the-
orem follows. ■

This proof really isn't appropriate in CS103: we haven't talked about the Frobenius coin problem,
few (if any) CS103 students have seen the result, and the course staff aren't likely to have seen it ei-
ther. We're evaluate your ability to demonstrate clear lines of reasoning following from our general
assumptions (essentially, high school algebra and what we've proven so far), and given that metric
this proof doesn't quite work.

That said, the proof hopefully does open up your eyes to the fact that there's a lot of math out there
and lots of fun results to explore. I'd recommend looking up the Frobenius coin problem in your
spare time if you have the chance – it's quite an interesting read!
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