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Problem Set 4

This fourth problem set explores graph theory and the pigeonhole principle. Over the course of this
problem set, you'll see lots of different families of graphs and will get a feel for some of the nifty
properties of these classes of graphs. Plus, you'll develop a newfound appreciation for the pigeon-
hole principle.

As always, please feel free to drop by office hours, send us emails, or ask on Piazza if you have any
questions. We'd be happy to help out.

Good luck, and have fun!

Checkpoint due Monday, October 19 at the start of lecture.

Remaining problems due Friday, October 23 at the start of lecture.
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Write your solutions to the following problem and submit them online by Monday, October 19 th at the
start of class. This problem will be graded on a 0/1/2 scale based on whether you have attempted to solve
all the problem, rather than on correctness. We will try to get these problems returned to you with feed-
back on your proof style this Wednesday, October 21st.

Checkpoint Problem: Graph Theory Party Tricks (2 Points)
Suppose that you have a party of n ≥ 2 people. Each pair of people at the party either knows each other
(are acquaintances) or does not know each other (are strangers).

Prove that there must be two people at the party who know exactly the same number of other people.
(Hint: How many options are there for the number of people each person knows?)
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The rest of these problems are due on Friday, October 23

Problem One: Graph Coloring (6 Points)
The degree of a node v in a graph G is the number of edges that have v as an endpoint. In other words, it's
the number of edges v directly touches. Interestingly, there usually isn't much of a connection between the
degree of the nodes in a graph and the number of colors necessary to color that graph.

i. Give an example of a 2-colorable graph where some node has degree seven. Briefly justify why
your graph meets these criteria; no proof is necessary.

ii. Generalize your answer from part (i) by describing how, for any n ≥ 1, you can build a 2-colorable
graph where some node has degree at least  n. This shows that there is no direct connection be-
tween the maximum degree of a node in a graph and the chromatic number of that graph.

iii. Give an example of a 2-colorable graph where every node has degree three. Briefly justify why
your graph meets these criteria; no proof is necessary.

iv. Generalize your answer from part (iii) by describing how, for any n ≥ 1, you can build a 2-col-
orable graph where every node has degree at least n. This shows that there is no direct connection
between the minimum degree of a node in the graph and the chromatic number of that graph.

v. Give an example of a graph where every node has degree two but which is not 2-colorable. Briefly
justify why your graph meets these criteria; no proof is necessary.

vi. Generalize your answer from part (v) by describing how, for any n ≥ 2, you can build a connected
graph with at least  n nodes where every node has degree two but which is not 2-colorable. This
shows that it's possible for each isolated part of a graph to look 2-colorable even though the graph
as a whole is not.

Problem Two: Complements and Connectivity (4 Points)
If G = (V, E) is an undirected graph, the complement of G, denoted Gc, is a graph related to the original
graph G. Intuitively, Gc has the same nodes as G, and its edges consist of all the edges missing from graph
G. Formally speaking, Gc is the graph with the same nodes as G and with edges determined as follows: the
edge {u, v} is present in Gc if and only if u ≠ v and the edge {u, v} is not present in G. As an example,
here's a graph G and its complement graph Gc:

a b

c d e

Graph GcGraph G

a b

c d e

Recall that a graph G is called connected if there is a path between any two nodes in G.

Prove that if G is an undirected graph, then G is connected or Gc is connected (or both). As a hint, look at
Handout 13 and see the advice about how to prove a statement of the form P ∨ Q.
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Problem Three: Bipartite Graphs (5 Points)
The  bipartite graphs are a special class of graphs with applications throughout computer science. An
undirected graph G = (V, E) is called bipartite if there is a way to partition the nodes V into two sets V₁
and V₂ so that every edge in E has one endpoint in V₁ and the other in V₂.

To help you get a better intuition for bipartite graphs, let's look at an example. Suppose that you have a
group of people and a list of restaurants. You can illustrate which people like which restaurants by con-
structing a bipartite graph where V₁ is the set of people, V₂ is the set of restaurants, and there's an edge
from a person p to a restaurant r if person p likes restaurant r.

Bipartite graphs have many interesting properties. One of the most fundamental is this one:

An undirected graph is bipartite if and only if it contains no cycles of odd length.

Intuitively,  a  bipartite  graph contains  no odd-length cycles  because cycles  alternate between the  two
groups V₁ and V₂, so any cycle has to have even length.

The trickier step is proving that if G contains no cycles of odd length, then G has to be bipartite. For now,
assume that G has just one connected component; if G has multiple connected components, we can treat
each one as a separate graph for the purposes of determining whether G is bipartite. (You don't need to
prove this, but I'd recommend taking a minute to check why this is the case.)

Suppose G is an undirected graph with no cycles of odd length. Choose any node v ∈ V. Let V₁ be the set
of all nodes that are connected to v by a path of odd length and V₂ be the set of all nodes connected to v
by a path of even length.

i. Prove that V₁ and V₂ have no nodes in common.

ii. Using your result from part (i), prove that if G has no cycles of odd length, then G is bipartite.

Problem Four: Coloring a Grid (4 Points)
You are given a 3 × 9 grid of points, like the one shown below:

Suppose that you color each point in the grid either red or blue. Prove that no matter how you color those
points, you can always find four points of the same color that form the corners of a rectangle.
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Problem Five: Outerplanar Graphs (3 Points)
In this question, you'll see a class of graphs called the outerplanar graphs that are closely related to the
planar graphs. Let's begin by introducing a new operation on graphs called augmentation. If G is a graph,
the augmentation of graph  G, denoted Aug(G), is formed by adding a new node  v★ to  G, then adding
edges from v★ to each other node in G. For example, below is a graph G and its augmentation Aug(G). To
make it easier to see the changes between G and Aug(G), we've drawn the edges added in Aug(G) using
dashed lines:

Now, we can define the outerplanar graphs. An undirected graph  G is called an  outerplanar graph if
Aug(G) is a planar graph. In other words, if Aug(G) is a planar graph, then the original graph G is an out-
erplanar graph.

Prove the three-color theorem: every outerplanar graph is 3-colorable.

Problem Six: Bipartite Complements (4 Points)
As a refresher, a k-coloring of a graph G is a way of assigning each node in G one of up to k different col-
ors so that no two nodes in G linked by an edge are the same color. The chromatic number of a graph G,
denoted χ(G), is the smallest value of k for which G is k-colorable.

Prove that if G = (V, E) is a bipartite graph with n nodes, then χ(Gc) ≥ ⌈n / 2⌉.

a b

c d
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Aug(G)Graph G
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Problem Seven: Chromatic and Independence Numbers (4 Points)
Let's introduce a new definition. An independent set in an undirected graph G = (V, E) is a set I ⊆ V such
that if x ∈ I and y ∈ I, then {x, y} ∉ E. Intuitively, an independent set in G is a set of nodes where no two
nodes in I are adjacent. The independence number of a graph G, denoted α(G), is the size of the largest
independent set in G.

Consider the following graph G:

i. What is χ(G)? What is α(G)? No justification is required.

ii. Let r and s be arbitrary positive natural numbers. Prove that if G is an undirected graph with rs+1
nodes, then χ(G) ≥ r+1 or α(G) ≥ s+1 (or both).

Problem Eight: Friends and Strangers Revisited (5 Points)
A k-clique is an undirected graph consisting of k nodes, each of which is connected to each of the others.

In lecture, we proved the “Theorem on Friends and Strangers:” if you color all the edges of a 6-clique ei-
ther red or blue, you can always find a 3-clique made purely of red edges or purely of blue edges.

It turns out that if you look at progressively larger and larger graphs, you can show that you can start find-
ing progressively larger and larger cliques of a single color.

i. Prove that in any 10-clique where all edges are colored either red or blue, you can always find a
red 3-clique or a blue 4-clique.  (Hint: Use a similar technique to the proof of the Theorem on
Friends and Strangers. Also, use that result as a building block in your proof.)

ii. Prove that in any 10-clique where all edges are colored either red or blue, you can always find a
red 4-clique or a blue 3-clique.

iii. Prove that in any 20-clique where all edges are colored either red or blue, you can always find a
red 4-clique or a blue 4-clique.

The sorts of results you've proven above are special cases of a result called Ramsey's theorem which says
that for any numbers r and s, there is a number Crs such that any Crs-clique where each edge is colored ei-
ther red or blue must contain a red r-clique or a blue s-clique. In some sense, this means that it's not pos-
sible to have complete and total disorder in large structures; any sufficiently large clique whose edges are
colored necessarily must have some interesting substructure.

Extra Credit Problem: k-Regular Graphs (1 Point Extra Credit)
An undirected graph G is called k-regular if every node in G has degree exactly k. The girth of a graph is
the length of the shortest simple cycle in G. If G has no cycles, its girth is infinite.

Prove that any k-regular graph with girth five has at least k2 + 1 nodes.


