
  

Functions
Part Two



  

Recap from Last Time



  

Rough Idea of a Function:

A function is an object f that takes in one 
input and produces exactly one output.

(This is not a complete definition – we'll 
revisit this in a bit.)
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Domains and Codomains

● Every function f has two sets associated with it: its 
domain and its codomain.

● A function f can only be applied to elements of its 
domain. For any x in the domain, f(x) belongs to the 
codomain.

● If f has domain A and codomain B, we write f : A → B.

Domain Codomain



  

Function Composition

● Suppose that we have two functions 
f : A → B and g : B → C.

● Notice that the codomain of f is the 
domain of g. This means that we can use 
outputs from f as inputs to g.
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Function Composition

● Suppose that we have two functions f : A → B 
and g : B → C.

● The composition of f and g, denoted g ∘ f, is a 
function where
● g ∘ f : A → C, and
● (g ∘ f)(x) = g(f(x)).

● A few things to notice:
● The domain of g ∘ f is the domain of f. Its codomain is 

the codomain of g.
● Even though the composition is written g ∘ f, when 

evaluating (g ∘ f)(x), the function f is evaluated first.

The name of the function is g ∘ f. 
When we apply it to an input x, 
we write (g ∘ f)(x). I don't know 

why, but that's what we do.

The name of the function is g ∘ f. 
When we apply it to an input x, 
we write (g ∘ f)(x). I don't know 

why, but that's what we do.



  

New Stuff!



  

A Topic for PS3



  

The Cartesian Product

● The Cartesian product of A × B of two sets is 
defined as

A × B = { (a, b) | a ∈ A and b ∈ B }

=0, 1, 2 a, b, c

A B

×
(0, a),(0, b),(0, c),

(1, a),(1, b),(1, c),

(2, a),(2, b),(2, c) 



  

The Cartesian Product

2

=
(0, 0),(0, 1),(0, 2),

(1, 0),(1, 1),(1, 2),

(2, 0),(2, 1),(2, 2) 

0, 1, 2
A2

● The Cartesian product of A × B of two sets is 
defined as

A × B = { (a, b) | a ∈ A and b ∈ B }

● We denote A2 = A × A



  

Special Types of Functions
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Injective Functions

● A function f : A → B is called injective (or one-to-one) if 
each element of the codomain has at most one element of 
the domain that maps to it.

● A function with this property is called an injection.
● Formally, f : A → B is an injection if this statement is true:

∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ → f(a₁) ≠ f(a₂))

(“If the inputs are different, the outputs are different”)

● Equivalently:

∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) → a₁ = a₂)

(“If the outputs are the same, the inputs are the same”)



  

Injections and Composition



  

Injections and Composition

● Theorem: If f : A → B is an injection and 
g : B → C is an injection, then the 
function g ∘ f : A → C is an injection.

● Our goal will be to prove this result. To 
do so, we're going to have to call back to 
the formal definitions of injectivity and 
function composition.



  

Theorem: If f : A → B is an injection and g : B → C is an
injection, then the function g ∘ f : A → C is also an
injection.

Proof: Let f : A → B and g : B → C be arbitrary injections. We
will prove that the function g ∘ f : A → C is also injective.
To do so, we will prove for all a₁ ∈ A and a₂ ∈ A that if
(g ∘ f)(a₁) = (g ∘ f)(a₂), then a₁ = a₂.

Suppose that (g ∘ f)(a₁) = (g ∘ f)(a₂). Expanding out the 
definition of g ∘ f, this means that g(f(a₁)) = g(f(a₂)). Since 
g is injective and g(f(a₁)) = g(f(a₂)), we know f(a₁) = f(a₂). 
Similarly, since f is injective and f(a₁) = f(a₂), we know that 
a₁  = a₂, as required. ■

What's the high-level structure of this proof?

∀f : A → B. ∀g : B → C. (Inj(f) ∧ Inj(g) → Inj(g ∘ f))

Therefore, we'll choose two arbitrary injective functions
f : A  → B and g : B  → C and prove that g  ∘ f is

injective.

What's the high-level structure of this proof?

∀f : A → B. ∀g : B → C. (Inj(f) ∧ Inj(g) → Inj(g ∘ f))

Therefore, we'll choose two arbitrary injective functions
f : A  → B and g : B  → C and prove that g  ∘ f is

injective.



  

Theorem: If f : A → B is an injection and g : B → C is an
injection, then the function g ∘ f : A → C is also an
injection.

Proof: Let f : A → B and g : B → C be arbitrary injections. We
will prove that the function g ∘ f : A → C is also injective.
To do so, we will prove for all a₁ ∈ A and a₂ ∈ A that if
(g ∘ f)(a₁) = (g ∘ f)(a₂), then a₁ = a₂.

Suppose that (g ∘ f)(a₁) = (g ∘ f)(a₂). Expanding out the 
definition of g ∘ f, this means that g(f(a₁)) = g(f(a₂)). Since 
g is injective and g(f(a₁)) = g(f(a₂)), we know f(a₁) = f(a₂). 
Similarly, since f is injective and f(a₁) = f(a₂), we know that 
a₁  = a₂, as required. ■

What does it mean for g  ∘ f : A  → C to be injective?

There are two equivalent definitions, actually!

∀a₁ ∈ A. ∀a₂ ∈ A. ((g ∘ f)(a₁) = (g ∘ f)(a₂) → a₁ = a₂)

∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ → (g ∘ f)(a₁) ≠ (g ∘ f)(a₂))

Therefore, we'll choose arbitrary a   ₁ ∈ A and a   ₂ ∈ A where
(g  ∘ f)(a ) = (₁ g  ∘ f)(a ) and prove that ₂ a  = ₁ a .₂

What does it mean for g  ∘ f : A  → C to be injective?

There are two equivalent definitions, actually!

∀a₁ ∈ A. ∀a₂ ∈ A. ((g ∘ f)(a₁) = (g ∘ f)(a₂) → a₁ = a₂)

∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ → (g ∘ f)(a₁) ≠ (g ∘ f)(a₂))

Therefore, we'll choose arbitrary a   ₁ ∈ A and a   ₂ ∈ A where
(g  ∘ f)(a ) = (₁ g  ∘ f)(a ) and prove that ₂ a  = ₁ a .₂



  

Theorem: If f : A → B is an injection and g : B → C is an
injection, then the function g ∘ f : A → C is also an
injection.

Proof: Let f : A → B and g : B → C be arbitrary injections. We
will prove that the function g ∘ f : A → C is also injective.
To do so, we will prove for all a₁ ∈ A and a₂ ∈ A that if
(g ∘ f)(a₁) = (g ∘ f)(a₂), then a₁ = a₂.

Suppose that (g ∘ f)(a₁) = (g ∘ f)(a₂). Expanding out the 
definition of g ∘ f, this means that g(f(a₁)) = g(f(a₂)). Since 
g is injective and g(f(a₁)) = g(f(a₂)), we know f(a₁) = f(a₂). 
Similarly, since f is injective and f(a₁) = f(a₂), we know that 
a₁  = a₂, as required. ■

How do you evaluate (g  ∘ f)(a )?₁

(g ∘ f)(a₁) = g(f(a₁))

How do you evaluate (g  ∘ f)(a )?₁

(g ∘ f)(a₁) = g(f(a₁))



  

Theorem: If f : A → B is an injection and g : B → C is an
injection, then the function g ∘ f : A → C is also an
injection.

Proof: Let f : A → B and g : B → C be arbitrary injections. We
will prove that the function g ∘ f : A → C is also injective.
To do so, we will prove for all a₁ ∈ A and a₂ ∈ A that if
(g ∘ f)(a₁) = (g ∘ f)(a₂), then a₁ = a₂.

Suppose that (g ∘ f)(a₁) = (g ∘ f)(a₂). Expanding out the 
definition of g ∘ f, this means that g(f(a₁)) = g(f(a₂)). Since 
g is injective and g(f(a₁)) = g(f(a₂)), we know f(a₁) = f(a₂). 
Similarly, since f is injective and f(a₁) = f(a₂), we know that 
a₁  = a₂, as required. ■

We know that g is injective. What does that mean?

∀x ∈ A. ∀y ∈ A. (g(x) = g(y) → x = y)

We know that g is injective. What does that mean?

∀x ∈ A. ∀y ∈ A. (g(x) = g(y) → x = y)



  

Theorem: If f : A → B is an injection and g : B → C is an
injection, then the function g ∘ f : A → C is also an
injection.

Proof: Let f : A → B and g : B → C be arbitrary injections. We
will prove that the function g ∘ f : A → C is also injective.
To do so, we will prove for all a₁ ∈ A and a₂ ∈ A that if
(g ∘ f)(a₁) = (g ∘ f)(a₂), then a₁ = a₂.

Suppose that (g ∘ f)(a₁) = (g ∘ f)(a₂). Expanding out the 
definition of g ∘ f, this means that g(f(a₁)) = g(f(a₂)). Since 
g is injective and g(f(a₁)) = g(f(a₂)), we know f(a₁) = f(a₂). 
Similarly, since f is injective and f(a₁) = f(a₂), we know that 
a₁  = a₂, as required. ■
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Surjective Functions

● A function f : A → B is called surjective (or 
onto) if each element of the codomain is 
“covered” by at least one element of the 
domain.
● A function with this property is called a 

surjection.
● Formally, f : A → B is a surjection if this 

statement is true:

∀b ∈ B. ∃a ∈ A. f(a) = b

(“For every possible output, there's at least one 
possible input that produces it”)



  

Composing Surjections



  

Theorem: If f : A → B is surjective and g : B → C is surjective,
then g ∘ f : A → C is also surjective.

Proof: Let f : A → B and g : B → C be arbitrary surjections.
We will prove that the function g ∘ f : A → C is also
surjective. To do so, we will prove that for any c ∈ C, there
is some a ∈ A such that (g ∘ f)(a) = c. Equivalently, we
will prove that for any c ∈ C, there is some a ∈ A such that
g(f(a)) = c.

Consider any c ∈ C. Since g : B → C is surjective, there is 
some b ∈ B such that g(b) = c. Similarly, since f : A → B is 
surjective, there is some a ∈ A such that f(a) = b. This 
means that there is some a ∈ A such that

g(f(a)) = g(b) = c,

which is what we needed to show. ■

What's the high-level structure of this proof?

∀f : A → B. ∀g : B → C. (Sur(f) ∧ Sur(g) → Sur(g ∘ f))

Therefore, we'll choose two arbitrary surjective functions
f : A  → B and g : B  → C and prove that g  ∘ f is

surjective.

What's the high-level structure of this proof?

∀f : A → B. ∀g : B → C. (Sur(f) ∧ Sur(g) → Sur(g ∘ f))

Therefore, we'll choose two arbitrary surjective functions
f : A  → B and g : B  → C and prove that g  ∘ f is

surjective.



  

Theorem: If f : A → B is surjective and g : B → C is surjective,
then g ∘ f : A → C is also surjective.

Proof: Let f : A → B and g : B → C be arbitrary surjections.
We will prove that the function g ∘ f : A → C is also
surjective. To do so, we will prove that for any c ∈ C, there
is some a ∈ A such that (g ∘ f)(a) = c. Equivalently, we
will prove that for any c ∈ C, there is some a ∈ A such that
g(f(a)) = c.

Consider any c ∈ C. Since g : B → C is surjective, there is 
some b ∈ B such that g(b) = c. Similarly, since f : A → B is 
surjective, there is some a ∈ A such that f(a) = b. This 
means that there is some a ∈ A such that

g(f(a)) = g(b) = c,

which is what we needed to show. ■

What does it mean for g  ∘ f : A  → C to be surjective?

∀c ∈ C. ∃a ∈ A. (g ∘ f)(a) = c

Therefore, we'll choose arbitrary c  ∈ C and prove that there
is some a  ∈ A such that (g  ∘ f)(a) = c.

What does it mean for g  ∘ f : A  → C to be surjective?

∀c ∈ C. ∃a ∈ A. (g ∘ f)(a) = c

Therefore, we'll choose arbitrary c  ∈ C and prove that there
is some a  ∈ A such that (g  ∘ f)(a) = c.



  

Theorem: If f : A → B is surjective and g : B → C is surjective,
then g ∘ f : A → C is also surjective.

Proof: Let f : A → B and g : B → C be arbitrary surjections.
We will prove that the function g ∘ f : A → C is also
surjective. To do so, we will prove that for any c ∈ C, there
is some a ∈ A such that (g ∘ f)(a) = c. Equivalently, we
will prove that for any c ∈ C, there is some a ∈ A such that
g(f(a)) = c.

Consider any c ∈ C. Since g : B → C is surjective, there is 
some b ∈ B such that g(b) = c. Similarly, since f : A → B is 
surjective, there is some a ∈ A such that f(a) = b. This 
means that there is some a ∈ A such that

g(f(a)) = g(b) = c,

which is what we needed to show. ■
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Theorem: If f : A → B is surjective and g : B → C is surjective,
then g ∘ f : A → C is also surjective.

Proof: Let f : A → B and g : B → C be arbitrary surjections.
We will prove that the function g ∘ f : A → C is also
surjective. To do so, we will prove that for any c ∈ C, there
is some a ∈ A such that (g ∘ f)(a) = c. Equivalently, we
will prove that for any c ∈ C, there is some a ∈ A such that
g(f(a)) = c.

Consider any c ∈ C. Since g : B → C is surjective, there is 
some b ∈ B such that g(b) = c. Similarly, since f : A → B is 
surjective, there is some a ∈ A such that f(a) = b. This 
means that there is some a ∈ A such that

g(f(a)) = g(b) = c,

which is what we needed to show. ■



  

Injections and Surjections

● An injective function associates at most 
one element of the domain with each 
element of the codomain.

● A surjective function associates at least 
one element of the domain with each 
element of the codomain.

● What about functions that associate 
exactly one element of the domain with 
each element of the codomain?
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Bijections

● A function that associates each element of 
the codomain with a unique element of the 
domain is called bijective.
● Such a function is a bijection.

● Formally, a bijection is a function that is 
both injective and surjective.

● Bijections are sometimes called one-to-
one correspondences.
● Not to be confused with “one-to-one functions.”



  

Bijections and Composition

● Suppose that f : A → B and g : B → C are 
bijections.

● Is g ∘ f necessarily a bijection?
● Yes!

● Since both f and g are injective, we know 
that g ∘ f is injective.

● Since both f and g are surjective, we know 
that g ∘ f is surjective.

● Therefore, g ∘ f is a bijection.



  

Time-Out for Announcements!



  

Problem Set Two

● Problem Set Two was due at 3:00PM 
today.

● Want to use late days? Submit up to 
3:00PM on Monday of next week.

● We'll try to get everything graded and 
returned by Wednesday of next week.



  

Problem Set Three

● Problem Set Three goes out today.
● Checkpoint is due on Monday.
● Remaining problems due Friday.

● Play around with relations, functions, and 
cardinality!
● (The last few problems require topics from 

Monday's lecture.)

● Need help? Ask questions on Piazza or stop by 
office hours!



  

Problem Set Three

● It seems like Q3 on PS3 printed one of 
the symbols wrong.

● The weird symbol that looks like this:

<
● should look like this:

⋖

.



  

Problem Set Three

● It seems like Q7 on PS3 printed one of 
the symbols wrong as well (sorry!)

● The function f(n) should be

f(n) = { m ∈ ℕ | m ≥ n }  



  

Your Questions



  

“What were the grade distributions for the 
first PSet?”

“What is the average grade for Problem Set 
1, and for problem sets in general?”

The median grade was 31 / 34, including the checkpoint.

Generally speaking, assignment scores tend to be pretty high 
because you have lots of time to work on them. Remember 
that they're only 1/3 of your grade and that most of the 

variance comes from exams. Think of this as a “strategic point 
reserve” you can spend if one of the exams doesn't go well.

The median grade was 31 / 34, including the checkpoint.

Generally speaking, assignment scores tend to be pretty high 
because you have lots of time to work on them. Remember 
that they're only 1/3 of your grade and that most of the 

variance comes from exams. Think of this as a “strategic point 
reserve” you can spend if one of the exams doesn't go well.



  

“Do you think grades often get in the way 
of learning? Or, are they useful 

evaluations?”

Yes. And yes.

Grades are useful as a feedback mechanism and as an incentive 
to keep people motivated. Things go wrong when people start 
obsessing over every point and think that their GPA defines 
them. (I'm speaking from personal experience on both sides 

of the desk.)

Yes. And yes.

Grades are useful as a feedback mechanism and as an incentive 
to keep people motivated. Things go wrong when people start 
obsessing over every point and think that their GPA defines 
them. (I'm speaking from personal experience on both sides 

of the desk.)



  

“If you could spend 1 year devoted to 
solving any problem, what problem would 

you choose?”

I had to really think about this one. I think I'd 
probably work trying to help refugees who have 
arrived in the US resettle. It's something where 
just writing a check doesn't do too much and 

where the human connection is critical.

I had to really think about this one. I think I'd 
probably work trying to help refugees who have 
arrived in the US resettle. It's something where 
just writing a check doesn't do too much and 

where the human connection is critical.



  

“Why is the lecture hall so cold? :(”

This room can get miserably hot if 
the AC is off. I assume they're 
just keeping it on because the 
alternative is so much worse.

This room can get miserably hot if 
the AC is off. I assume they're 
just keeping it on because the 
alternative is so much worse.



  

Back to CS103!



  

Inverse Functions
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Inverse Functions

● In some cases, it's possible to “turn a function 
around.”

● Let f : A → B be a function. A function f-1 : B → A is 
called the inverse of f if the following is true:

∀a ∈ A. ∀b ∈ B. (f(a) = b ↔ f-1(b) = a) 
● In other words, if f maps a to b, then f-1 maps b 

back to a.
● Not all functions have inverses (we just saw a few).
● If f is a function that has an inverse, then we say 

that f is invertible. 



  

A Useful Fact about Inverses



  

Lemma: Let f : A → B be invertible and let f-1 : B → A be its
inverse. Then for any a ∈ A and for any b ∈ B, we have
f-1(f(a)) = a and f(f-1(b)) = b.

Proof: First, consider any a ∈ A. We will prove that
f-1(f(a)) = a. To see this, let b = f(a). Since f(a) = b and
f-1 is the inverse of a, we see that

f-1(b) = a. (1)

Substituting b = f(a) into equation (1) tells us f-1(f(a)) = a, 
as required.

Next, consider any b ∈ B. We will prove that f(f-1(b)) = b. 
To see this, let a = f-1(b). Since f-1 is the inverse of f, this 
means that

         f(a) = b. (2)

Plugging a = f-1(b) into equation (2) tells us f(f-1(b)) = b, 
as required. ■

What does it mean that f-1 is the inverse of f?

∀a ∈ A. ∀b ∈ B. f(a) = b ↔ f-1(b) = a

What does it mean that f-1 is the inverse of f?

∀a ∈ A. ∀b ∈ B. f(a) = b ↔ f-1(b) = a



  

Lemma: Let f : A → B be invertible and let f-1 : B → A be its
inverse. Then for any a ∈ A and for any b ∈ B, we have
f-1(f(a)) = a and f(f-1(b)) = b.

Proof: First, consider any a ∈ A. We will prove that
f-1(f(a)) = a. To see this, let b = f(a). Since f(a) = b and
f-1 is the inverse of a, we see that

f-1(b) = a. (1)

Substituting b = f(a) into equation (1) tells us f-1(f(a)) = a, 
as required.

Next, consider any b ∈ B. We will prove that f(f-1(b)) = b. 
To see this, let a = f-1(b). Since f-1 is the inverse of f, this 
means that

         f(a) = b. (2)

Plugging a = f-1(b) into equation (2) tells us f(f-1(b)) = b, 
as required. ■



  

Which functions have inverses?



  

Inverse Functions

● Theorem: Let f : A → B. Then f is invertible 
if and only if f is a bijection.

● To prove this result, we need to prove that
● if f : A → B is invertible, then f is a bijection, 

and
● if f : A → B is a bijection, then f is invertible.

● These are separate steps, so we'll do each 
one individually.



  

Theorem: If f : A → B is invertible, then f is a bijection.

Proof: Let f : A → B be an invertible function and let f-1 be its
inverse. We need to prove that f is a bijection, so we will
show that f is injective and surjective.

First, we'll prove that f is injective. To do so, consider any 
a₁, a₂ ∈ A where f(a₁) = f(a₂). We need to show that a₁ = a₂. 
Applying f-1 to both sides of f(a₁) = f(a₂) tells us that

f-1(f(a₁)) = f-1(f(a₂)).  

Using our lemma, we then see that a₁ = a₂, as required.  

Next, we will prove that f is surjective. To do so, consider 
any b ∈ B. We need to show that there is an a ∈ A such 
that f(a) = b. Let a = f-1(b). Then

f(a) = f(f-1(b)) = b.

So there is an a ∈ A (namely, f-1(b)) such that f(a) = b, as 
required. ■

b

f-1(b)



  

Theorem: If f : A → B is invertible, then f is a bijection.

Proof: Let f : A → B be an invertible function and let f-1 be its
inverse. We need to prove that f is a bijection, so we will
show that f is injective and surjective.

First, we'll prove that f is injective. To do so, consider any 
a₁, a₂ ∈ A where f(a₁) = f(a₂). We need to show that a₁ = a₂. 
Applying f-1 to both sides of f(a₁) = f(a₂) tells us that

f-1(f(a₁)) = f-1(f(a₂)).  

Using our lemma, we then see that a₁ = a₂, as required.  

Next, we will prove that f is surjective. To do so, consider 
any b ∈ B. We need to show that there is an a ∈ A such 
that f(a) = b. Let a = f-1(b). Then

f(a) = f(f-1(b)) = b.

So there is an a ∈ A (namely, f-1(b)) such that f(a) = b, as 
required. ■



  

Bijections are Invertible

A B

Define f-1(b) to be “the unique choice of a where f(a) = b”

∀a ∈ A. ∀b ∈ B. f(a) = b ↔ f 
-1(b) = a



  

Theorem: If f : A → B is a bijection, then f is invertible.

Proof: Let f : A → B be a bijection. We need to show that there is a
function f-1 : B → A such that f(a) = b if and only if f-1(b) = a.

Let's begin by proving the following, helpful fact: for any b ∈ B, there 
is exactly one a ∈ A such that f(a) = b.

First, we will prove that there is at least one a ∈ A such that f(a) = b. 
Because f is a bijection, we know it's surjective, and therefore that for 
any b ∈ B there is at least one a ∈ A such that f(a) = b.

Next, we will prove that there is at most one a ∈ A such that f(a) = b. 
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Where We Are

● Phew! That was a lot of stuff!
● We now know

● what an injection, surjection, and bijection are;
● that injections, surjections, and bijections are 

closed under composition; and
● that bijections are invertible and invertible 

functions are bijections.

● You might wonder why this all matters. 
Well, there's a good reason...



  

Cardinality Revisited



  

Cardinality

● Recall (from our first lecture!) that the 
cardinality of a set is the number of elements it 
contains.

● If S is a set, we denote its cardinality by |S|.
● For finite sets, cardinalities are natural numbers:

● |{1, 2, 3}| = 3
● |{100, 200}| = 2

● For infinite sets, we introduced infinite 
cardinals to denote the size of sets:

|ℕ| = ℵ₀    



  

Defining Cardinality

● It is difficult to give a rigorous definition 
of what cardinalities actually are.
● What is 4? What is ₀?ℵ

● Idea: Define cardinality as a relation 
between two sets rather than as an 
absolute quantity.



  

Comparing Cardinalities

● The relationships between set cardinalities are 
defined in terms of functions between those sets.

● Here is the formal definition of what it means for 
two sets to have the same cardinality:

|S| = |T| if there exists a bijection f : S → T   

, , ,

, ,,



  

Infinity is Weird...



  

f (n)={ n /2 if n  is even
−(n+1)/2 otherwise

Infinite Cardinalities
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-3-2-1

ℕ

ℤ 0 1 2 3 4 ...-4
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Infinite Cardinalities

0 1 2 3 4 5 6 7 8 ...

-3-2-1

ℕ

ℤ 0 1 2 3 4 ...-4

f (n)={ n /2 if n  is even
−(n+1)/2 otherwise



  

Home on the Range

0 1

0 2

f : [0, 1] → [0, 2]
f(x) = 2x

|[0, 1]| = |[0, 2]|



  

Home on the Range

0 1

0 k

f : [0, 1] → [0, k]
f(x) = kx

|[0, 1]| = |[0, k]|



  

Home on the Range

0 1

a b

f : [0, 1] → [a, b]
f(x) = (b – a)x + a

|[0, 1]| = |[a, b]|



  

Put a Ring On It

0

f : (-π/2, π/2) → ℝ
f(x) = tan x

 

|(-π/2, π/2)| = |ℝ|

+π /2-π /2



  

Properties of Cardinality

● For any sets R, S, and T, the following 
are true:
● |S| = |S|.

– Define f : S → S as f(x) = x.
● If |S| = |T|, then |T| = |S|.

– If f : S → T is a bijection, then f-1 : T → S is a 
bijection.

● If |R| = |S| and |S| = |T|, then |R| = |T|.
– If f : R → S and g : S → T are bijections, then 

g ∘ f : R → T is a bijection.
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